
NDN Synchronization: iRoundSync, an Improved RoundSync
Ayat Zaki Hindi

Inria, Université Paris-Saclay
Michel Kieffer

L2S, CNRS-CentraleSupélec-Univ Paris-Sud

Cedric Adjih
Inria, Université Paris-Saclay

Claudio Weidmann
ETIS, ENSEA - Université de Cergy-Pontoise - CNRS

1 INTRODUCTION
The use of Named Data Networking (NDN) for distributed multi-
user applications, e.g. group messaging and file sharing, requires
NDN synchronization protocols to maintain the same shared dataset
(and its updates) among all nodes. ChronoSync [1], RoundSync [2],
and PartialSync [3] are some proposals to address this issue, see
[4]. Here we focus on the state-of-the-art protocol RoundSync [2]:
we study its core features, that permit participating nodes to detect,
propagate, and reconcile all changes. Particular attention is given
to the case of multiple changes per round. We then propose an
improved variant, iRoundSync, that exchanges fewer messages in
the multiple-change case and is more resilient to packet losses. We
quantify the performance gain of iRoundSync on a simple topology.

2 SHARED DATASET AND DIGESTS
Our network model is identical to [2]: a group of N nodes (sync
group) is maintaining a shared dataset. The ith node is assigned a
prefix pi and may locally produce updates, each of which is associ-
ated with an increasing sequence number si . The goal of the dataset
synchronization protocol is to ensure that (eventually) the updates
of each node are exchanged between all participating nodes.

Each update is identifiedwith (pi , si) and can be retrieved through
interests with Application Data names (e.g., /<pi>/appPrefix/<si>
in [2]), which have routable name prefixes as proposed already for
ChronoSync [1]. The synchronization consists in identifying all
newly generated updates (pi , si) (fetched independently). This oc-
curs through some protocol operating in an NDN namespace with
a prefix unique to the group, <group-prefix>.

ChronoSync [1] and its refinement, RoundSync [2], rely on the
concept of digests to identify differences in the shared dataset. Con-
sider a set of K updates associated with their sequence number, e.g.,
a set of (pi , si). The digest for a single update is defined as di =
H (pi |si), where H (...) is a hash function and "|" denotes concatena-
tion. The digest of the entire set is defined as:H (d1 |d2 | . . . |dK) (after
proper ordering of the pi). In ChronoSync, the state digest is the
digest of the set of lastest updates from all nodes. Its main property
is that when the shared dataset is synchronized, nodes will
have the same state digest. In RoundSync, this whole-dataset di-
gest is named cumulative digest, and finer granularity is introduced
by dividing updates into rounds. Then a round digest (RD) is defined
as the digest of the set of updates of one round.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICN ’17, September 26–28, 2017, Berlin, Germany
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5122-5/17/09. . . $15.00
https://doi.org/10.1145/3125719.3132108

3 THE ROUNDSYNC PROTOCOL
A brief description of RoundSync [2] follows. Due to space con-
straints, we do not describe the reconciliation/recovery process in
any detail, and we focus on regular operations of the protocol in
the case of multiple concurrent updates.

RoundSync introduces the concept of rounds. The round number
is akin to a global clock, and increased or updated (locally) as soon
as a node generates or receives an update. Assume that all nodes are
synchronized and hence have all the same round number. The set of
updates in the current round is initially empty, and synchronization
of new updates is done through NDN Data Interest (DI) and Sync
Interest (SI) messages with the following naming conventions:
• DI: /<group-prefix>/DATA/<round>
• SI: /<group-prefix>/SYNC/<round>/<round-digest>

The synchronization follows the steps:
S1 RoundSync uses the DI name as rendez-vous point, as follows:
every node sends one DI (for the round) with the same name. They
are kept pending until some content satisfies it.
S2 When a node generates a new update, it sends it as reply to
the pending DI (DI Reply). The DI reply packet does not directly
include the new data, but holds information on how to retrieve it
(e.g., the new generated data name), including the corresponding
node prefix pi and sequence number si .
S3 The DI reply is then multicast by routers to nodes of the group.
S4 Upon receiving a reply to the round DI:
S4.1 The node updates its knowledge of the shared dataset by
inserting (pi , si) in its set of round updates, then it updates its RD.
S4.2 The node issues immediately a SI with its current RD (if it
changed). The SI will not get replies: its role is to operate as an
advertisement/broadcast message.
S4.3 The node increments its round number and runs the syn-
chronization procedure for the new round in parallel.In particular,
this implies that a node may send at most one update per round.
S5 Upon receiving a SI, the node compares the <round-digest>
received with its local RD. A mismatch is interpreted as proof of
desynchronization, indicating that more (unknown) DI replies are
available. To retrieve them, a DI is re-issued using an NDN exclude
filter selector, to avoid getting an already known DI reply from the
nearest NDN router. The exclude filter thus lists the names of the
DI replies already received for that round.

4 IMPROVING ROUNDSYNC: IROUNDSYNC
One can infer the behavior of RoundSync for K simultaneous up-
dates in a round: initiallyK distinct concurrent DI replies are sent in
the network by theK nodes with updates. Then repeatedly, nodes al-
ternate between receiving one new (for them) DI reply, and sending
one new DI (with longer exclude filter) along with one new SI with

194

https://doi.org/10.1145/3125719.3132108

ICN ’17, September 26–28, 2017, Berlin, Germany A. Zaki-Hindi et al.

updated round digest. In parallel, nodes can fetch the application
data for every new DI reply.

Hence it takes K "iterations" to converge, see Section 5. The root
cause is the use of digests that deliver no meaningful information
beyond the synchronization status (yes/no), resulting in successive
DIs that are essentially "shots in the dark".

We propose iRoundSync as an improvement of RoundSync, where
the digests in SI allow to recover the update information in certain
cases. They have the new format:
/<group-prefix>/SYNC/<round>/<informative-round-digest>

The optimized operation of iRoundSync is as follows: a node that
produces or receives a SI will accumulate all following received SIs
for a time equal to the network traversal time; only then it issues a
cumulative SI (with informative RD). Which ideally is the one that
signals that the synchronization has converged. Two variants of
"informative" RD are proposed below.

Short Node Identifer:
In iRoundSync, each node has also a (shorter) identifier, taken

as the hash of the node prefix: ui = H (pi). Each node of the group
maintains a mapping table between the ui and pi of other nodes,
initially empty. Whenever a node sees an ui without matching pi , it
requests it through NDNmechanisms: it sends a Node Prefix Interest
with name /<group-prefix>/NODE-PREFIX/<ui>. To which the
node with identifier ui replies with content pi . This incurs a small
initialization overhead paid only once per producer.

iRoundSync with IBF Round Digest:
The first variant of <informative-round-digest> is onewhere

the RD is an Invertible Bloom Filter (IBF) in a way similar to PSync
[3]. At a node, when an SI is generated, the RD is computed from
the set of currently known updates (pi , si) by simply constructing
an IBF of the fixed-size elements ui |si . The use of ui in place of pi
leads to more compact IBF RD.

This IBF RD allows nodes to instantly retrieve the list of ui , si in
any received SI with low failure probability. Then data names are
deduced through the mapping table between ui and pi (see above).
Therefore it is unnecessary to send DIs with exclude filters, except
in case of failure, yielding sizable performance gains.

iRoundSync with Structured Round Digest:
The second variant of <informative-round-digest> is much

more compact than an IBF, and offers the same advantages in many
scenarios. It is based on the the following observation on the proto-
col dynamics: when a node generates data, it replies to the pend-
ing round DI. It also issues an SI with an RD containing only its
own pj and sj (since it satisfied its own pending DI). Hence one
single-update SI will be sent initially by each of the K nodes with
simultaneous updates. Nevertheless, as mentioned, a single-update
RD in RoundSync conveys little useful information: it isH (H (pi |si))
for the single update (pi , si).

Structured round digests (SRD) are a variant of RDs where, in-
stead, single-update digests are informative. Given a set ofk updates
(pi , si), the SRD is constructed as concatenation:
<srd-round-digest>=<count><id-sum><seq-sum> where
• <count> is the number of updates in a set,
• <id-sum>= H (p1) xor H (p2) xor . . . xor H (pk)
• <seq-sum>=s1 xor s2 xor . . . xor sk .

Upon receiving any SRD, a node will check the count field, and
if it is equal to 1 (single-update SRD), it will directly recover ui =
H (pi), si as with an IBF RD.Without losses, the number of messages
is thus the same as with IBF RD. Moreover, if the node has missed
only one of the single-update SI, it can still retrieve later the missing
H (pi) (hence ui), by xor-ing all the digests.

5 EVALUATION AND CONCLUSION
To get some rough insight on the performance of iRoundSync, we
consider a star topology of N users and one central router.

We estimate cost in terms of number of packets exchanged
for sync (not data) when k simultaneous changes occur in one
round for RoundSync and iRoundSync, as an optimistic lower bound
(we ignore Nacks, assume ChildSelector, no losses, and that syn-
chronization occurs with minimal number of iterations, . . .).

For cost evaluation, in this topology, note that if ℓ > 1 nodes send
a similar interest (for non-cached content) to the central router, it
will forward N times, hence a cost of N + ℓ packets. For a unique
interest (ℓ = 1), the cost is N .

The costs for each steps are as follows (details in tables at [5]).
• Set-up and initial notification DIs: at round start, N similar
DIs are sent (step S1). Hence a cost of 2N . For initial notification
by producers (S2 , S3): k DI replies are generated, and they reach
(at least) the N − k non-producers, hence a cost of N . In parallel,
the k producers generate k unique single-update SIs, yielding a cost
of kN . Total cost of this phase: (k + 3)N .
• iRoundSync convergence: nodes will receive one DI reply, wait
and get the k initial (informative) SIs, fetch data, then send an SI,
that should be similar for all. Hence additional cost is 2N .
•RoundSync convergence: repeatedly each node will send a new
SI with updated digest and a new DI with updated exclude filter, get
one new update, and repeat again. Hence k "iterations". At the i-th
"iteration", careful analysis (not detailed here, see tables [5]) shows
that essentially: k − i nodes have different round digests (subset of
producers), and others have the same. Hence, k − i unique SIs and
N − k + i similar SIs are produced. Total cost of the k iterations:
k(k − 1)(N − 1)/2 + 3(k + 1)N for SIs, and 2kN for DIs.

The total cost for RoundSync is thus ≈ k(k − 1)(N − 1)/2+ 3(k +
1)N , whereas that for iRoundSync is ≈ (k + 5)N .

Conclusion, first, iRoundSync can solve the cost of in-round
sync efficiently (its ideal convergence cost is a fraction ≤ 1

3 of the
total cost). Second, blind SIs of RoundSync incur a quadratic cost
which dominates when k gets larger (the term 1

2k
2N). Further work

includes considering the complete RoundSync, actual topologies,
real implementation, actual simulations, and new mechanisms.

REFERENCES
[1] Zhenkai Zhu and Alexander Afanasyev. Let’s chronosync: Decentralized dataset

state synchronization in named data networking. In Network Protocols (ICNP),
2013 21st IEEE International Conference on, pages 1–10. IEEE, 2013.

[2] Pedro de-las Heras-Quiros, Eva M. Castro, Wentao Shang, Yingdi Yu, Spyridon
Mastorakis, Alexander Afanasyev, and Lixia Zhang. The Design of RoundSync
Protocol. Technical Report NDN-0048, NDN, April 2017.

[3] Minsheng Zhang, Vince Lehman, and LanWang. Partialsync: Efficient synchroniza-
tion of a partial namespace in ndn. Technical report, Technical report, Technical
Report NDN-0039, NDN, 2016.

[4] Wentao Shang, Yingdi Yu, Lijing Wang, Alexander Afanasyev, and Lixia Zhang.
A Survey of Distributed Dataset Synchronization in Named Data Networking.
Technical Report NDN-0053, NDN, May 2017.

[5] https://gitlab.inria.fr/adjih/ndn-notes/raw/master/table-eval.png (or table-eval.pdf).

195

https://gitlab.inria.fr/adjih/ndn-notes/raw/master/table-eval.png
https://gitlab.inria.fr/adjih/ndn-notes/raw/master/table-eval.pdf

	1 Introduction
	2 Shared Dataset and Digests
	3 The RoundSync Protocol
	4 Improving RoundSync: iRoundSync
	5 Evaluation and Conclusion
	References

