
Jointly Optimal Routing and Caching
for Arbitrary Network Topologies

Stratis Ioannidis

Northeastern University

Electrical and Computer Engineering

360 Huntington Avenue, 409DA

Boston, MA, USA

ioannidis@ece.neu.edu

Edmund Yeh

Northeastern University

Electrical and Computer Engineering

360 Huntington Avenue, 409DA

Boston, MA, USA

eyeh@ece.neu.edu

ABSTRACT
We study a problem of fundamental importance to ICNs, namely,

minimizing routing costs by jointly optimizing caching and routing

decisions over an arbitrary network topology. We consider both

source routing and hop-by-hop routing settings. The respective

o�ine problems are NP-hard. Nevertheless, we show that there

exist polynomial time approximation algorithms producing solu-

tions within a constant approximation from the optimal. We also

produce distributed, adaptive algorithms with the same approxima-

tion guarantees. We simulate our adaptive algorithms over a broad

array of di�erent topologies. Our algorithms reduce routing costs

by several orders of magnitude compared to prior art, including

algorithms optimizing caching under �xed routing.

CCS CONCEPTS
• Networks → Network performance analysis;

KEYWORDS
Caching, forwarding, routing, distributed optimization

ACM Reference format:
Stratis Ioannidis and Edmund Yeh. 2017. Jointly Optimal Routing and Caching

for Arbitrary Network Topologies. In Proceedings of ICN ’17, Berlin, Germany,

September 26–28, 2017, 11 pages.

DOI: 10.1145/3125719.3125730

1 INTRODUCTION
Optimally placing resources in a network and routing requests

toward them is a problem as old as the Internet itself. It is of para-

mount importance in information centric networks (ICNs) [28, 50],

but also naturally arises in a variety of networking applications

such as web-cache design [12, 33, 51], wireless/femtocell networks

[37, 39, 45], and peer-to-peer networks [14, 35], to name a few. Mo-

tivated by this problem, we study a caching network, i.e., a network

of nodes augmented with additional storage capabilities. In such

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

ICN ’17, Berlin, Germany

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-5122-5/17/09. . . $15.00

DOI: 10.1145/3125719.3125730

a network, some nodes act as designated content servers, perma-

nently storing content and serving as “caches of last resort”. Other

nodes generate requests for content that are forwarded towards

these designated servers. If, however, an intermediate node in the

path towards a server stores the requested content, the request is

satis�ed early: i.e., the request ceases to be forwarded, and a content

copy is sent over the reverse path towards the request’s source.

This abstract setting naturally captures ICNs. Designated servers

correspond to traditional web servers permanently storing content,

while nodes generating requests correspond to customer-facing

gateways. Intermediate, cache-enabled nodes correspond to storage-

augmented routers in the Internet’s backbone: such routers forward

requests but, departing from traditional network-layer protocols,

immediately serve requests for content they store. An extensive

body of research, both theoretical [8, 12, 22, 23, 26, 36, 41, 42] and

experimental [12, 28, 33, 35, 43, 51], has focused on modeling and

analyzing networks of caches in which routing is �xed, and requests

follow predetermined paths. For example, shortest paths to the

nearest designated server are often used. Given routes to be fol-

lowed, and the demand for items, the above works aim to model

and analyze (theoretically or empirically) the behavior of di�erent

caching algorithms deployed over intermediate nodes.

It is not a priori clear whether �xed routing and, more speci�-

cally, routing towards the nearest server is the appropriate design

choice for such networks. This is of special interest in the context

of ICNs, where delegating routing decisions to another protocol

amounts to an “incremental” deployment. For example, in such a

deployment, requests can be forwarded towards the closest desig-

nated web servers over paths determined according to, e.g., existing

routing protocols such as OSPF or BGP [31]. Subsequent caching

decisions by intermediate routers a�ect only where–within a given

path–requests are satis�ed. An alternative is to jointly optimize both

routing and caching decisions simultaneously. Doing so however

poses a signi�cant challenge, precisely because this joint optimiza-

tion is inherently combinatorial. Indeed, jointly optimizing routing

and caching decisions with the objective of, e.g., minimizing rout-

ing costs, is an NP-hard problem, and constructing a distributed

approximation algorithm is far from trivial [9, 21, 26, 45].

This state of a�airs gives rise to the following questions. First, is

it possible to design distributed, adaptive, and tractable algorithms

jointly optimizing both routing and caching decisions over arbitrary

cache network topologies, with provable performance guarantees?

Identifying such algorithms is important precisely due to the com-

binatorial nature of the problem at hand. Second, presuming such

algorithms exist, do they yield signi�cant performance improvements

77

ICN ’17, September 26–28, 2017, Berlin, Germany Stratis Ioannidis and Edmund Yeh

over �xed routing protocols? Answering this question in the a�rma-

tive may justify the potential increase in protocol complexity due

joint optimization. It can also inform future ICN design, indicating

whether full optimization is preferable, or whether an incremental

approach in which routing and caching are separate su�ces.

Our goal is to provide rigorous, comprehensive answers to these

two questions. We make the following contributions:

• We show, by constructing a counterexample, that �xed rout-

ing (and, in particular, routing towards the nearest server)

can be arbitrarily suboptimal compared to jointly optimizing

caching and routing decisions. Intuitively, joint optimiza-

tion a�ects routing costs drastically because exploiting path

diversity increases caching opportunities.

• We propose a formal mathematical framework for joint

routing and caching optimization. We consider both source

routing and hop-by-hop routing strategies, the two predomi-

nant classes of routing protocols over the Internet [31].

• We study the o�ine version of the joint routing and caching

optimization problem, which is NP-hard, and construct a

polynomial-time 1 − 1/e approximation algorithm.

• We provide a distributed, adaptive algorithm that converges

to joint routing and caching strategies that are, globally,

within a 1 − 1/e approximation ratio from the optimal.

• We evaluate our distributed algorithm over 9 synthetic and

3 real-life network topologies, and show that it signi�cantly

outperforms the state of the art: it reduces routing costs by a

factor between 10 and 1000, for a broad array of competitors,

including both �xed and dynamic routing protocols.

The remainder of this paper is organized as follows. We review

related work in Section 2, and present our mathematical model of

a caching network in Section 3. Our main results are presented in

Section 4. A numerical evaluation of our algorithms over several

topologies is presented in Section 5, and we conclude in Section 6.

2 RELATEDWORK
There are several adaptive, distributed approaches determining

how to populate caches under �xed routing. A simple, elegant, and

ubiquitous algorithm is path replication [14], sometimes also re-

ferred to as “leave-copy-everywhere” (LCE) [33]: once a request

for an item reaches a cache, every downstream node receiving the

response caches the item. Several variants of this principle exist. In

“leave-copy-down” (LCD), a copy is placed only in the node immedi-

ately preceding the cache storing the requested item [32, 33], while

“move-copy-down” (MCD) also removes the present upstream copy.

Probabilistic variants have also been proposed [40]. To evict items,

traditional eviction policies like Least Recently Used (LRU), Least

Frequently Used (LFU), First In First Out (FIFO), and Random Re-

placement (RR) are typically used. Several works [33, 40, 43, 44, 48]

have experimentally studied the performance of these protocols and

variants over a broad array of topologies. Despite the advantages of

simplicity and elegance inherent in path replication, when targeting

an optimization objective such as, e.g., minimizing total routing

costs, path replication combined with all of the above eviction and

replication policies is known to be arbitrarily suboptimal [26].

There is a vast literature on the performance of eviction policies

like LRU, FIFO, LFU, etc., on a single cache, and the topic is classic

[2, 16, 20, 24, 30]. Nevertheless, the study of networks of caches still

poses signi�cant challenges. A signi�cant breakthrough in this area

has been the so-called Che approximation [12, 23], which postulates

that the hit rate of an LRU cache can be well approximated under

the assumption that items stay in the cache for a constant time. This

approximation is quite accurate in practice [23], and its success

motivated extensive research in so-called time-to-live (TTL) caches.

A series of recent works have focused on identifying how to set

TTLs to (a) approximate the behavior of known eviction policies, (b)

describe hit-rates in closed-form formulas [8, 12, 17, 22, 36]. Despite

these advances, none of the above works address issues of routing

cost minimization over multiple hops, which is our goal.

In their seminal paper [14] introducing path replication, Cohen

and Shenker also introduced the abstract problem of �nding a con-

tent placement that minimizes routing costs. The authors show

that path replication combined with a constant rate of evictions

leads to an allocation that is optimal, in equilibrium, when nodes

are visited through uniform sampling. Unfortunately, this optimal-

ity breaks down when uniform sampling is replaced by routing

over arbitrary topologies [26]. Several papers have studied com-

plexity and optimization issues of cost minimization as an o�ine

caching problem under restricted topologies [4–6, 9, 21, 45]. With

the exception of [45], these works model the network as a bipartite

graph: nodes generating requests connect directly to caches, and

demands are satis�ed a single hop, and do not readily generalize

to arbitrary topologies. In general, the pipage rounding technique

of Ageev and Sviridenko [3] (see also [10, 47]) yields again a con-

stant approximation algorithm in the bipartite setting, while ap-

proximation algorithms are also known for several variants of this

problem [5, 6, 9, 21]. Excluding [9], all these works focus only on

centralized solutions of the o�ine caching problem; none considers

jointly optimizing caching and routing decisions.

In earlier work [26], we consider a setting in which routes are

�xed, and only caching decisions are optimized in an adaptive, dis-

tributed fashion. We extend [26] to incorporate routing decisions,

both through source and hop-by-hop routing. We show that a vari-

ant of pipage rounding [3] can be used to construct a poly-time

approximation algorithm, that also lends itself to a distributed, adap-

tive implementation. Crucially, our evaluations in Section 5 show

that jointly optimizing caching and routing signi�cantly improves

performance compared to �xed routing, reducing the routing costs

by as much as three orders of magnitude compared to [26].

Several recent works study caching and routing jointly, in more

restrictive settings than the ones we consider here. The bene�t of

routing towards nearest replicas, rather than towards nearest des-

ignated servers, has been observed empirically [11, 13, 19]. Deghan

et al. [18], Abedini and Shakkotai [1], and Xie et al. [49] all study

joint routing and content placement schemes in a bipartite, single-

hop setting. In all three cases, minimizing the single-hop routing

cost reduces to solving a linear program; Naveen et al. [37] ex-

tend this to other, non-linear (but still convex) objectives of the hit

rate, still under single-hop, bipartite routing constraints. None of

these approaches generalize to a multi-hop setting, which leads to

non-convex formulations (see Section 3.6); addressing this lack of

78

Jointly Optimal Routing and Caching ICN ’17, September 26–28, 2017, Berlin, Germany

convexity is one of our technical contributions. Closer to our work,

a multi-hop, multi-path setting is formally analyzed by Caro�glio

et al. [11] under the assumption that requests by di�erent users

follow non-overlapping paths. The authors show that under appro-

priate conditions on request arrival rates, this assumption leads to

a convex optimization problem. Our approach addresses the lack

of convexity in its full generality, for arbitrary topologies, request

arrival rates, and overlapping paths.

The problem we study is also related to more general placement

problems, including the allocation of virtual machines (VMs) to

hosts in cloud computing [7, 25, 34, 46]–see also [29], that jointly

optimizes placement and routing in this context. This is a harder

problem: heterogeneity of host resources and VM requirements

leads to multiple knapsack-like constraints (one for each resource)

per host. Our storage constraints are simpler; as a result, in con-

trast to [7, 25, 29, 34, 46], we can provide poly-time, distributed

algorithms with provable approximation guarantees.

3 MODEL
We begin by presenting our formal model, extending [26] to ac-

count for both caching and routing decisions. Our analysis applies

to two routing variants: (a) source routing and (b) hop-by-hop rout-

ing. In both cases, we study two types of strategies: deterministic

and randomized. For example, in source routing, requests for an

item originating from the same source may be forwarded over sev-

eral possible paths, given as input. In deterministic source routing,

only one is selected and used for all subsequent requests with this

origin. In contrast, a randomized strategy samples a new path to

follow independently with each new request. We also use similar

deterministic and randomized analogues both for caching strategies

as well as for hop-by-hop routing strategies.

Randomized strategies subsume deterministic ones, and are ar-

guably more �exible and general. This begs the question: why

study both? There are three reasons. First, optimizing deterministic

strategies naturally relates to submodular maximization subject to

matroid constraints, allowing us to leverage related combinatorial

optimization techniques. Second, the online, distributed algorithms

we propose to construct randomized strategies rely on the solution

to the o�ine, deterministic problem. Finally, and most importantly:

deterministic strategies turn out to be equivalent to randomized

strategies! As we show in Thm. 4.4, the smallest routing cost at-

tained by randomized strategies is exactly the same as the one

attained by deterministic strategies.

3.1 Network Model and Content Requests
Consider a network represented as a directed, symmetric

1
graph

G(V ,E). Content items (e.g., �les, or �le chunks) of equal size are to

be distributed across network nodes. Each node is associated with

a cache that can store a �nite number of items. We denote by C
the set of possible content items, i.e., the catalog, and by cv ∈ N
the cache capacity at node v ∈ V : exactly cv content items can

be stored in v . The network serves content requests routed over

the graph G. A request (i, s) is determined by (a) the item i ∈ C
requested, and (b) the source s ∈ V of the request. We denote

by R ⊆ C × V the set of all requests. Requests of di�erent types

1
A directed graph is symmetric when (i, j) ∈ E implies that (j, i) ∈ E .

Common Notation
G(V , E) Network graph, with nodes V and edges E
C Item catalog

cv Cache capacity at node v ∈ V
wuv Weight of edge (u, v) ∈ E
R Set of requests (i, s), with i ∈ C and source s ∈ V
λ(i,s) Arrival rate of requests (i, s) ∈ R
Si Set of designated servers of i ∈ C
xvi Variable indicating whether v ∈ V stores i ∈ C
ξvi Marginal probability that v stores i
X Global caching strategy of xvi s, in {0, 1} |V |×|C|
Ξ Expectation of caching strategy matrix X
T Duration of a timeslot in online setting

wuv weight/cost of edge (u, v)
supp(·) Support of a probability distribution

conv(·) Convex hull of a set

Source Routing
P(i,s) Set of paths request (i, s) ∈ R can follow

PSR Total number of paths

p A simple path of G
kp (v) The position of node v ∈ p in path p .

r(i,s),p Variable indicating whether (i, s) ∈ R is forwarded over p ∈ P(i,s)
ρ(i,s),p Marginal probability that s routes request for i over p
r Routing strategy of r(i,s),p s, in {0, 1}

∑
(i,s)∈R |P(i,s) |

.

ρ Expectation of routing strategy vector r
DSR Feasible strategies (r, X) of MaxCG-S

RNS Route to nearest server

RNR Route to nearest replica

Hop-by-Hop Routing
G (i) DAG with sinks in Si
E (i) Edges in DAG G (i)

G (i,s) Subgraph of G (i) including only nodes reachable from s
Pu(i,s) Set of paths in G (i,s) from s to u .

PHH Total number of paths

r (i)uv Variable indicating whether u forwards a request for i to v
ρ (i)uv Marginal probability that u forwards a request for i to v

r Routing strategy of r iu,v s, in {0, 1}
∑
i∈C |E(i) | .

ρ Expectation of routing strategy vector r
DHH Feasible strategies (r, X) of MaxCG-HH

Table 1: Notation Summary

(i, s) ∈ R arrive according to independent Poisson processes with

arrival rates λ(i,s) > 0, (i, s) ∈ R.

For each item i ∈ C there is a �xed set of designated server nodes

Si ⊆ V , that always store i . A node v ∈ Si permanently stores i
in excess memory outside its cache. Thus, the placement of items to

designated servers is �xed and outside the network’s design.

A request (i, s) is routed over a path in G towards a designated

server. However, forwarding terminates upon reaching any inter-

mediate cache that stores i . At that point, a response carrying i is

sent over the reverse path, i.e., from the node where the cache hit

occurred, back to source node s . Both caching and routing decisions

are network design parameters, which we de�ne formally below.

3.2 Caching Strategies
We study two types or caches: deterministic and randomized.

Deterministic caches. For each nodev ∈ V , we de�nev’s caching

strategy as a vector xv ∈ {0, 1} |C | , where xvi ∈ {0, 1}, for i ∈ C, is

the binary variable indicating whether v stores content item i . As

v can store no more than cv items, we have that:∑
i ∈C xvi ≤ cv , for all v ∈ V . (1)

We de�ne the global caching strategy as the matrixX = [xvi]v ∈V ,i ∈C ∈
{0, 1} |V |× |C | , whose rows comprise the caching strategies of each

node.

79

ICN ’17, September 26–28, 2017, Berlin, Germany Stratis Ioannidis and Edmund Yeh

u u

s1 s1

s2 s2

Figure 1: Source Routing vs. Hop-by-Hop routing. In source
routing, shown left, source node u on the bottom left can
choose among 5 possible paths to route a request to one of
the designated servers storing i (s1, s2). In hop-by-hop rout-
ing, each intermediate node in the network selects the next
hop among one of its neighbors in a DAG, whose sinks are
the designated servers.

Randomized caches. In the case of randomized caches, the caching

strategies xv , v ∈ V , are random variables. We denote by:

ξvi ≡ P[xvi = 1] = E[xv,i] ∈ [0, 1], for i ∈ C, (2)

the marginal probability that node v caches item i , and by Ξ =

[ξvi]v ∈V ,i ∈C = E[X] ∈ [0, 1] |V |× |C | , the corresponding expecta-

tion of the global caching strategy.

3.3 Source Routing Strategies
Recall that requests are routed towards designated server nodes. In

source routing, for every request (i, s) ∈ C ×V , there exists a P(i,s)
of paths that the request can follow towards a designated server

in Si . A source node s can forward a request among any of these

paths, but we assume each response follows the same path as its

corresponding request. Formally, a path p of length |p | = K is a

sequence {p1,p2, . . . ,pK } of nodes pk ∈ V such that (pk ,pk+1
) ∈ E,

for every k ∈ {1, . . . , |p | − 1}. We make the following natural

assumptions on the set of paths P(i,s). For every p ∈ P(i,s): (a) p
starts at s , i.e., p1 = s; (b) p is simple, i.e., it contains no loops; (c)

the last node in p is a designated server for item i , i.e., if |p | = K ,

pK ∈ Si ; and (d) no other node in p is a designated server for i ,
i.e., if |p | = K , pk < Si , for k = 1, . . . ,K − 1. Given a path p and a

v ∈ p, denote by kp (v) is the position of v in p; i.e., kp (v) equals

to k ∈ {1, . . . , |p |} such that pk = v . As in the case of caches, we

consider both deterministic and randomized routing strategies.

Deterministic Routing. Given sets P(i,s), (i, s) ∈ R, the routing

strategy of a source s ∈ V w.r.t. request (i, s) ∈ R is a vector

r(i,s) ∈ {0, 1} |P(i,s) | , where r(i,s),p ∈ {0, 1} is a binary variable

indicating whether s selected path p ∈ P(i,s). These satisfy:∑
p∈P(i,s) r(i,s),p = 1, for all (i, s) ∈ R. (3)

indicating that exactly one path is selected. Let PSR =∑
(i,s)∈R |P(i,s) | be the total number of paths. We refer to the vector

r = [r(i,s),p](i,s)∈R,p∈P(i,s) ∈ {0, 1}
P , as the global routing strategy.

Randomized Routing. In the case of randomized routing, vari-

ables r(i,s), (i, s) ∈ R are random. We randomize routing by allow-

ing requests to be routed over a random path in P(i,s), selected

independently of all past requests (at s or elsewhere). We denote by

ρ(i,s),p ≡ P[r(i,s),p = 1] = E[r(i,s),p], for p ∈ P(i,s), (4)

the probability that path p is selected by s , and by ρ =

[ρ(i,s),p](i,s)∈R,p∈P(i,s) = E[r] ∈ [0, 1]
P

the expectation of the

global routing strategy r .

Remark.We make no a priori assumptions on PSR, the total number

of paths used during source routing; moreover, we allow paths to

overlap. The complexity of our o�ine algorithm, and the rate of

convergence of our distributed, adaptive algorithm depend on PSR.

In practice, if the number of possible paths is, e.g., exponential in

|V |, it makes sense to restrict eachP(i,s) to a small subset of possible

paths, or to use hop-by-hop routing instead, which, as discussed

below, restricts the maximum number of paths considered.

3.4 Hop-by-Hop Routing Strategies
Under hop-by-hop routing, each node along the path makes an

individual decision on where to route a request message. When

a request for item i arrives at an intermediate node v ∈ V , node

v determines how to forward the request to one of its neighbors.

The decision depends on i but not on the request’s source. This

limits the paths a request may follow, making hop-by-hop routing

less expressive than source routing. On the other hand, reducing

the space of routing strategies reduces complexity. In adaptive

algorithms, it also speeds up convergence, as routing decisions

w.r.t. i are “learned” across requests by di�erent sources.

To ensure loop-freedom, we must assume that forwarding deci-

sions are restricted to a subset of possible neighbors in G . For each

i ∈ C, we denote by G(i)(V ,E(i)) a graph that has the following

properties: (a) G(i) is a subgraph of G, i.e., E(i) ⊆ E; (b) G(i) is a

directed acyclic graph (DAG); and (c) a nodev inG(i) is a sink if and

only if it is a designated server for i , i.e., v ∈ Si . Note that, given

G and Si , G(i) can be constructed in polynomial time using, e.g.,

the Bellman-Ford algorithm [15]. Indeed, requiring that v forwards

requests for i ∈ C only towards neighbors with a smaller distance

to a designated server in Si results in such a DAG. A distance-

vector protocol [31] can form this DAG in a distributed fashion. We

assume that every node v ∈ V can forward a request for item i only

to a neighbor inG(i). Then, the above properties ofG(i) ensure both

loop freedom and successful termination.

Deterministic Routing. For any node s ∈ V , let G(i,s) be the in-

duced subgraph of G(i) which results from removing any nodes

in G(i) not reachable from s . For any u in G(i,s), let Pu(i,s) be

the set of all paths in G(i,s) from s to u, and denote by PHH =∑
(i,s)∈C

∑
u ∈V |Pu(i,s) |. We denote by r

(i)
uv ∈ {0, 1}, for (u,v) ∈ E(i),

i ∈ C, the decision variable indicating whetheru forwards a request

for i to v . The global routing strategy is r = [r (i)uv]i ∈C,(u,v)∈E (i) ∈
{0, 1}

∑
i∈C |E (i) | , and satis�es∑

v :(u,v)∈E (i) r
(i)
uv = 1, for all v ∈ V , i ∈ C. (5)

Note that, in contrast to source routing strategies, that have length

PSR, hop-by-hop routing strategies have length at most |C| |E |.
Randomized Routing. As in the case of source routing, we also

consider randomized hop-by-hop routing strategies, whereby each

request is forwarded independently from previous routing decisions

to one of the possible neighbors. We again denote by

ρ = [ρ(i)uv]i ∈C,(u,v)∈E (i) = [E[r
(i)
uv]]i ∈C,(u,v)∈E (i)

=
[
P[r (i)uv = 1]

]
i ∈C,(u,v)∈E (i) ∈ [0, 1]

∑
i∈C |E (i) | ,

(6)

80

Jointly Optimal Routing and Caching ICN ’17, September 26–28, 2017, Berlin, Germany

the vector of corresponding (marginal) probabilities of routing

decisions at each node v .

3.5 O�line vs. Online Setting
To reason about the caching networks we have proposed, we con-

sider two settings: the o�ine and online setting. In the o�ine setting,

all problem inputs (demands, network topology, cache capacities,

etc.) are known apriori to, e.g., a system designer. At time t = 0, the

system designer selects (a) a caching strategy X , and (b) a routing

strategy r . Both can be either deterministic or randomized, but both

are also static: they do not change as time progresses. In the case

of caching, cache contents (selected deterministically or at random

at t = 0) remain static for all t ≥ 0. In the case of routing deci-

sions, the distribution over paths (in source routing) or neighbors

(in hop-by-hop routing) remains static, but each request is routed

independently of previous requests.

In the online setting, no a priori knowledge of the demand, i.e.,

the rates of requests λ(i,s), (i, s) ∈ R is assumed. Both caching and

routing strategies change through time via a distributed, adaptive

algorithm. Time is slotted, and each slot has durationT > 0. During

a timeslot, both caching and and routing strategies remain �xed.

Nodes have access only to local information: they are aware of their

graph neighborhood and state information they maintain locally.

They exchange messages, including both normal request and re-

sponse tra�c, as well as (possibly) control messages, and may adapt

their state. At the conclusion of a time slot, each node changes its

caching and routing strategies. Changes made by v depend only on

its neighborhood, its current local state, as well as on messages that

node v received in the previous timeslot. Both caching and routing

strategies during a timeslot may be deterministic or randomized.

Implementing a caching strategy at the conclusion of a timeslot in-

volves changing cache contents, which incurs additional overhead;

ifT is large, however, this cost is negligible compared to the cost of

transferring items during a timeslot.

3.6 Optimal Routing and Caching
We are now ready to formally pose the problem of jointly opti-

mizing caching and routing. We pose here the o�ine problem, in

which problem inputs are given, and static caching and routing

strategies are determined (jointly) at time t = 0. Nonetheless, we

will devise distributed, adaptive algorithms that do not a priori

know the demand, but still converge to (probabilistic) strategies

that are within a constant approximation of the (o�ine) optimal.

To capture costs (e.g., latency, money, etc.), we associate a weight

wuv ≥ 0 with each edge (u,v) ∈ E, representing the cost of trans-

ferring an item across this edge. We assume that costs are solely

due to response messages that carry an item, while request for-

warding costs are negligible. We do not assume that wuv = wvu .

We describe the cost minimization objectives under source and

hop-by-hop routing below.

Source Routing. The cost for serving a request (i, s) ∈ R under

source routing is:

C
(i,s)
SR (r ,X) =

∑
p∈P(i,s)

r(i,s),p

|p |−1∑
k=1

wpk+1
pk

k∏
k ′=1

(1−xpk′ i). (7)

Intuitively, (7) states thatC
(i,s)
SR includes the cost of an edge (pk+1

,pk)
in the path p if (a) p is selected by the routing strategy, and (b) no

cache preceding this edge in p stores i .
In the deterministic setting, we seek a global caching and routing

strategy (r ,X) minimizing the aggregate expected cost, de�ned as:

CSR(r ,X) =
∑
(i,s)∈R λ(i,s)C

(i,s)
SR (r ,X), (8)

with C
(i,s)
SR given by (7). That is, we wish to solve:

MinCost-SR
Minimize: CSR(r ,X) (9a)

subj. to: (r ,X) ∈ DSR (9b)

where DSR ⊂ RPSR × R |V |× |C | is the set of (r ,X) satisfying the

routing, capacity, and integrality constraints, i.e.:∑
i ∈C xvi = cv , for all v ∈ V , (10a)∑
p∈P(i,s) r(i,s),p = 1, for all (i, s) ∈ R, (10b)

xvi ∈ {0, 1}, for all v ∈ V , i ∈ C, and (10c)

r(i,s),p ∈ {0, 1}, for all p ∈ P(i,s), (i, s) ∈ R. (10d)

This problem is NP-hard, even in the case where routing is �xed:

see Shanmugam et al. [45] for a reduction from the 2-Disjoint Set

Cover Problem.

Hop-By-HopRouting. Similarly to (7), under hop-by-hop routing,

the cost of serving (i, s) can be written as:

C
(i,s)
HH (r ,X) =

∑
(u,v)∈G (i,s) wvu · r

(i)
uv (1 − xui)·∑

p∈Pu(i,s)
∏ |p |−1

k ′=1
r
(i)
pk′pk′+1

(1 − xpk′ i).
(11)

We wish to solve:

MinCost-HH
Minimize: CHH(r ,X) (12a)

subj. to: (r ,X) ∈ DHH (12b)

whereCHH(r ,X) =
∑
(i,s)∈R λ(i,s)C

(i,s)
HH (r ,X) is the expected routing

cost, andDHH is the set of (r ,X) ∈ R
∑
i∈C |E (i) | ×R |V |× |C | satisfying

the constraints:∑
i ∈C xvi = cv , for all v ∈ V , (13a)∑
v :(u,v)∈E (i) r

(i)
uv = 1 for all v ∈ V , i ∈ C, (13b)

xvi ∈ {0, 1}, for all v ∈ V , i ∈ C, and (13c)

r
(i)
uv ∈ {0, 1}, for all (u,v) ∈ E(i), i ∈ C. (13d)

Randomization. The above routing cost minimization problems

can also be stated in the context of randomized caching and routing

strategies. For example, in the case of source routing, assuming (a)

independent caching strategies across nodes selected at time t = 0,

with marginal probabilities given by Ξ, and (b) independent routing

strategies at each source, with marginals given by ρ (also indepen-

dent from caching strategies), all terms in CSR contain products of

independent random variables; this implies that:

E[CSR(r ,X)] = CSR[E[r],E[X]] = CSR(ρ,Ξ), (14)

where the expectation is taken over the randomness of both caching

and routing strategies. The expected routing cost thus depends on

the routing and caching strategies only through the expectations ρ

81

ICN ’17, September 26–28, 2017, Berlin, Germany Stratis Ioannidis and Edmund Yeh

and Ξ. As a result, under randomized routing and caching strategies,

MinCost-SR becomes (see [27] for the derivation):

Minimize: CSR(ρ,Ξ) (15a)

subj. to: (ρ,Ξ) ∈ conv(DSR) (15b)

where conv(DSR) is the convex hull of DSR; this is precisely the

set de�ned by (10) with integrality constraints (10c), (10d) relaxed.

The objective function CSR is not convex and the relaxed problem

(15) is therefore not a convex optimization problem. This is in stark

contrast to single-hop settings, that often can naturally be expressed

as linear programs [1, 18, 37].

A similar derivation can be done for hop-by-hop routing. Assum-

ing again independent caches and independent routing strategies, it

can be shown that optimizing over randomized hop-by-hop strate-

gies is equivalent to

Minimize: CHH(ρ,Ξ) (16a)

subj. to: (ρ,Ξ) ∈ conv(DHH), (16b)

where conv(DHH) the convex hull of DHH. This, again, is a non-

convex optimization problem.

3.7 Fixed Routing
When the global routing strategy r is �xed, (9) reduces to

Minimize: CSR(r ,X) (17a)

subj. to: X satis�es (10a) and (10c) (17b)

MinCost-HH can be similarly restricted to caching only. We studied

this restricted optimization in earlier work [26]. In particular, under

given global routing strategy r , we cast (17) as a maximization

problem as follows. Let

Cr
0
= CSR(r , 0) =

∑
(i,s)∈R

λ(i,s)
∑

p∈P(i,s)
r(i,s),p

|p |−1∑
k=1

wpk+1
pk (18)

be the cost when all caches are empty (i.e., X is the zero matrix 0).

Note that this is a constant that does not depend on X . Consider

the following maximization problem:

Maximize: F rSR(X) = C
r
0
−CSR(r ,X) (19a)

subj. to: X satis�es (10a) and (10c) (19b)

This problem is equivalent to (17), in that a feasible solution to (19)

is optimal if and only if it also optimal for (17). The objective F rSR(X),
referred to as the caching gain in [26], is monotone, non-negative,

and submodular, while the set of constraints onX is a set of matroid

constraints. As a result, for any r , there exist standard approaches

for constructing a polynomial time approximation algorithm solv-

ing the corresponding maximization problem (19) within a 1 − 1/e
factor from its optimal solution [26, 45]. In addition, we show [26]

that an approximation algorithm based on a technique known as

pipage rounding [3] can be converted into a distributed, adaptive

version with the same approximation ratio.

3.8 Greedy Routing Strategies
In the case of source routing, we identify two “greedy” deter-

ministic routing strategies, that are often used in practice, and

play a role in our analysis. We say that a global routing strat-

egy r is a route-to-nearest-server (RNS) strategy if all paths it se-

lects are least-cost paths to designated servers, irrespectively of

cache contents. Formally, for all (i, s) ∈ R, r(i,s),p∗ = 1 for some

p∗ ∈ arg min p∈P(i,s)
∑ |p |−1

k=1
wpk+1

,pk , while r(i,s),p = 0 for all

other p ∈ P(i,s) s.t. p , p∗. Similarly, given a caching strategy

X , we say that a global routing strategy r is route-to-nearest-replica

(RNR) strategy if, for all (i, s) ∈ R, r(i,s),p∗ = 1 for some p∗ ∈
arg min p∈P(i,s)

∑ |p |−1

k=1
wpk+1

,pk
∏k

k ′=1
(1−xpk′ i), while r(i,s),p = 0

for all other p ∈ P(i,s) s.t. p , p∗. In contrast to RNS strategies, RNR

strategies depend on the caching strategy X . Note that RNS and

RNR strategies can be de�ned similarly in the context of hop-by-hop

routing.

4 MAIN RESULTS
We present our main results in this section, extending the analysis in

[26] to the joint optimization of both caching and routing decisions.

We provide an analysis of both source and hop-by-hop routing;

proofs of theorems are omitted, and are provided in our technical

report [27].

4.1 Routing to Nearest Server Is Suboptimal
A simple approach, followed by most works that optimize caching

separately from routing, is to always route requests to the nearest

designated server storing an item (i.e., use an RNS strategy). It is

therefore interesting to ask how this simple heuristic performs com-

pared to a solution that attempts to solve (9) by jointly optimizing

caching and routing. It is easy to see that RNS and, more gener-

ally, routing that ignores caching strategies, can lead to arbitrarily

suboptimal solutions:

Theorem 4.1. For anyM > 0, there exists a caching network for

which the route-to-nearest-server strategy r ′ satis�es

min

X :(r ′,X)∈DSR

CSR(r ′,X)/ min

(r,X)∈DSR

CSR(r ,X) = Θ(M). (20)

In other words, routing to the nearest server can be arbitrarily

suboptimal, incurring a cost arbitrarily larger than the cost of the

optimal jointly optimized routing and caching policy. The network

that exhibits this behavior is shown in Fig. 2, and a proof of the

theorem can be found in [27]. In short, a source node s generates

requests for items 1 and 2 that are permanently stored on designated

server t . There are two alternative paths towards t , each passing

through an intermediate node with cache capacity 1 (i.e., able to

store only one item). Under shortest path routing, requests for both

items are forwarded over the path of length M + 1 towards t ; �xing

routes this way leads to a cost of M + 1 for at least one of the items,

irrespectively of which item is cached in the intermediate node.

On the other hand, if routing and caching decisions are jointly

optimized, requests for the two items can be forwarded to di�erent

paths, allowing both items to be cached, and reducing the cost for

both requests to at most 2.

This example illustrates that joint optimization of caching and

routing decisions bene�ts the system by increasing path diversity. In

turn, increasing path diversity can increase caching opportunities,

thereby leading to reductions in caching costs. This is consistent

with our experimental results in Section 5.

82

Jointly Optimal Routing and Caching ICN ’17, September 26–28, 2017, Berlin, Germany

M

1

1 2

M

s

t

2

c = 1c = 1

Figure 2: A simple example illustrating the bene�ts of path
diversity. A source node s generates requests for items 1 and
2, permanently stored on designated server t . Intermediate
nodes on the are two alternative paths towards t have capac-
ity 1. Numbers above edges indicate costs.

4.2 O�line Source Routing.
ExpectedCachingGain. Before presenting a distributed, adaptive

joint routing and caching algorithm, we �rst turn our attention to

the o�ine problem MinCost. As in the solution by [26] described

in Section 3.7, we cast this �rst as a maximization problem. Let C0

be the constant:

C0

SR =
∑
(i,s)∈R λ(i,s)

∑
p∈P(i,s)

∑ |p |−1

k=1
wpk+1

pk . (21)

Then, given a pair of strategies (r ,X), we de�ne the expected caching

gain FSR(r ,X) as follows:

FSR(r ,X) = C0

SR −CSR(r ,X), (22)

where CSR is the aggregate routing cost given by (8). Note that C0

SR
upper bounds the expected routing cost, so that FSR(r ,X) ≥ 0. We

seek to solve the following problem, equivalent to MinCost:

MaxCG-S

Maximize: FSR(r ,X) (23a)

subj. to: (r ,X) ∈ DSR (23b)

The selection of the constantC0

SR is not arbitrary: this is precisely the

value that allows us to approximate FSR via the concave relaxation

LSR below–c.f. Eq. (26).

Approximation Algorithm. Its equivalence to MinCost implies

that MaxCG-S is also NP-hard. Nevertheless, we show that there

exists a polynomial time approximation algorithm for MaxCG-S:

Theorem 4.2. There exists an algorithm that terminates within a

number of steps that is polynomial in |V |, |C|, and PSR, and produces
a strategy (r ′,X ′) ∈ DSR such that

FSR(r ′,X ′) ≥ (1 − 1/e)max(r,X)∈DSR
FSR(r ,X). (24)

In Sec. 5 we show that, in spite of attaining approximation guar-

antees w.r.t. FSR rather than CSR, the resulting approximation algo-

rithm has excellent performance in practice in terms of minimizing

routing costs. In particular, we can reduce routing costs by a factor

as high as 10
3

compared to �xed routing policies, including [26].

We brie�y describe the algorithm below, leaving details to [27].

Consider the concave function LSR : conv(DSR) → R+, de�ned as:

LSR(ρ,Ξ) =
∑
(i,s)∈R λ(i,s)

∑
p∈P(i,s)

∑ |p |−1

k=1
wpk+1

pk ·

min

{
1, 1 − ρ(i,s),p +

∑k
k ′=1

ξpk′ i
}
.

(25)

Then, LSR closely approximates FSR [27]:

(1 − 1/e)LSR(ρ,Ξ) ≤ FSR(ρ,Ξ) ≤ LSR(ρ,Ξ), (26)

for all (ρ,Ξ) ∈ conv(DSR). Our constant-approximation algorithm

for MaxCG-S comprises two steps. First, obtain

(ρ∗,Ξ∗) ∈ arg max (ρ,Ξ)∈conv(DSR) LSR(ρ,Ξ). (27)

As LSR is a concave function and conv(DSR) is convex, the above

maximization is a convex optimization problem. In fact, it can

be reduced to a linear program, so it can be solved in polyno-

mial time [38]. Second, round the (possibly fractional) solution

(ρ∗,Ξ∗) ∈ conv(DSR) to an integral solution (r ,X) ∈ DSR such

that FSR(r ,X) ≥ FSR(ρ∗,Ξ∗). This rounding is deterministic and

also takes place in polynomial time.

The rounding technique used in our proof of Thm. 4.2 has the

following immediate implication:

Corollary 4.3. There exists an optimal solution (r∗,X ∗) toMaxCG-

S (and hence, to MinCost-SR) in which r∗ is an route-to-nearest-

replica (RNR) strategy w.r.t. X ∗.

Although, in light of Theorem 4.1, Corollary 4.3 suggests an

advantage of RNR over RNS strategies, we note it does not give any

intuition on how to construct an optimal RNR solution.

Equivalence ofDeterministic andRandomized Strategies.We

can also show the following result regarding randomized strategies.

For µ a probability distribution over DSR, let Eµ [CSR(r ,X)] be the

expected routing cost under µ. Then, the following equivalence

theorem holds:

Theorem 4.4. The deterministic and randomized versions ofMinCost-

SR attain the same optimal routing cost, i.e.:

min

(r,X)∈DSR

CSR(r ,X) = min

(ρ,Ξ)∈conv(DSR)
CSR(ρ,Ξ)

= min

µ :supp(µ)=DSR

Eµ [CSR(r ,X)]
(28)

The �rst equality of the theorem implies that, surprisingly, there

is no inherent advantage in randomization: although randomized

strategies constitute a superset of deterministic strategies, the opti-

mal attainable routing cost (or, equivalently, caching gain) is the

same for both classes. The second equality implies that assuming in-

dependent caching and routing strategies is as powerful as sampling

routing and caching strategies from an arbitrary joint distribution.

Thm. 4.4 generalizes Thm. 5 of [26], which pertains to optimizing

caching alone.

4.3 Online Source Routing
The algorithm in Thm. 4.2 is o�ine and centralized: it assumes full

knowledge of the input, including demands and arrival rates, which

are rarely a priori available in practice. To that end, we turn our

attention to solving MaxCG-S in the online setting, in the absence

of any a priori knowledge of the demand, and seek an algorithm

that is both adaptive and distributed.

As described in 3.5, in the online setting, time is partitioned into

slots of equal length T > 0. Caching and routing strategies are

randomized as described in Sec. 3: at the beginning of a timeslot,

nodes place a random set of contents in their cache, independently

of each other; upon arrival, a new request is routed over a random

path, selected independently of (a) all past routes followed, and

83

ICN ’17, September 26–28, 2017, Berlin, Germany Stratis Ioannidis and Edmund Yeh

Algorithm 1 Projected Gradient Ascent

1: Execute the following for each v ∈ V and each (i, s) ∈ R:

2: Pick arbitrary state (ρ (0), Ξ(0)) ∈ conv(DSR).
3: for each timeslot k ≥ 1 do
4: for each v ∈ V do
5: Compute the sliding average

¯ξ (k)v .

6: Sample a feasible x (k)v from a distribution with marginals
¯ξ (k)v .

7: Place items x (k)v in cache.

8: Collect measurements and, at the end of the timeslot, compute estimate o f

∂ξv LSR(ρk , Ξ(k)).
9: Adapt to new state ξ (k+1)

v in the direction of the gradient with step-size

γk , projecting back to conv(DSR).
10: end for
11: for each (i, s) ∈ R do
12: Compute the sliding average ρ̄ (k)(i,s) .

13: Whenever a new request arrives, sample p ∈ P(i,s) from distribution ρ̄ (k)(i,s) .

14: Collect measurements and, at the end of the timeslot, compute estimate of

∂ρ(i,s)LSR(ρ
k , Ξ(k)).

15: Adapt to new state ρ (k+1)
(i,s) in the direction of the gradient with step-size

γk , projecting back to conv(DSR).
16: end for
17: end for

(b) of caching decisions. Our next theorem shows that, in steady

state, the expected caching gain of the jointly constructed routing

and caching strategies is within a constant approximation of the

optimal solution to the o�ine problem MaxCG-S:

Theorem 4.5. There exists a distributed, adaptive algorithm un-

der which the randomized strategies sampled during the k-th slot

(r (k),X (k)) ∈ DSR satisfy

lim

k→∞
E[FSR(r (k),X (k))] ≥ (1 − 1/e) max

(r,X)∈DSR

FSR(r ,X). (29)

Note that, despite the fact that the algorithm has no prior knowl-

edge of the demands, the guarantee provided is w.r.t. an optimal

solution of the o�ine problem (23). Moreover, in light of Thm. 4.4,

our adaptive algorithm is 1 − 1

e -competitive w.r.t. optimal o�ine

randomized strategies as well. Our algorithm naturally generalizes

[26]: when the path sets P(i,s) are singletons, and routing is �xed,

our algorithm coincides with the cache-only optimization algorithm

in [26]. Interestingly, the algorithm casts routing and caching in the

same control plane: the same quantities are communicated through

control messages to adapt both the caching and routing strategies.

AlgorithmOverview. We give a brief overview of the distributed,

adaptive algorithm that attains the guarantees of Theorem 4.5 below.

The algorithm is summarized in Algorithm 1. Recall that time is

partitioned into slots of equal length T > 0. Caching and routing

strategies are randomized as described in Sec. 3: at the beginning

of a timeslot, nodes place a random set of contents in their cache,

independently of each other; upon arrival, a new request is routed

over a random path, selected independently of (a) all past routes

followed, and (b) of caching decisions.

More speci�cally, nodes in the network maintain the following

state information. Each node v ∈ G maintains locally a vector ξv ∈
[0, 1] |C | , determining its randomized caching strategy. Moreover,

for each request (i, s) ∈ R, source node s maintains a vector ρ(i,s) ∈
[0, 1] |P(i,s) | , determining its randomized routing strategy. Together,

these variables represent the global state of the network, denoted by

(ρ,Ξ) ∈ conv(DSR). When the timeslot ends, each node performs

the following four tasks:

(1) Subgradient Estimation. Each node uses measurements

collected during the duration of a timeslot to construct es-

timates of the gradient of LSR w.r.t. its own local state vari-

ables. As LSR is not everywhere di�erentiable, an estimate

of a subgradient of LSR is computed instead.

(2) State Adaptation.Nodes adapt their local caching and rout-

ing state variables ξv , v ∈ V , and ρ(i,s), (i, s) ∈ R, pushing

them towards a direction that increases LSR, as determined

by the estimated subgradients.

(3) State Smoothening. Nodes compute “smoothened” ver-

sions
¯ξv , v ∈ V , and ρ̄(i,s), (i, s) ∈ R, interpolated between

present and past states. This is needed on account of the

non-di�erentiability of LSR.

(4) Randomized Caching and Routing. After smoothening,

each node v reshu�es the contents of its cache using the

smoothened caching marginals
¯ξv , producing a random

placement (i.e., caching strategy xv) to be used through-

out the next slot. Moreover, each node s ∈ V routes requests

(i, s) ∈ R received during next timeslot over random paths

(i.e., routing strategies r(i,s)) sampled in an i.i.d. fashion from

the smoothened marginals ρ̄(i,s).

Together, these steps ensure that, in steady state, the expected

caching gain of the jointly constructed routing and caching strate-

gies is within a constant approximation of the optimal solution to

the o�ine problem MaxCG-S. We formally describe the constituent

subgradient estimation, state adaptation, smoothening, and random

sampling steps in detail in [27]. We also characterize the overhead

of the protocol, specifying control messages, and proposing a mod-

i�cation that reduces this overhead.

Convergence Guarantees. The proof of the convergence of the

algorithm relies on the following key lemma:

Lemma 4.6. Let (ρ̄(k), Ξ̄(k)) ∈ D2 be the smoothened state

variables at the k-th slot of Algorithm 1, and (ρ∗,Ξ∗) ∈
arg max (ρ,Ξ)∈conv(DSR) LSR(ρ,Ξ). Then, for γk the step-size used in

projected gradient ascent,

εk ≡ E[LSR(ρ∗,Ξ∗) − LSR(ρ̄(k), Ξ̄(k))] ≤
D2 +M2

∑k
`= bk/2c γ

2

`

2

∑k
`= bk/2c γ`

,

where D =
√

2|V |maxv ∈V cv + 2|R |, and

M =W |V |Λ
√
(|V | |C|P2 + |R |P)(1 + 1

ΛT
).

In particular, εk = O(1/
√
k) for γ = 1/

√
k .

Lemma 4.6 establishes that Algorithm 1 converges arbitrarily

close to an optimizer of LSR. As, by (26), this is a close approximation

of FSR, the limit points of the algorithm are with the 1−1/e from the

optimal. Crucially, Lemma 4.6 can be used to determine the rate of

convergence of the algorithm, by determining the number of steps

required for εk to reach a desired threshold δ . Moreover, through

quantity M , Lemma 4.6 establishes a tradeo� w.r.t. T : increasing T
decreases the error in the estimated subgradient, thereby reducing

the total number of steps till convergence, but also increases the

time taken by each step.

84

Jointly Optimal Routing and Caching ICN ’17, September 26–28, 2017, Berlin, Germany

Graph |V | |E | |C | |R | |Q | cv |P(i,s) | C̄PGA
SR

cycle 30 60 10 100 10 2 2 20.17

grid-2d 100 360 300 1K 20 3 30 0.228

hypercube 128 896 300 1K 20 3 30 0.028

expander 100 716 300 1K 20 3 30 0.112

erdos-renyi 100 1042 300 1K 20 3 30 0.047

regular 100 300 300 1K 20 3 30 0.762

watts-strogatz 100 400 300 1K 20 3 2 35.08

small-world 100 491 300 1K 20 3 30 0.029

barabasi-albert 100 768 300 1K 20 3 30 0.187

geant 22 66 10 100 10 2 10 1.28

abilene 9 26 10 90 9 2 10 0.911

dtelekom 68 546 300 1K 20 3 30 0.025

Table 2: Graph Topologies and Experiment Parameters.

4.4 Hop-by-Hop Routing
A similar analysis to the one we outlined above applies to hop-by-

hop routing, both in the o�ine and online setting. We state again

the main theorems here; proofs can again be found in [27].

O�line Setting. As in the case of source routing, we de�ne the

constant:C0

HH =
∑
(i,s)∈R λ(i,s)

∑
(u,v)∈G (i,s) wvu |Pu(i,s) |. Using this

constant, we de�ne the caching gain maximization problem to be:

MaxCG-HH

Maximize: FHH(r ,X) (30a)

subj. to: (r ,X) ∈ DHH (30b)

where FHH(r ,X) = C0

HH −
∑
(i,s)∈R λ(i,s)C

(i,s)
HH (r ,X) is the expected

caching gain. This is again an NP-hard problem, equivalent to (12).

We can again construct a constant approximation algorithm for

MaxCG-HH:

Theorem 4.7. There exists an algorithm that terminates within a

number of steps that is polynomial in |V |, |C|, and PHH, and produces
a strategy (r ′,X ′) ∈ DHH such that

FHH(r ′,X ′) ≥ (1 − 1/e) max

(r,X)∈DHH

FHH(r ,X). (31)

Online Setting. Finally, as in the case of source routing, we can

provide a distributed, adaptive algorithm for hop-by-hop routing

as well.

Theorem 4.8. There exists a distributed, adaptive algorithm un-

der which the randomized strategies sampled during the k-th slot

(r (k),X (k)) ∈ DHH satisfy

lim

k→∞
E[FHH(r (k),X (k))] ≥

(
1 − 1/e

)
max

(r,X)∈DSR

FHH(r ,X). (32)

We note again that the distributed, adaptive algorithm attains

an expected caching gain within a constant approximation from

the o�ine optimal.

5 EVALUATION
We simulate our distributed, adaptive algorithm for MaxCG-S over

a broad variety of both synthetic and real networks. We compare

its performance to traditional caching policies, combined with both

static and dynamic multi-path routing.

Experiment Setup. We consider the topologies in Table 2. For

each graphG(V ,E) in Table 2, we generate a catalog of size |C|, and

assign to each node v ∈ V a cache of capacity cv . For every item

i ∈ C, we designate a node selected u.a.r. from V as a designated

server for this item; the item is stored outside the designate server’s

cache. We assign a weight to each edge in E selected u.a.r. from

the interval [1, 100]. We also select a random set of Q nodes as

the possible request sources, and generate a set of requests R ⊆
C × V by sampling exactly |R | from the set C × Q , uniformly at

random. For each such request (i, s) ∈ R, we select the request rate

λ(i,s) according to a Zipf distribution with parameter 1.2; these

are normalized so that average request rate over all |Q | sources is

1 request per time unit. For each request (i, s) ∈ R, we generate

|P(i,s) | paths from the source s ∈ V to the designated server of item

i ∈ C. In all cases, this path set includes the shortest path to the

designated server. We consider only paths with stretch at most 4.0;

that is, the maximum cost of a path in P(i,s) is at most 4 times the

cost of the shortest path to the designated source. The values of

|C|, |R | |Q |, cv , and P(i,s) for each experiment are given in Table 2.

Online Caching and Routing Algorithms. We compare the per-

formance of our joint caching and routing projected gradient ascent

algorithm (PGA) to several competitors. In terms of caching, we

consider four traditional eviction policies for comparison: Least-

Recently-Used (LRU), Least-Frequently-Used (LFU), First-In-First-

Out (FIFO), and Random Replacement (RR). We combine these

policies with path-replication [14, 28]: once a request for an item

reaches a cache that stores the item, every cache in the reverse path

on the way to the query source stores the item, evicting stale items

using one of the above eviction policies. We combine the above

caching policies with three di�erent routing policies. In route-to-

nearest-server (-S), only the shortest path to the nearest designated

server is used to route the message. In uniform routing (-U), the

source s routes each request (i, s) on a path selected uniformly at

random among all paths in P(i,s). We combine each of these (static)

routing strategies with each of the above caching strategies use.

For instance, LRU-U indicates LRU evictions combined with uniform

routing. Note that PGA-S, i.e., our algorithm restricted to RNS rout-

ing, is exactly the single-path routing algorithm proposed in [26].

To move beyond static routing policies for LRU, LFU, FIFO, and RR,

we also combine the above traditional caching strategies with an

adaptive routing strategy, akin to our algorithm, with estimates

of the expected routing cost at each path used to adapt routing

strategies. During a slot, each source node s maintains an average

of the routing cost incurred when routing a request over each path.

At the end of the slot, the source decreases the probability ρ(i,s),p
that it will follow the path p by an amount proportional to the

average, and projects the new strategy to the simplex. For �xed

caching strategies, this dynamic routing scheme converges to a

route-to-nearest-replica (RNS) routing, which we expect by Cor. 4.3

to have good performance. We denote this routing scheme with the

extension -D. Note that all algorithms we simulate are online.

Experiments and Measurements. Each experiment consists of a

simulation of the caching and routing policy, over a speci�c topol-

ogy, for a total of 5000 time units. To leverage PASTA, we collect

measurements during the duration of the execution at exponentially

distributed intervals with mean 1.0 time unit. At each measurement

epoch, we extract the current cache contents in the network and

construct X ∈ {0, 1} |V |× |C | . Similarly, we extract the current rout-

ing strategies ρ(i,s) for all requests (i, s) ∈ R, and construct the

global routing strategy ρ ∈ [0, 1]PSR . Then, we evaluate the expected

routing cost CSR(ρ,X). We report the average C̄SR of these values

across measurements collected after a warmup phase, during 1000

85

ICN ’17, September 26–28, 2017, Berlin, Germany Stratis Ioannidis and Edmund Yeh

cycle grid-2d hypercube expander erdos-renyi regular

100

101

102

103

LRU-S LFU-S FIFO-S RR-S PGA-S LRU-U LFU-U FIFO-U RR-U PGA-U LRU-D LFU-D FIFO-D RR-D PGA

C̄
SR
/C̄

PG
A

SR

watts-strogatz small-world barabasi-albert geant abilene dtelekom

100

101

102

103

C̄
SR
/C̄

PG
A

SR

Figure 3: Ratio of expected routing cost C̄SR to routing cost C̄PGA
SR under our PGA policy, for di�erent topologies and strategies.

For each topology, each of the three groups of bars corresponds to a routing strategy, namely, RNS/shortest path routing (-S),
uniform routing (-U), and dynamic routing (-D). The algorithm presented in [26] is PGA-S, while our algorithm (PGA), with ratio
1.0, is shown last for reference purposes; values of of C̄PGA

SR are given in Table 2.

Graph LRU-S PGA-S LRU-U PGA-U LRU PGA
cycle 0.47 865.29 0.47 436.14 6.62 148.20

grid-2d 0.08 657.84 0.08 0.08 0.08 0.08

hypercube 0.21 924.75 0.21 0.21 0.21 0.21

expander 0.38 794.27 0.38 0.38 0.38 0.38

erdos-renyi 3.08 870.84 0.25 0.25 0.25 0.25

regular 1.50 1183.97 0.05 8.52 0.05 11.49

watts-strogatz 11.88 158.39 7.80 54.90 19.22 37.05

small-world 0.30 955.48 0.30 0.30 0.30 0.30

barabasi-albert 1.28 1126.24 1.28 6.86 1.28 7.58

geant 0.09 1312.96 1.85 12.71 0.09 14.41

abilene 3.44 802.66 3.44 23.08 5.75 14.36

dtelekom 0.30 927.24 0.30 0.30 0.30 0.30

Table 3: Convergence times, in simulation time units, for
LRU and PGA caching strategies with di�erent routing vari-
ants. Total simulation time is 5K time units. In almost all
cases, convergence to steady state occurs much faster than
our warm-up period (1K time units).

and 5000 time units of the simulation; that is, if ti are the measure-

ment times, then C̄SR =
1

ttot−tw
∑
ti :∈[tw,ttot]CSR(ρ(ti),X (ti)).

Performance w.r.t Routing Costs. The relative performance of

the di�erent strategies to our algorithm is shown in Figure 3. With

the exception of cycle and watts-strogatz, where paths are

scarce, we see several common trends across topologies. First, sim-

ply moving from RNS routing to uniform, multi-path routing, re-

duces the routing cost by a factor of 10. Even without optimizing

routing or caching, simply increasing path options increases the

available caching capacity. For all caching policies, optimizing rout-

ing through the dynamic routing policy (denoted by -D), reduces

routing costs by another factor of 10. Finally, jointly optimizing

routing and caching leads to a reduction by an additional factor

between 2 and 10 times. In several cases, PGA outperforms RNS

routing (including [26]) by 3 orders of magnitude.

Convergence. In Table 3, we show the convergence time for the

di�erent variants of LRU and PGA-convergence times for other

algorithms can be found in our techreport [27]. We de�ne the con-

vergence time to be the time at which the time-average caching

gain reaches 95% of the expected caching gain attained at steady

state. LRU converges faster than PGA, though it converges to a

sub-optimal stationary distribution. Interestingly, both -U and adap-

tive routing reduce convergence times for PGA, in some cases (like

grid-2d and dtelekom) to the order of magnitude of LRU: this

is because path diversi�cation reduces contention: it assigns con-

tents to non-overlapping caches, which are populated quickly with

distinct contents.

6 CONCLUSIONS
We have constructed joint caching and routing schemes with op-

timality guarantees for arbitrary network topologies. Identifying

schemes that lead to improved approximation guarantees, espe-

cially on the routing cost directly rather than on the caching gain,

is an important open question. Equally important is to incorporate

queuing and congestion. In particular, accounting for queueing

delays and identifying delay-minimizing strategies is open even

under �xed routing. Such an analysis can also potentially be used

to understand how di�erent caching and routing schemes a�ect

both delay optimality and throughput optimality.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge support from National Sci-

ence Foundation grants CNS-1423250, NeTS-1718355, and a Cisco

Systems research grant.

REFERENCES
[1] Navid Abedini and Srinivas Shakkottai. 2014. Content caching and scheduling

in wireless networks with elastic and inelastic tra�c. IEEE/ACM Transactions on

Networking 22, 3 (2014), 864–874.

[2] Dimitris Achlioptas, Marek Chrobak, and John Noga. 2000. Competitive analysis

of randomized paging algorithms. Theoretical Computer Science 234, 1 (2000),

203–218.

[3] Alexander A Ageev and Maxim I Sviridenko. 2004. Pipage rounding: A new

method of constructing algorithms with proven performance guarantee. Journal

of Combinatorial Optimization 8, 3 (2004), 307–328.

86

Jointly Optimal Routing and Caching ICN ’17, September 26–28, 2017, Berlin, Germany

[4] David Applegate, Aaron Archer, Vijay Gopalakrishnan, Seungjoon Lee, and

Kadangode K Ramakrishnan. 2010. Optimal content placement for a large-scale

VoD system. In CoNext.

[5] Ivan Baev, Rajmohan Rajaraman, and Chaitanya Swamy. 2008. Approximation

algorithms for data placement problems. SIAM J. Comput. 38, 4 (2008), 1411–1429.

[6] Yair Bartal, Amos Fiat, and Yuval Rabani. 1995. Competitive algorithms for

distributed data management. J. Comput. System Sci. 51, 3 (1995), 341–358.

[7] Daniel M Batista, Nelson LS Da Fonseca, and Flavio K Miyazawa. 2007. A set

of schedulers for grid networks. In Proceedings of the 2007 ACM symposium on

Applied computing. ACM, 209–213.

[8] Daniel S Berger, Philipp Gland, Sahil Singla, and Florin Ciucu. 2014. Exact

analysis of TTL cache networks. IFIP Performance (2014).

[9] Sem Borst, Varun Gupta, and Anwar Walid. 2010. Distributed caching algorithms

for content distribution networks. In INFOCOM.

[10] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. 2007. Max-

imizing a submodular set function subject to a matroid constraint. In Integer

programming and combinatorial optimization. Springer, 182–196.

[11] Giovanna Caro�glio, Léonce Mekinda, and Luca Muscariello. 2016. Joint for-

warding and caching with latency awareness in information-centric networking.

Computer Networks 110 (2016), 133–153.

[12] Hao Che, Ye Tung, and Zhijun Wang. 2002. Hierarchical web caching systems:

Modeling, design and experimental results. Selected Areas in Communications 20,

7 (2002), 1305–1314.

[13] Ra�aele Chiocchetti, Dario Rossi, Giuseppe Rossini, Giovanna Caro�glio, and

Diego Perino. 2012. Exploit the known or explore the unknown?: Hamlet-

like doubts in icn. In Proceedings of the second edition of the ICN workshop on

Information-centric networking. ACM, 7–12.

[14] Edith Cohen and Scott Shenker. 2002. Replication strategies in unstructured

peer-to-peer networks. In SIGCOMM.

[15] T Cormen, C Leiserson, R Rivest, and C Stein. 2009. Introduction to Algorithms.

MIT Press.

[16] Asit Dan and Don Towsley. 1990. An approximate analysis of the LRU and FIFO

bu�er replacement schemes. In SIGMETRICS, Vol. 18. ACM.

[17] Mostafa Dehghan, Laurent Massoulie, Don Towsley, Daniel Menasche, and YC

Tay. 2015. A utility optimization approach to network cache design. In INFOCOM.

[18] Mostafa Dehghan, Anand Seetharam, Bo Jiang, Ting He, Theodoros Salonidis,

Jim Kurose, Don Towsley, and Ramesh Sitaraman. 2014. On the complexity of

optimal routing and content caching in heterogeneous networks. In INFOCOM.

[19] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi, Teemu

Koponen, Bruce Maggs, KC Ng, Vyas Sekar, and Scott Shenker. 2013. Less pain,

most of the gain: Incrementally deployable icn. In ACM SIGCOMM Computer

Communication Review, Vol. 43. ACM, 147–158.

[20] Philippe Flajolet, Daniele Gardy, and Loÿs Thimonier. 1992. Birthday para-

dox, coupon collectors, caching algorithms and self-organizing search. Discrete

Applied Mathematics 39, 3 (1992), 207–229.

[21] Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. 2006.

Tight approximation algorithms for maximum general assignment problems. In

SODA.

[22] N Choungmo Fofack, Philippe Nain, Giovanni Neglia, and Don Towsley. 2012.

Analysis of TTL-based cache networks. In VALUETOOLS.

[23] Christine Fricker, Philippe Robert, and James Roberts. 2012. A versatile and

accurate approximation for LRU cache performance. In ITC.

[24] Erol Gelenbe. 1973. A uni�ed approach to the evaluation of a class of replacement

algorithms. IEEE Trans. Comput. 100, 6 (1973), 611–618.

[25] Brian Guenter, Navendu Jain, and Charles Williams. 2011. Managing cost, per-

formance, and reliability tradeo�s for energy-aware server provisioning. In

INFOCOM, 2011 Proceedings IEEE. IEEE, 1332–1340.

[26] Stratis Ioannidis and Edmund Yeh. 2016. Adaptive Caching Networks with

Optimality Guarantees. In ACM SIGMETRICS.

[27] Stratis Ioannidis and Edmund Yeh. 2017. Jointly Optimal Routing and Caching

for Arbitrary Network Topologies. (2017). http://arxiv.org/abs/1708.05999.

[28] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H

Briggs, and Rebecca L Braynard. 2009. Networking named content. In CoNEXT.

[29] Joe Wenjie Jiang, Tian Lan, Sangtae Ha, Minghua Chen, and Mung Chiang. 2012.

Joint VM placement and routing for data center tra�c engineering. In INFOCOM,

2012 Proceedings IEEE. IEEE, 2876–2880.

[30] WF King. 1971. Analysis of paging algorithms. Technical Report. Thomas J.

Watson IBM Research Center.

[31] James F Kurose and Keith W Ross. 2007. Computer networking: a top-down

approach. Addison Wesley.

[32] Nikolaos Laoutaris, Hao Che, and Ioannis Stavrakakis. 2006. The LCD inter-

connection of LRU caches and its analysis. Performance Evaluation 63, 7 (2006),

609–634.

[33] Nikolaos Laoutaris, So�a Syntila, and Ioannis Stavrakakis. 2004. Meta algorithms

for hierarchical web caches. In ICPCC.

[34] Wubin Li, Johan Tordsson, and Erik Elmroth. 2011. Virtual machine placement

for predictable and time-constrained peak loads. In International Workshop on

Grid Economics and Business Models. Springer, 120–134.

[35] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. 2002. Search and

replication in unstructured peer-to-peer networks. In ICS.

[36] Valentina Martina, Michele Garetto, and Emilio Leonardi. 2014. A uni�ed ap-

proach to the performance analysis of caching systems. In INFOCOM.

[37] KP Naveen, Laurent Massoulié, Emmanuel Baccelli, Aline Carneiro Viana, and

Don Towsley. 2015. On the Interaction between Content Caching and Request

Assignment in Cellular Cache Networks. In ATC.

[38] Christos H Papadimitriou and Kenneth Steiglitz. 1982. Combinatorial optimiza-

tion: algorithms and complexity. Courier Corporation.

[39] Konstantinos Poularakis, George Iosi�dis, and Leandros Tassiulas. 2013. Ap-

proximation caching and routing algorithms for massive mobile data delivery.

In GLOBECOM.

[40] Ioannis Psaras, Wei Koong Chai, and George Pavlou. 2012. Probabilistic in-

network caching for information-centric networks. In Proceedings of the second

edition of the ICN workshop on Information-centric networking. ACM, 55–60.

[41] Elisha J Rosensweig, Jim Kurose, and Don Towsley. 2010. Approximate models

for general cache networks. In INFOCOM, 2010 Proceedings IEEE. IEEE, 1–9.

[42] Elisha J Rosensweig, Daniel S Menasche, and Jim Kurose. 2013. On the steady-

state of cache networks. In INFOCOM.

[43] Dario Rossi and Giuseppe Rossini. 2011. Caching performance of content cen-

tric networks under multi-path routing (and more). Technical Report. Telecom

ParisTech.

[44] Giuseppe Rossini and Dario Rossi. 2014. Coupling caching and forwarding:

Bene�ts, analysis, and implementation. In Proceedings of the 1st international

conference on Information-centric networking. ACM, 127–136.

[45] Karthikeyan Shanmugam, Negin Golrezaei, Alexandros G Dimakis, Andreas F

Molisch, and Giuseppe Caire. 2013. Femtocaching: Wireless content delivery

through distributed caching helpers. Transactions on Information Theory 59, 12

(2013), 8402–8413.

[46] Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. 2010. Cost-

optimal scheduling in hybrid iaas clouds for deadline constrained workloads.

In Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on. IEEE,

228–235.

[47] Jan Vondrák. 2008. Optimal approximation for the submodular welfare problem

in the value oracle model. In STOC.

[48] Yonggong Wang, Zhenyu Li, Gareth Tyson, Steve Uhlig, and Gaogang Xie. 2013.

Optimal cache allocation for content-centric networking. In 2013 21st IEEE Inter-

national Conference on Network Protocols (ICNP). IEEE, 1–10.

[49] Haiyong Xie, Guangyu Shi, and Pengwei Wang. 2012. TECC: Towards collab-

orative in-network caching guided by tra�c engineering. In INFOCOM, 2012

Proceedings IEEE. IEEE, 2546–2550.

[50] Edmund Yeh, Tracey Ho, Ying Cui, Michael Burd, Ran Liu, and Derek Leong.

2014. VIP: A framework for joint dynamic forwarding and caching in named

data networks. In ICN.

[51] Yuanyuan Zhou, Zhifeng Chen, and Kai Li. 2004. Second-level bu�er cache

management. Parallel and Distributed Systems 15, 6 (2004), 505–519.

87

http://arxiv.org/abs/1708.05999

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	3.1 Network Model and Content Requests
	3.2 Caching Strategies
	3.3 Source Routing Strategies
	3.4 Hop-by-Hop Routing Strategies
	3.5 Offline vs. Online Setting
	3.6 Optimal Routing and Caching
	3.7 Fixed Routing
	3.8 Greedy Routing Strategies

	4 Main Results
	4.1 Routing to Nearest Server Is Suboptimal
	4.2 Offline Source Routing.
	4.3 Online Source Routing
	4.4 Hop-by-Hop Routing

	5 Evaluation
	6 Conclusions
	References

