A Keyword-based ICN-IoT Platform

Hierarchical Part
/a/b/c/

Function tag
f:tag

Hashtags
#tag1, #tag2

Domain location

Network function

IoT information

Onur Ascigil, Sergi Reñé, George Xylomenos,*
Ioannis Psaras, George Pavlou

University College London, UK
*Athens University of Economics and Business, Greece

ACM ICN 2017, Berlin, Germany
27th September 2017
IoT Status Quo: Isolation of Things

- Difficult to manage
- Long RTTs
- Lots of Messages
Problem Statement

• Facts
 – IoT data sets can become huge over time
 – IoT data items are produced at the edge
 – IoT data need processing
 – IoT data may be useful to many applications

• Goals
 – Bring processing close to the data
 – Allow applications to share data and results
Naming IoT Data

- Hierarchical approach to naming is too rigid!
- Picture a Building Management System
 - Data can be named on a location basis
 • /building/floor/room/...
 - Data can be named on a data-type basis
 • /temperature/building/floor/...
- How to accommodate different applications?
 - How to ease data/result sharing?
Sketch of Keyword-Based IoT

- Flexible IoT Data Naming based on Keywords
- Local Processing based on Named Functions
- Data Sharing & Reuse
- Subset of Filtered Data sent to cloud

Impossible to do with IP!
Keyword-based IoT: Overview

- Virtual split: IoT domain vs. Internet domain
 - Realised by an IoT domain border gateway
- IoT domain: data named by keywords
 - \{temperature, building, room, \ldots\}
 - Keywords encoded by hashing
 - Names encoded as Bloom filters
- Internet domain: domains named hierarchically
 - /fub/campus/cs
Keyword-based IoT: Name structure

<table>
<thead>
<tr>
<th>Hierarchical Part</th>
<th>Function tag</th>
<th>Hashtags</th>
</tr>
</thead>
<tbody>
<tr>
<td>/a/b/c/</td>
<td>f: tag</td>
<td>#tag1, #tag2</td>
</tr>
</tbody>
</table>

- Domain location
- Network function
- IoT information

- **Functionality**
 - *Hierarchical Part*: Locate IoT domain across Internet
 - *Function Tag*: Express processing (if needed)
 - *Hashtags*: Identify data values within IoT domain

- **Example**
 - `/fub/campus/cs ⊕ f: average ⊕ #temperature,#foyer`
Keyword-based IoT: Operation

• *Outside IoT domain*: ignore Function & Hashtags
• *Inside IoT domain*: ignore Hierarchical Part
• Logical IoT topology is a tree
 – Physically or via spanning tree algorithm
• Propagate and replicate Interest downstream
 – As in TagNet, but reversing the rules
• Execute function to merge result upstream
 – If no matching data: NACK sent back
Function Placement – Naïve

BR

Result

#area1 #bldng1 #flr1 #avg_temp

#area1

LC

#bldng1

#flr1 #flr2

#area1 #bldng1 #flr1 #rm1 #rm2

Data GW

Campus

Area

Building

Floor

Room
Function Placement – Minimum Transfer

- #area1 #bldng1
- #flr1 #avg_temp

Diagram showing placement of data and sensors.
Function Placement – Least Congested

#area1 #bldng1 #flr1 #avg_temp

Result

#area1

#bldng1

#flr1

#avg_temp

Campus

Area

Building

Floor

Room

Data

#rm1

#rm2

GW

GW

GW

GW

GW

GW

GW
Simulations

- Regular tree: height: 3, branching: 10
 - E.g., 10 floors, 10 areas, 10 devices: 1111 nodes
- More cores as we move towards root
- 100 apps simulated
 - Each app asks data from up to five random nodes
 - CPU time is random (mean 100 ms) but fixed per app
 - All data items are of the same size
 - Each link has 3 ms propagation delay
 - Requests generated so as to not overload root
Preliminary Results

Number of function executions

Level 0	Level 1	Level 2	Level 3
1.6x10^6 | 1.4x10^6 | 1.2x10^6 | 1x10^6

Min. transfer | Least congested | Naive

Overhead (number of hops)

Min. transfer	Least congested	Naive
2.5 | 3 |

Average completion time (msec)

Min. transfer	Least congested	Naive
200 | 100 | 500
Issues for Discussion

• IoT Domain Size
 – Too large domains will make Bloom filters saturate

• Routing Scheme Limitations
 – TagNet routing would allow execution not on the tree

• Expressing Time Constraints
 – Information Time Tags to select Data (and Results)

• Security and Privacy
 – Combine with Proxy Re-encryption (Fotiou et al.)
Summary

• Flexible naming/processing for ICN-IoT
 – CCN/NDN names across the Internet
 – Keyword-based names inside IoT domain
 – Function tags to locally aggregate data

• TagNet inspired matching to locate data
 – Single tree and reverse matching rule

• NFN inspired execution to aggregate data
 – Tree-based execution placement strategies