
Android Multimedia Sharing Application over NDN
Damian Coomes, Ashlesh Gawande

University of Memphis
{dmcoomes, agawande}@memphis.edu

Nicholas Gordon
University of Pittsburgh
nick.gordon@pitt.edu

Lan Wang
University of Memphis
lanwang@memphis.edu

ABSTRACT
Named Data Networking (NDN) thrives in use cases that require
mobile peer-to-peer data sharing. To amplify interests in NDN
research, we developed an NDN multimedia sharing application for
mobile devices that mirrors the popular Snapchat app. Our research
focuses on (1) creating a completely decentralized application, (2)
exploring new trust models; and (3) using a new synchronization
protocol that allows for synchronization of subsets of data. Our
demo will show the basic �ow of the application, from making
friends to publishing and fetching �les between Android devices.

CCS CONCEPTS
• Networks → Social media networks; Mobile ad hoc networks; •
Human-centered computing→ Mobile phones;
ACM Reference Format:
Damian Coomes, Ashlesh Gawande, Nicholas Gordon, and LanWang. 2018.
Android Multimedia Sharing Application over NDN. In Proceedings of ICN
’18. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 PROBLEM AND MOTIVATION
The Named Data Networking (NDN) architecture has great poten-
tial in improving application performance especially in use cases
where peer-to-peer data sharing is desirable. For example, nTor-
rent [4], an NDN version of BitTorrent, showed nearly a 50% re-
duction in network tra�c and faster download speeds compared
to BitTorrent. The NDN ChronoChat application [12] also showed
faster synchronization with 40% of chat messages experiencing less
than 20ms of delay compared to only 13% in a TCP/IP chat appli-
cation. We believe that more research e�ort needs to be focused
on developing NDN applications, particularly on mobile devices,
for two important reasons. Firstly, from a research standpoint, the
process of creating these applications will likely come with new
challenges, which will highlight any potential de�cits in the infras-
tructure. Secondly, providing a fully functioning mobile application
will amplify interests in NDN research both in the current NDN
community and outside the community.

In this work, we create an NDN application that closely mirrors
Snapchat, a massively popular TCP/IP photo-sharing mobile ap-
plication. This would provide a side by side comparison of NDN
and TCP/IP and will ideally demonstrate the value of using NDN

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICN ’18, September 21–23, 2018, Boston, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

in modern day networking. We aim to explore the following re-
search areas. First, we investigate the feasibility of developing a
completely decentralized application. Removing the need to rely
on a central entity to serve data and user information improves the
application’s mobility, security, and scalability. Second, due to the
lack of a natural root identity trusted by all the users we would
like to use an alternative trust model instead of the standard NDN
hierarchical trust model for data authentication. Third, we evaluate
how well Sync, which is the transport service in NDN, can support
various types of data sharing needs. In particular, we use our PSync
protocol to support the discovery of new friends, subscription of
photos and stories among friends, and direct sharing of speci�c
�les.

2 PREVIOUS WORK
NFD has been ported to Android and used for a few applications [6].
NDNFit [10] collects health data on anAndroid device and publishes
this data. ChronoChat allows users to form chatrooms to enable
group messaging [7]. NDN-Whiteboard [3] enables users to share a
“whiteboard" on which they can draw together in real time. Another
application Now@ [2] implements a similar design to Twitter by
allowing users to subscribe to multiple namespaces under which
users can write posts.

3 DESIGN
We aim to achieve a fully decentralized design without a central
database for one to check user names or �nd friends. Our design
should also allow users to authenticate each other’s data without
relying on a few public trust anchors.

3.1 Finding Friends
In order to use the app, one needs to have friends with whom one
can communicate. Without a central server that stores all the users
in the system, each of the users will periodically advertise their
names and pass around a list of all known users as shown in Figure 1.
The application will collect such information and use it to avoid
user name collisions and friend discovery. Given the potential size
of the list as the application grows, nodes may decide to store only
a portion of the user list based on certain constraints (e.g., only
store users that are friends’ friends).

3.2 Making Friends
Once the user has found someone he or she wants to be friends
with, they can befriend one another in one of two ways. The �rst
way can be done when the two users, Alice and Bob, are in the
same physical location. The app generates a QR code containing the
user’s username and public key. Alice and Bob can become friends
by scanning each other’s QR codes, which registers the scanned
user in their friends list. The other way to become friends is for

ICN ’18, September 21–23, 2018, Boston, USA Damian Coomes, Ashlesh Gawande, Nicholas Gordon, and Lan Wang

Figure 1: Users Alice and Bob exchange their user lists and
update their copy with the di�erences.

Alice to send Bob a friend request in the form of an Interest. Bob can
then choose to accept the invite and send a Data packet containing
his public key. Bob will also send Alice a friend request to which
Alice will respond by sending her own public key.

3.3 Sharing Data
Users can obtain new content from their friends and can share
content with all or a subset of their friends. This is achieved by
using a synchronization protocol which maintains a digest of the
current state of each producer’s published content. When a user
produces new content, e.g., photos or �les, the sync protocol will
notify the user’s friends of the new content. By default, all the
friends can retrieve the content. However, the content can also be
shared with a subset of friends of one’s choosing. In this case, i.e.,
the user wants to restrict access to the content, the content will be
encrypted and the noti�cation message will contain a list of friends
who can retrieve the decryption key which is encrypted with valid
recipients’ public keys. Although every friend will be noti�ed of
the new data, if a friend is not a listed recipient, the application will
not fetch the new content. Even if the friend tries to retrieve the
content, he/she cannot decrypt it. In addition, a user can subscribe
to a friend’s location feed – whenever the friend’s location changes,
this user will receive an update. In the future, we will add other
types of feeds for users to subscribe to.

Our application uses PSync [11] (ported to Android) to support
all the required sync functionality. More speci�cally, we use its full
sync mode to support sharing of user lists and user content, and
we use its partial sync mode to support subscriptions.

3.4 Authenticating Data
Since every data packet is signed by the original producer, the
corresponding public key can be used to authenticate the data. This
is the purpose of the exchange of keys when new friends are made.
Doing so at the beginning removes the need to request certi�cates
whenever a friend makes new content available. If the key pair
ever changes, the application will notify the user’s friends. The
friends’ apps will then retrieve the new public key and update their
friend records. To authenticate a friend’s public key, we will explore
two options (a) a web-of-trust schema as proposed in [9] or (b) a
block-chain based public key management system [8].

4 IMPLEMENTATION
We have developed a prototype implementation with basic func-
tionality of making friends and sharing �les/photos.

Making Friends. A QR code generator and a QR scanner, via
the ZXing library [1], have been implemented for the purposes of
facilitating in person friend registration and �lename acquisition.
Upon logging in as a new user, the app generates a key pair and
encodes the user’s chosen username and public key in the form
of a QR code. When friends scan one another’s QR code, the app
creates a new �le to store the user’s public key. Then, the users can
successfully retrieve data their friends have published.

Sharing Files and Photos. A �le selection activity was created to
allow users to publish �les stored on their phone, packetizing them
into individual data segments. Publishing a �le also creates a QR
code which encodes the data name. Other phones are able to fetch
�les by its name or by scanning the corresponding QR code. Users
are also able to use the camera to take pictures, save them, and use
a similar �le selection activity to publish/fetch photos.

The jNDN library [5] is used for creating packets. This allows
for Interests and Data to be named, packaged, sent, and received by
Android phones. The application is assisted by the NFD-Android
applicationwhich, while running, allows the application to interface
with the network. When retrieving data, jNDN’s SegmentFetcher
is used to fetch all necessary data segments.

By using the public key that was exchanged upon friendship
acquisition, a user can verify that the data segments are actually
from their friend. If the stored friend’s public key does not match
the signature, the data packet is dropped, resulting in a timeout.

ACKNOWLEDGMENT
This work is supported by the National Science Foundation award
CNS-1629769.

REFERENCES
[1] Agustin Delgado, et al. 2011. ZXing (Zebra Crossing) barcode scanning library

for Java, Android. https://github.com/zxing/zxing
[2] Omar Aponte and Paulo Mendes. 2017. Now@ - Content Sharing Application

over NDN. In ACM ICN 2017.
[3] Sumit Gouthaman, Peter Huang, and Peter Bankole. 2015. NDN-Whiteboard.

https://github.com/named-data-mobile/apps-NDN-Whiteboard
[4] Spyridon Mastorakis, Alexander Afanasyev, Yingdi Yu, and Lixia Zhang. 2018.

nTorrent: Peer-to-Peer File Sharing in Named Data Networking. In ICCCN.
[5] NDN Project Team. 2013. jNDN: A Named Data Networking client library for

Java. https://github.com/named-data/jndn
[6] NDN Project Team. 2015. Android implementation of NFD. https://github.com/

named-data-mobile/NFD-android
[7] Tyler Vernon Smith, Alexander Afanasyev, and Lixia Zhang. 2017. ChronoChat

on Android. Technical Report. UCLA.
[8] Kan Yang, Jobin J. Sunny, and Lan Wang. 2018. Blockchain-based Decentral-

ized Public Key Management for Named Data Networking. In The International
Conference on Computer Communications and Networks (ICCCN 2018).

[9] Yingdi Yu, Alexander Afanasyev, Zhenkai Zhu, and Lixia Zhang. 2014. An
Endorsement-base Key Management System for Decentralized NDN Chat Applica-
tion. Technical Report. UCLA.

[10] Haitao Zhang, Zhehao Wang, Christopher Scherb, Claudio Marxer, Je� Burke,
and Lixia Zhang. 2016. Sharing mHealth Data via Named Data Networking. In
ACM ICN 2016. 142–147.

[11] M. Zhang, V. Lehman, and L. Wang. 2017. Scalable name-based data synchro-
nization for named data networking. In IEEE INFOCOM 2017. 1–9.

[12] Zhenkai Zhu and Alexander Afanasyev. 2013. Let’s ChronoSync: Decentralized
Dataset State Synchronization in Named Data Networking. In 21st IEEE ICNP.

