Result Provenance in Named Function Networking

Claudio Marxer · Christian Tschudin

University of Basel, Switzerland

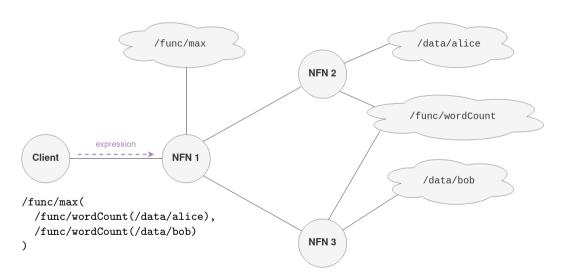
ACM ICN 2020, Montréal / virtual format · September 30, 2020

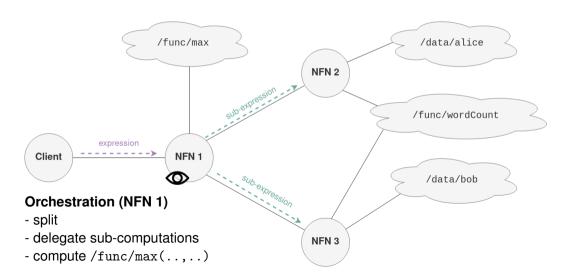
A Primer on Named Function Networking

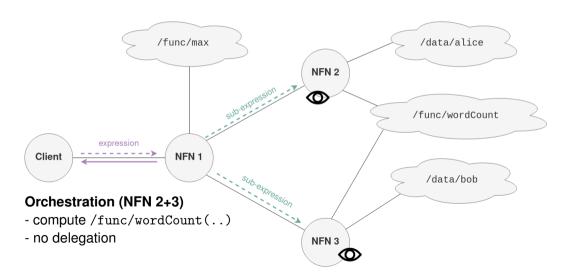
- ICN/NDN with named data and named functions

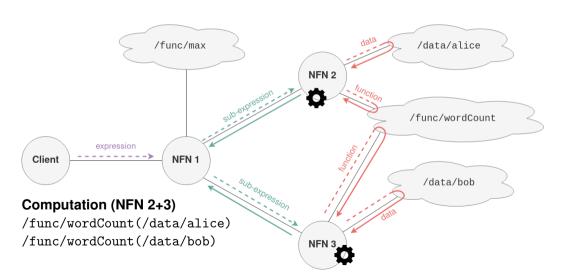
```
/data/alice /data/bob /func/wordCount /func/maximum
```

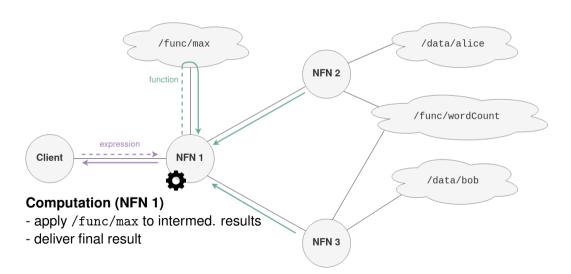
Computation expressions: applications of named functions on named data


```
/func/maximum( /func/wordCount(/data/alice), /func/wordCount(/data/bob) )
```


In-network expression reduction (NFN-capable nodes)


Evaluation: computing result of function applications

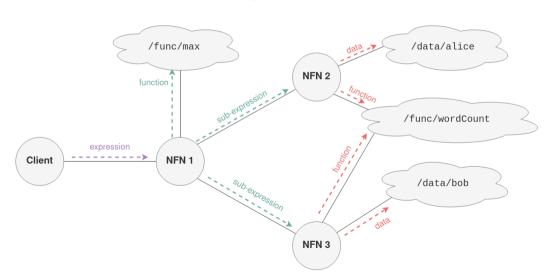

Orchestration: where to place which (sub-) computations


Orchestration: where to place which (sub-) computation?

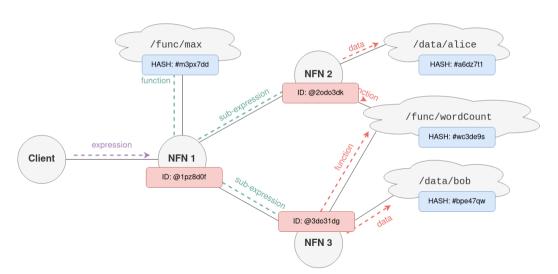
- NFN mindset
- Security Challenge: Result Correctness
- Approach: Provenance Transparency
- Meta-Data: Provenance Records
- Provenance-Based Result Verification
- Ongoing and Future Work
- Conclusion

Result Correctness

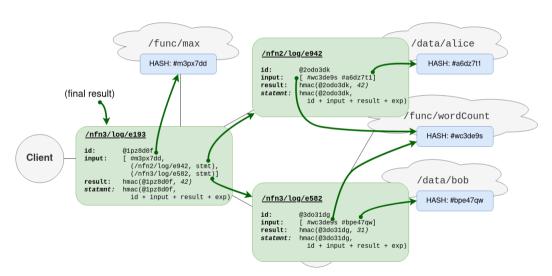
- Good news: Convenient computation service for applications
- Bad news: NFN as a whole must be trusted that...
 - Evaluation *rules* are followed
 - Evaluation based on specified data
 - → NFN result correctness is subject to extensive trust


- Goal of this work: Relaxed trust assumptions
- Approach: Log "genesis" of results in provenance records
 - Make involved computing entities (CE) traceable
 - Clients assess their trustworthiness

Provenance of Results in NFN


- Provenance meta-data in general¹: DAG capturing a) involved elements (data, processes, hw/sw environment,...), and b) their relationships.
- Provenance Records (PR) in NFN: Capture for each computation step:
 - a) Identity of CE (public key)
 - b) Signatures and PRs of all inputs (data+function)
 - c) hmac(result)
 - d) hmac(a + b + c + expression)

¹L. Carata et al. 2014. A primer on provenance. Communications of the ACM 57.


Example Revisited

Example Revisited

Example Revisited

Provenance-Based Result Verification

Input:

- PRs of all (sub-) computations
- list of trusted CEs

Steps:

- All involved CEs are trusted? (False → result untrusted)
- All statement-hmacs in all PRs are correct? (False \rightarrow forged or tampered PR)
- result-hmac of final result correct? (False \rightarrow forged or tampered result)

If successful: Final result is ...

- assumed to be correct under given trust assumptions
- authentic
- of integrity

Next Steps

Establishment of trust in CEs

- State: Predefined list of trusted CEs
- Ongoing: Reputation system
 - Clients exchange CE's reputation
 - · Re-evaluation at random
 - · PRs as not deniable proofs
 - · Related: semantic web & dweb
- Future: Third-party certification

User-Constrained Orchestration

- Issue: Client has no further options if network delivers an untrusted result
- Ongoing: Clients proactively constrain NFN's orchestration (i.e. exclude untrusted CEs)

Next Steps

Availability of Provenance Records

- Implementation State:
 - PR in NDN's signature field
 - Tampering-resistant append-only log (by CEs)
- Future:
 - Issue: Incentive to not deliver disadvantageous logs
 - · Replication (e.g. clients, TTP)

Faulty Primary Data

- Issue: Results derived from faulty primary data are faulty as well
- Future (NDN): Convention to flag authentic but faulty data (e.g. due to broken sensor)
- Future (NFN): Consideration in NFN result verification

Conclusion

- Context: Services in (recursive) read-process-republish mode (e.g. NFN)
- Challenge: Result correctness & relaxation of trust
- **Approach:** Transparent provenance & provenance-based result verification
- Future: Trust in CEs, User-Constrained Orchestration, Availability of PRs