NDN-DPDK:
NDN Forwarding at 100 Gbps
on Commodity Hardware

Junxiao Shi, Davide Pesavento, Lotfi Benmohamed
Advanced Network Technologies Division

National Institute of Standards and Technology

NIST
National Institute of 0:0:0:0:'
Standards and Technology 7 '

U.S. Department of Commerce /’/ 1



Introduction

* NDN needs a high-speed forwarder:
* Use case: data intensive science, live video streaming, ...

* Goal: line speed on commodity hardware.

How to get there?
» Adopt better algorithms and data structures.
»Reduce overhead in library and kernel.

AN INTERDISCIPLINARY APPROACH TO DESIGNING FAST NETWORKED DEVICES O D I D K
GEORGE VARGHESE

DATA PLANE DEVELOPMENT KIT

2



Data Plane Development Kit (DPDK)

* DPDK: libraries to accelerate packet processing workloads.

Main DPDK features:

» Multi-threading: use all available CPU cores.

» Ring buffer queue: transfer packets between threads.
»Hugepage-backed memory pools: no malloc() in data path.
» User-space NIC drivers: bypass the kernel.



Our Contributions

* NDN-DPDK:

v'Complete implementation.
v'Running on real hardware.
v'Support full NDN protocol and name matching semantics.

* Prior works:
(JFocus on a subset of data plane: Mansilha et al (ICN'15), ...
(dRely on simulations: Song et al (ICN'15), ...

dLack support for Interest-Data prefix match: So et al (ANCS'13), Caesar
(ANCS'14), Augustus (ICN'16), ...



Forwarder Architecture

fwdO
inputO PIT+CS FIB outputO
fwd1l
inputl PIT+CS FIB outputl
Name
Dispatch
Table FIB mgmt
\ | | J
! ! !
input stage forwarding stage output stage



FIB Design

 2-stage Longest Prefix Match algorithm.

* So et al, Named data networking on a router: Fast and DoS-resistant
forwarding with hash tables (ANCS'13).

virtual FIB entry normal FIB entry strategy program
(at LPM start depth only)
2
% name name
9 BPF instructions
© 1| LPM max depth nexthops
o
O || real entry pointer strategy pointer
o JIT'ed program
N counters
o
FIB hash S =
table S o || strategy scratch
o <
> § area



FIB Replication on NUMA Sockets

* NUMA: Non-Uniform Memory Access.
* Hardware in a multi-CPU server is organized in NUMA sockets.

NUMA#O NUMA#1
NUMA#O NUMA#1

RAM -\._,-
£ - B3 = K

- BN RPN

NUMAH2 NUMA#3

* Nonlocal memory access incurs higher latency.
* Each NUMA socket has a copy of FIB.

* Forwarding threads can avoid nonlocal memory access during FIB lookups.



PIT Sharding

e Each forwarding thread has a private PIT.
* Non-thread-safe. No RCU.

Requirements on packet dispatching:

1) Same Interest name => same forwarding thread.
* Required by Interest aggregation and loop prevention.

2) Common Interest prefix => same forwarding thread.
* Make forwarding strategy effective.

3) Data/Nack => forwarding thread that processed the Interest.
* So that they can go back to the downstream.



Dispatch Interest by Name

 Name Dispatch Table (NDT)
* Map: hash of name prefix => forwarding thread ID
* Thread safe: NDT is an array of atomic_int.
* Many name prefixes share the same entry.

* In input threads: 0 fwd0
(configurable) 1 PIT+CS
compute hash of first twé 0
name components 0 fwd1
' PIT+CS
1
» 1
choose NDT entry: dispatch to forwarding thread
hash % NDT.size() 0



PIT Token

e Data packet: name dispatching works most of the time, except:
* Interest /A CanBePrefix=1 goes to NDT[SipHash(/A)].
» Data /A/B/1 goes to NDT[SipHash(/A/B)].

e Solution: use PIT token to associate Interest and Data.

* PIT token is an opaque token carried in a hop-by-hop field.
* Every outgoing Interest carries a PIT token.
* Data/Nack must carry the same PIT token.



Dispatch Data/Nack by PIT Token

e NDN-DPDK's PIT token contains:

a) Forwarding thread ID (8 bits), to dispatch Data/Nack correctly.
b) PIT entry index (48 bits), to accelerate PIT lookups.

NDT fwd0
Interest i / Interest
OXBEEF — @ 0x01 C001
> input 3
g L5 fwd1l faceB
face A Q wd i

/

SEle output
OXBEEF P

Data
0Ox01 CO01

\

11



Prefix Match in CS

* In-Network Name Discovery:
* |Interests should be able to use incomplete names to retrieve Data packets.

e CSis a hash table, which only supports exact match.
 Solution: indirect entries.

Consumer normally uses a consistent name for
/A/B name discovery.
indirect entry If a different name is used, the Interest must
be satisfied by the producer, and then it gets
another indirect entry.

Prefix-name Interest /A/B can be
satisfied by the indirect entry.

/A/B/C/1 /A/B/C
direct entry indirect entry
with Data packet

Exact-name Interest /A/B/C/1 can be
satisfied by the direct entry.



PIT-CS Composite Table (PCCT)

name hash
table

PIT entry

copy of Interest

downstream faces

upstream faces

strategy scratch area

name | chosen FH

token hash
table
48-bit token
direct CS entry indirect CS entry

Data packet

A
\ 4

indirect entries list direct entry pointer

ARC linked list nodes LRU linked list node



Benchmarks

Spoiler alert: we made it to 100 Gbps

14



Benchmark Topology

Two physical machines:

* Forwarder.
forwarder * Traffic generators: (logically independent)
* Fetch Data from each other.
producer /A
consumer /B

* CUBIC-like congestion control.

e CPU: dual Intel Xeon Gold 6240.
* 18 cores at 2.60 GHz, Hyper Threading disabled.

* Memory: 256 GB, 2933 MHz, four channels.
* 64x 1GB hugepages per NUMA socket.

* NIC: Mellanox ConnectX-5 100 Gbps.

producer /B
consumer /A

15



We Made It to 100 Gbps

Measured from
consumers.

Data packets only.

Not counting
retransmissions.

I 108 Gbri_]

2.0

= = =
b o o
| 1 1

=
N
]

Data forwarding rate [Mpps]
(] (] o =2
r oo ® O
| | | |

o
N
|

0.0 -

100

500 1000 2000 4000

Payload size [bytes]

16

vV

8000

- 100

- 80

- 60

—- 40

- 20

Goodput [Gbps]

8 forwarding threads.

Data payload only.




Input Thread Bottleneck

[ peak: 1.84 M

N
o

Name components
s 4
w10
w16

= = =
A o o

=
N

Data forwarding rate [Mpps]
o o =
o o O

o
~

o
N

o
o

4
Forwarding threads

J

S \
=

8 12

\ J

1
linear growth

1
no improvement

* Expectation:
™ # forwarding threads
I Data forwarding rate (pps)

* Reality:
* Data forwarding rate plateaus at 8
forwarding threads.
* Bottleneck: input thread.

* Current architecture only allows
one input thread per face.



Effect of Nonlocal Memory Access

[ up to 20% slower l
2.0 -

B same NUMA
mmm cross NUMA

[/

=
(o

=
o

NUMA NUMA NUMA NUMA

=
»

#0 #1 #o €m) #1

[
N

o
(o]

Data forwarding rate [Mpps]
o =
o o

o
»

same NUMA cross NUMA: higher
memory access latency

o
N

o
o

1 2 4 8 12
Forwarding threads

18



Performance with Large FIB

forwarding rate (kpps)

FIB entries
mean stdev
104 1840 5.59
10° 1835 4,92

106 1839 4.42

Interest latency (us)

median 95t percentile
90 227
92 234
97 249



Forwarding Rate with Large CS

2.0

producer

— cap=2! match=exact = cap=22° match=exact

= cap=2' match=prefix = cap=22?° match=prefix

=
0o

=
o

forwarder

=
-

[E
N

consumer consumer

=
o

Data forwarding rate [Mpps]

©
00

©
o
o

10 20 30 40 50
Content store hit ratio [%]

20



CDF

Latency with Large CS

Exact Match

1.0

0.9 1

0.8

0.7 5

0.6

0.5+

0.4 -

0.3

0.2 5

0.1

~— cap=2' - CS miss

-- cap=2?% - CS miss

cap=2'7 - Data

-— cap=217 - CS hit
cap=22Y - Data

= cap=22°- CS hit

0.0
100

10t

101

103
Latency [us]

10°

21

Interest 4875 pus
Data 456 ps

Prefix Match

1.0

—— cap=2'7 - Data
0.9 =] 17 .
== cap=2"'-CS miss
0.8 - cap=2%" - CS hit
— cap=2?°- Data
0.7 4
-- cap=2?% - CS miss

0.6 cap=24Y - CS hit
L
O 0.5+
@)

0.4 +

0.3 1

0.2

0.1+

0.0 1 T rrrrrr Frrrrrry Frrrrrry 1 I rrrree

100 10! 107 103 104

90t percentile

Latency [us]

10°



Future Work

 Remove the input thread bottleneck:
* Design changes to allow multiple input threads per face.
* Dispatch Data/Nack via Receive Size Scaling (RSS).
e Dispatch Interest (NDT) using eBPF or FPGA hardware.

* Expand Content Store to NVMe disk storage.
* Load balancing by adjusting NDT entries.
* Performance profiling and improvement toward 200 Gbps.



NDN-DPDK Codebase

* https://github.com/usnistgov/ndn-dpdk
* Forwarder
* Traffic Generator
* GraphQL-based management tools
* NDNgo library for application development

e Dedicated to public domain

Programming Languages (2020)

— ~
Go C TypeScript /)ther

65.2% 29.7% 2.3% 2.8%

23


https://github.com/usnistgov/ndn-dpdk

Thank You

Junxiao Shi, Davide Pesavento, Lotfi Benmohamed
NDN-DPDK: NDN Forwarding at 100 Gbps on Commodity Hardware
7th ACM Conference on Information-Centric Networking (ICN 2020)

24



