

NDN-DPDK: NDN Forwarding at 100 Gbps on Commodity Hardware

Junxiao Shi, Davide Pesavento, Lotfi Benmohamed Advanced Network Technologies Division National Institute of Standards and Technology

Introduction

- NDN needs a high-speed forwarder:
 - Use case: data intensive science, live video streaming, ...
- Goal: line speed on commodity hardware.

How to get there?

- ➤ Adopt better algorithms and data structures.
- ➤ Reduce overhead in library and kernel.

Data Plane Development Kit (DPDK)

• DPDK: libraries to accelerate packet processing workloads.

Main DPDK features:

- ➤ Multi-threading: use all available CPU cores.
- >Ring buffer queue: transfer packets between threads.
- ➤ Hugepage-backed memory pools: no malloc() in data path.
- ➤ User-space NIC drivers: bypass the kernel.

Our Contributions

NDN-DPDK:

- ✓ Complete implementation.
- ✓ Running on real hardware.
- ✓ Support full NDN protocol and name matching semantics.

Prior works:

□ Focus on a subset of data plane: Mansilha et al (ICN'15), ...
□ Rely on simulations: Song et al (ICN'15), ...
□ Lack support for Interest-Data prefix match: So et al (ANCS'13), Caesar (ANCS'14), Augustus (ICN'16), ...

Forwarder Architecture

FIB Design

- 2-stage Longest Prefix Match algorithm.
 - So et al, Named data networking on a router: Fast and DoS-resistant forwarding with hash tables (ANCS'13).

FIB Replication on NUMA Sockets

- NUMA: Non-Uniform Memory Access.
 - Hardware in a multi-CPU server is organized in NUMA sockets.

- Nonlocal memory access incurs higher latency.
- Each NUMA socket has a copy of FIB.
 - Forwarding threads can avoid nonlocal memory access during FIB lookups.

PIT Sharding

- Each forwarding thread has a private PIT.
 - Non-thread-safe. No RCU.

Requirements on packet dispatching:

- 1) Same Interest name => same forwarding thread.
 - Required by Interest aggregation and loop prevention.
- 2) Common Interest prefix => same forwarding thread.
 - Make forwarding strategy effective.
- 3) Data/Nack => forwarding thread that processed the Interest.
 - So that they can go back to the downstream.

Dispatch Interest by Name

- Name Dispatch Table (NDT)
 - Map: hash of name prefix => forwarding thread ID
 - Thread safe: NDT is an array of atomic_int.
 - Many name prefixes share the same entry.

PIT Token

- Data packet: name dispatching works most of the time, except:
 - Interest /A CanBePrefix=1 goes to NDT[SipHash(/A)].
 - Data /A/B/1 goes to NDT[SipHash(/A/B)].
- Solution: use PIT token to associate Interest and Data.
- PIT token is an opaque token carried in a hop-by-hop field.
 - Every outgoing Interest carries a PIT token.
 - Data/Nack must carry the same PIT token.

Dispatch Data/Nack by PIT Token

- NDN-DPDK's PIT token contains:
 - a) Forwarding thread ID (8 bits), to dispatch Data/Nack correctly.
 - b) PIT entry index (48 bits), to accelerate PIT lookups.

Prefix Match in CS

- In-Network Name Discovery:
 - Interests should be able to use incomplete names to retrieve Data packets.
- CS is a hash table, which only supports exact match.

PIT-CS Composite Table (PCCT)

Benchmarks

Spoiler alert: we made it to 100 Gbps

Benchmark Topology

Two physical machines:

- Forwarder.
- Traffic generators: (logically independent)
 - Fetch Data from each other.
 - CUBIC-like congestion control.
- CPU: dual Intel Xeon Gold 6240.
 - 18 cores at 2.60 GHz, Hyper Threading disabled.
- Memory: 256 GB, 2933 MHz, four channels.
 - 64x 1GB hugepages per NUMA socket.
- NIC: Mellanox ConnectX-5 100 Gbps.

We Made It to 100 Gbps

Measured from consumers.
Data packets only.
Not counting retransmissions.

Payload size [bytes]

Input Thread Bottleneck

- Expectation:
 - ↑ # forwarding threads
 - ↑ Data forwarding rate (pps)
- Reality:
 - Data forwarding rate plateaus at 8 forwarding threads.
- Bottleneck: input thread.
 - Current architecture only allows one input thread per face.

Effect of Nonlocal Memory Access

Performance with Large FIB

FIB entries	forwarding rate (kpps)		Interest latency (μs)	
	mean	stdev	median	95 th percentile
10 ⁴	1840	5.59	90	227
10 ⁵	1835	4.92	92	234
10 ⁶	1839	4.42	97	249

Forwarding Rate with Large CS

Latency with Large CS

	90 th percentile	
Interest	4875 μs	
Data	456 μs	

Exact Match

Prefix Match

Future Work

- Remove the input thread bottleneck:
 - Design changes to allow multiple input threads per face.
 - Dispatch Data/Nack via Receive Size Scaling (RSS).
 - Dispatch Interest (NDT) using eBPF or FPGA hardware.
- Expand Content Store to NVMe disk storage.
- Load balancing by adjusting NDT entries.
- Performance profiling and improvement toward 200 Gbps.

NDN-DPDK Codebase

- https://github.com/usnistgov/ndn-dpdk
 - Forwarder
 - Traffic Generator
 - GraphQL-based management tools
 - NDNgo library for application development
- Dedicated to public domain

Thank You

Junxiao Shi, Davide Pesavento, Lotfi Benmohamed NDN-DPDK: NDN Forwarding at 100 Gbps on Commodity Hardware 7th ACM Conference on Information-Centric Networking (ICN 2020)