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Introduction

• NDN needs a high-speed forwarder:
• Use case: data intensive science, live video streaming, …

• Goal: line speed on commodity hardware.

How to get there?

➢Adopt better algorithms and data structures.

➢Reduce overhead in library and kernel.
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Data Plane Development Kit (DPDK)

• DPDK: libraries to accelerate packet processing workloads.

Main DPDK features:

➢Multi-threading: use all available CPU cores.

➢Ring buffer queue: transfer packets between threads.

➢Hugepage-backed memory pools: no malloc() in data path.

➢User-space NIC drivers: bypass the kernel.

3



Our Contributions

• NDN-DPDK:
✓Complete implementation.

✓Running on real hardware.

✓Support full NDN protocol and name matching semantics.

• Prior works:
❑Focus on a subset of data plane: Mansilha et al (ICN'15), …

❑Rely on simulations: Song et al (ICN'15), …

❑Lack support for Interest-Data prefix match: So et al (ANCS'13), Caesar 
(ANCS'14), Augustus (ICN'16), …
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Forwarder Architecture

input0

input1

Name 
Dispatch 

Table FIB mgmt

output0

output1

input stage forwarding stage output stage

fwd0
PIT+CS FIB

fwd1
PIT+CS FIB
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FIB Design

• 2-stage Longest Prefix Match algorithm.
• So et al, Named data networking on a router: Fast and DoS-resistant 

forwarding with hash tables (ANCS'13).
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FIB Replication on NUMA Sockets

• NUMA: Non-Uniform Memory Access.
• Hardware in a multi-CPU server is organized in NUMA sockets.

• Nonlocal memory access incurs higher latency.

• Each NUMA socket has a copy of FIB.
• Forwarding threads can avoid nonlocal memory access during FIB lookups.
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PIT Sharding

• Each forwarding thread has a private PIT.
• Non-thread-safe. No RCU.

Requirements on packet dispatching:

1) Same Interest name => same forwarding thread.
• Required by Interest aggregation and loop prevention.

2) Common Interest prefix => same forwarding thread.
• Make forwarding strategy effective.

3) Data/Nack => forwarding thread that processed the Interest.
• So that they can go back to the downstream.
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Dispatch Interest by Name

• Name Dispatch Table (NDT)
• Map: hash of name prefix => forwarding thread ID

• Thread safe: NDT is an array of atomic_int.

• Many name prefixes share the same entry.

• In input threads:

Interest
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hash % NDT.size()

dispatch to forwarding thread
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PIT Token

• Data packet: name dispatching works most of the time, except:
• Interest /A CanBePrefix=1 goes to NDT[SipHash(/A)].

• Data /A/B/1 goes to NDT[SipHash(/A/B)].

• Solution: use PIT token to associate Interest and Data.

• PIT token is an opaque token carried in a hop-by-hop field.
• Every outgoing Interest carries a PIT token.

• Data/Nack must carry the same PIT token.
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Dispatch Data/Nack by PIT Token

• NDN-DPDK's PIT token contains:
a) Forwarding thread ID (8 bits), to dispatch Data/Nack correctly.

b) PIT entry index (48 bits), to accelerate PIT lookups.
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Prefix Match in CS

• In-Network Name Discovery:
• Interests should be able to use incomplete names to retrieve Data packets.

• CS is a hash table, which only supports exact match.

• Solution: indirect entries.

/A/B/C/1
direct entry
with Data packet

/A/B
indirect entry

Prefix-name Interest /A/B can be 
satisfied by the indirect entry.

Exact-name Interest /A/B/C/1 can be 
satisfied by the direct entry.

/A/B/C
indirect entry

Consumer normally uses a consistent name for 
name discovery.
If a different name is used, the Interest must 
be satisfied by the producer, and then it gets 
another indirect entry.
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PIT-CS Composite Table (PCCT)
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Benchmarks
Spoiler alert: we made it to 100 Gbps
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Benchmark Topology

Two physical machines:

• Forwarder.

• Traffic generators: (logically independent)
• Fetch Data from each other.

• CUBIC-like congestion control.

• CPU: dual Intel Xeon Gold 6240.
• 18 cores at 2.60 GHz, Hyper Threading disabled.

• Memory: 256 GB, 2933 MHz, four channels.
• 64x 1GB hugepages per NUMA socket.

• NIC: Mellanox ConnectX-5 100 Gbps.

forwarder

producer /A
consumer /B

producer /B
consumer /A
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We Made It to 100 Gbps
108 Gbps

Measured from 
consumers.
Data packets only.
Not counting 
retransmissions.

Data payload only.

8 forwarding threads.
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Input Thread Bottleneck

• Expectation:
↑ # forwarding threads

↑ Data forwarding rate (pps)

• Reality:
• Data forwarding rate plateaus at 8 

forwarding threads.

• Bottleneck: input thread.
• Current architecture only allows 

one input thread per face.

peak: 1.84 Mpps

linear growth no improvement
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Effect of Nonlocal Memory Access
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Performance with Large FIB

FIB entries
forwarding rate (kpps) Interest latency (μs)

mean stdev median 95th percentile

104 1840 5.59 90 227

105 1835 4.92 92 234

106 1839 4.42 97 249
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Forwarding Rate with Large CS
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Latency with Large CS

Exact Match Prefix Match

21

90th percentile

Interest 4875 μs

Data 456 μs



Future Work

• Remove the input thread bottleneck:
• Design changes to allow multiple input threads per face.

• Dispatch Data/Nack via Receive Size Scaling (RSS).

• Dispatch Interest (NDT) using eBPF or FPGA hardware.

• Expand Content Store to NVMe disk storage.

• Load balancing by adjusting NDT entries.

• Performance profiling and improvement toward 200 Gbps.
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NDN-DPDK Codebase

• https://github.com/usnistgov/ndn-dpdk
• Forwarder

• Traffic Generator

• GraphQL-based management tools

• NDNgo library for application development

• Dedicated to public domain

Go
65.2%

C
29.7%

TypeScript
2.3%

other
2.8%

Programming Languages (2020)
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