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Introduction

* NDN needs a high-speed forwarder:
* Use case: data intensive science, live video streaming, ...

* Goal: line speed on commodity hardware.

How to get there?
» Adopt better algorithms and data structures.
»Reduce overhead in library and kernel.
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Data Plane Development Kit (DPDK)

* DPDK: libraries to accelerate packet processing workloads.

Main DPDK features:

» Multi-threading: use all available CPU cores.

» Ring buffer queue: transfer packets between threads.
»Hugepage-backed memory pools: no malloc() in data path.
» User-space NIC drivers: bypass the kernel.



Our Contributions

* NDN-DPDK:

v'Complete implementation.
v'Running on real hardware.
v'Support full NDN protocol and name matching semantics.

* Prior works:
(JFocus on a subset of data plane: Mansilha et al (ICN'15), ...
(dRely on simulations: Song et al (ICN'15), ...

dLack support for Interest-Data prefix match: So et al (ANCS'13), Caesar
(ANCS'14), Augustus (ICN'16), ...



Forwarder Architecture
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FIB Design

 2-stage Longest Prefix Match algorithm.

* So et al, Named data networking on a router: Fast and DoS-resistant
forwarding with hash tables (ANCS'13).
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FIB Replication on NUMA Sockets

* NUMA: Non-Uniform Memory Access.
* Hardware in a multi-CPU server is organized in NUMA sockets.
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* Nonlocal memory access incurs higher latency.
* Each NUMA socket has a copy of FIB.

* Forwarding threads can avoid nonlocal memory access during FIB lookups.



PIT Sharding

e Each forwarding thread has a private PIT.
* Non-thread-safe. No RCU.

Requirements on packet dispatching:

1) Same Interest name => same forwarding thread.
* Required by Interest aggregation and loop prevention.

2) Common Interest prefix => same forwarding thread.
* Make forwarding strategy effective.

3) Data/Nack => forwarding thread that processed the Interest.
* So that they can go back to the downstream.



Dispatch Interest by Name

 Name Dispatch Table (NDT)
* Map: hash of name prefix => forwarding thread ID
* Thread safe: NDT is an array of atomic_int.
* Many name prefixes share the same entry.

* In input threads: 0 fwd0
(configurable) 1 PIT+CS
compute hash of first twé 0
name components 0 fwd1
' PIT+CS
1
» 1
choose NDT entry: dispatch to forwarding thread
hash % NDT.size() 0



PIT Token

e Data packet: name dispatching works most of the time, except:
* Interest /A CanBePrefix=1 goes to NDT[SipHash(/A)].
» Data /A/B/1 goes to NDT[SipHash(/A/B)].

e Solution: use PIT token to associate Interest and Data.

* PIT token is an opaque token carried in a hop-by-hop field.
* Every outgoing Interest carries a PIT token.
* Data/Nack must carry the same PIT token.



Dispatch Data/Nack by PIT Token

e NDN-DPDK's PIT token contains:

a) Forwarding thread ID (8 bits), to dispatch Data/Nack correctly.
b) PIT entry index (48 bits), to accelerate PIT lookups.
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Prefix Match in CS

* In-Network Name Discovery:
* |Interests should be able to use incomplete names to retrieve Data packets.

e CSis a hash table, which only supports exact match.
 Solution: indirect entries.

Consumer normally uses a consistent name for
/A/B name discovery.
indirect entry If a different name is used, the Interest must
be satisfied by the producer, and then it gets
another indirect entry.

Prefix-name Interest /A/B can be
satisfied by the indirect entry.

/A/B/C/1 /A/B/C
direct entry indirect entry
with Data packet

Exact-name Interest /A/B/C/1 can be
satisfied by the direct entry.



PIT-CS Composite Table (PCCT)
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Benchmarks

Spoiler alert: we made it to 100 Gbps
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Benchmark Topology

Two physical machines:

* Forwarder.
forwarder * Traffic generators: (logically independent)
* Fetch Data from each other.
producer /A
consumer /B

* CUBIC-like congestion control.

e CPU: dual Intel Xeon Gold 6240.
* 18 cores at 2.60 GHz, Hyper Threading disabled.

* Memory: 256 GB, 2933 MHz, four channels.
* 64x 1GB hugepages per NUMA socket.

* NIC: Mellanox ConnectX-5 100 Gbps.

producer /B
consumer /A
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We Made It to 100 Gbps

Measured from
consumers.

Data packets only.

Not counting
retransmissions.
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Input Thread Bottleneck
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* Expectation:
™ # forwarding threads
I Data forwarding rate (pps)

* Reality:
* Data forwarding rate plateaus at 8
forwarding threads.
* Bottleneck: input thread.

* Current architecture only allows
one input thread per face.



Effect of Nonlocal Memory Access
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Performance with Large FIB

forwarding rate (kpps)

FIB entries
mean stdev
104 1840 5.59
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106 1839 4.42

Interest latency (us)

median 95t percentile
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97 249



Forwarding Rate with Large CS
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CDF

Latency with Large CS
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Future Work

 Remove the input thread bottleneck:
* Design changes to allow multiple input threads per face.
* Dispatch Data/Nack via Receive Size Scaling (RSS).
e Dispatch Interest (NDT) using eBPF or FPGA hardware.

* Expand Content Store to NVMe disk storage.
* Load balancing by adjusting NDT entries.
* Performance profiling and improvement toward 200 Gbps.



NDN-DPDK Codebase

* https://github.com/usnistgov/ndn-dpdk
* Forwarder
* Traffic Generator
* GraphQL-based management tools
* NDNgo library for application development

e Dedicated to public domain

Programming Languages (2020)

— ~
Go C TypeScript /)ther

65.2% 29.7% 2.3% 2.8%
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https://github.com/usnistgov/ndn-dpdk

Thank You

Junxiao Shi, Davide Pesavento, Lotfi Benmohamed
NDN-DPDK: NDN Forwarding at 100 Gbps on Commodity Hardware
7th ACM Conference on Information-Centric Networking (ICN 2020)
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