

Evolution

- Transport Network
 - End-point to end-point
 - Operates on IP addresses
- Content Network
 - End-point to content
 - Operates on content's names

Content Delivery Network (CDN)

• Implements a <u>content network</u> over a <u>transport network</u> (i.e., the Internet)

ICN/NDN

- A young networking technology to build a content network
 - Simple architecture & Secure design
- Goal:
 - Compare content networks built by CDNs and NDN
- Important Note:
 - This work is only focused on *caching and retrieval of static contents*

Real-World Measurements

- Deployed an adaptive video streaming service
- Evaluated content networks:
 - Akamai
 - Fastly
 - NDN testbed
- Users in four different continents
- Two-week experiment

Metrics:

- 1. Quality of Experience (QoE)
- 2. Origin workload
- 3. Failure resiliency
- 4. Content security

Quality of Experience (QoE)

Video resolution

Video startup delay

QoE – Video Resolution

QoE – Video Resolution – Parallelism

QoE – Startup Delay

QoE – Startup Delay – Caching

QoE – Software Maturity

- A new set of experiments
 - Exclude contribution of parallelism and large deployment of CDNs

- **Average** throughput:
 - NDN testbed \rightarrow 7.54 Mbps (23.48 Mbps at best)
 - Akamai → 96.7 Mbps
 - Fastly → 83.2 Mbps

QoE – Summarize

- Akamai and Fastly try to:
 - 1. Cache contents as close as possible to end-users
 - 2. Download contents through a massive parallelism, using optimized software/protocols

- NDN can barely meet these two goals
 - Lack of software maturity and large deployment

Origin Workload

Origin Workload – Why NDN is better?

Two main contributors to NDN testbed's performance:

Network architecture

Akamai and Fastly partition their network to islands

Request aggregation

Akamai does not aggregate requests seeking for the same content

Failure Resiliency

The success ratio of each network in serving the end-users' requests from their caches when the origin stops serving content

Network	Akamai	Fastly	NDN
Success ratio	9.42%	13.98%	100%

Origin Workload & Failure Resiliency – Summarize

- High traffic load and failure resiliency issues in CDNs are related to their network design
 - Resource over-provisioning in CDNs cannot address these issues
- NDN benefits from:
 - Stateful forwarding plane
 - Non-partitioned network design
 - Unique in-network caching features

Content Security

- CDNs secure channels by Transport Layer Security (TLS)
 - TLS guarantees data privacy

- NDN secures contents by data signature
 - NDN guarantees data integrity

Security – Real-World Scenarios

- Keep your private key private

- Schematize trust for dynamic contents

Security - Summarize

 NDN security model is promising for large content distribution purposes

- Main issue of NDN security model
 - Lack of privacy

Lessons & Challenges

- Hardware & Software Maturity

- The Need for NDN Applications

- Management and Debugging

Conclusion

- Compare the content networks built by NDN and CDNs
- QoE is mainly determined by hardware and software maturity
 - CDNs outperform the current NDN deployment in terms of QoE
- Origin workload and failure resiliency are mainly the products of the network design
 - NDN testbed outperforms CDNs
- NDN *can* realize a resilient, secure, and scalable content network if accompanied by
 - Mature software and protocols
 - Sufficient hardware resources

