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ABSTRACT
In our project we are developing a technique to detect traf-
fic anomalies based on network flow behavior. We estimate
baseline distributions for meaningful traffic features and de-
rive measures of legitimate deviations thereof. Observed
network behavior is then compared to the baseline behavior
by means of a symmetrized version of the Kullback-Leibler
divergence. The achieved dimension reduction enables effec-
tive outlier detection to flag deviations from the legitimate
behavior with high precision. Our technique supports on-
line training and provides enough information to efficiently
classify observed anomalies and allows in-depth analysis on
demand. First measurements confirm its resilience to sea-
sonal effects while detecting abnormal behavior reliably.

1. INTRODUCTION
Availability and reliability of resources in computer net-

works deployed in companies, universities, and ISPs have
become a crucial driving factor for productivity and com-
petitiveness. As a consequence, events detrimental to a net-
work’s performance need to be detected accurately. Such
undesirable events are commonly termed network anoma-
lies and include attacks and abuse of resources, failure of
mission-critical servers and devices, significant changes of
user behavior, or yet unknown events.

Intrusion detection systems are deployed today in many
networks to detect attacks, spreading worms, and policy
violations. However, due to their rule-based nature using
expert knowledge of known threats and events, these sys-
tems commonly fail to detect new traffic anomalies. Such
anomalies may, for example, emerge from the presence of
zero-day exploits, outbreaks of new or modified worms, or
reduced performance or outages of equipment. Anomaly de-
tection systems overcome this shortcoming by establishing a
model of the normal behavior of a network. Every observed
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perturbation from this behavior is flagged as abnormal and
reported. Modeling network behavior appropriately is, how-
ever, a complicated task because of the dynamic nature of
traffic. Also, the characteristics of events can vary signif-
icantly: whereas a high traffic load may indicate a worm
outbreak or a DoS attack in some cases, a similar load may
be generated by legitimate applications. In general, every
event leaves some traces in the distributions of traffic fea-
tures (header fields, flow characteristics, etc.). Furthermore,
these distributions are subject to variation with the time of
day and day of the week; thus, static deviation detection is
likely to generate many false positives.

2. BACKGROUND AND MOTIVATION
Anomaly detection has been extensively studied through-

out recent years. Most proposed techniques model network
behavior in terms of traffic volume, e.g., by applying adap-
tive thresholds, signal analysis, edge detection, etc. Many
anomalies do not exhibit significant change in traffic volumes
though. Lakhina et al. [1] propose an information theoretic
analysis of feature distributions of IP addresses and ports us-
ing entropy for dimension reduction. However, entropy lacks
the ability to discern differing distributions that possess the
same amount of uncertainty. Consequently, observed net-
work behavior may significantly deviate from usual behavior
without being reflected by entropy. Gu et al. [2] circumvent
this shortcoming to some extent by comparing an observed
distribution to a baseline distribution by means of relative
entropy. Their threshold-based approach divides observed
packets into classes according to layer 4 protocols and splits
these further in terms of ports and TCP flags.

Our technique aims at taking the dynamic nature of the
traffic mix into account and assumes that a network may
have multiple normal behavior modes. A threshold-based
approach is, thus, not sufficient for disambiguation. We se-
lect appropriate network flow features that are likely to be
affected by most anomalies and observe their distributions
over time. To compare feature distributions, we use a sym-
metrized Kullback-Leibler divergence that provides more ac-
curacy than [2]. Moreover, we provide an online learning
mechanism to further reduce the false positive rate.

3. METHODOLOGY
Our detection technique consists of two parts: a learning

and a detection phase. The learning phase makes use of
reference data to establish two traffic models on which the
detection phase is based: (1) baseline feature distributions
for meaningful traffic features and (2) Clouds of Natural Be-



havior (CNB) representing legitimate deviations from the
baseline. The set of considered features F includes flow du-
ration, octets per flow, packets per flow, IP addresses, TCP
and UDP ports, TCP flags, and layer 2 protocol ID.

3.1 Comparing feature distributions
Our approach uses an adapted version of the Kullback-

Leibler (KL) divergence as a measure of how two discrete
probability mass functions p(x) and q(x) differ. The stan-
dard KL divergence between p and q is defined as

DKL(p||q) :=

nX
i=1

p(xi) log
p(xi)

q(xi)
.

In other words, the KL divergence measures discrepancies
between p(x) and q(x) in each sample x ∈ X and weighs
them with p(x).

Similar to [2], we compare an observed distribution of

of a feature f ∈ F to the baseline distribution bf . How-
ever, instead of only weighing the deviations in terms of of

by computing DKL(of ||bf ), we use a symmetrized weighting
strategy that employs both of and bf . Using only a sin-
gle weight limits the ability to spot reliably samples that
occur significantly less frequently in one observation (i.e.,
of (x) → 0 for some x ∈ X), although bf (x) is large, since
limof (x)→0 of (x) log of (x) = 0. Our approach weighs devia-
tions in terms of the differences between of and bf , i.e.,

mf = DKL(of ||bf ) + DKL(bf ||of )

=

nX
i=1

(of (xi)− bf (xi)) log
of (xi)

bf (xi)
. (1)

3.2 Learning phase
We use annotated training data, i.e., network flow files

with labeled anomalies, and extract assumed anomaly-free
reference data subdivided into time periods of fixed length.
The learning phase is composed of three mechanisms: (i) the
baseline distribution learning, (ii) the construction of the
CNB, and (iii) the ability to learn good behavior online.

Currently, our method establishes the baseline distribu-
tions bf by computing the probability mass functions for
each feature f ∈ F from the reference data over all time
periods, e.g., distributions on ports, flow durations, etc.

The second phase of learning consists of reusing the refer-
ence data and comparing them to the baseline distributions
by means of Eq. 1. For each time period i, we construct an
|F|-dimensional vector ~vi of the deviations mi

f for all f ∈ F ,
representing a behavior-characteristic point in the feature-
deviation space (R+)|F|. Ideally, bf = of for all f ∈ F and
thus ~vi = 0. For any deviation in some feature f , we have
vf

i = mf > 0. Since normal network traffic exhibits varia-
tions in time, the ideal case is unlikely. Thus, we keep all
behavior-characteristic points acquired from the reference
data and form Clouds of Natural Behavior (CNB) of the
traffic mix, representing instances of legitimate deviations
from the baseline distributions.

Our approach is able to incorporate administrator feed-
back to improve the knowledge of good behavior patterns.
Whenever an administrator identifies a false alarm (e.g., a
new server/service is installed or an old one is shut down),
the newly engendered behavior point may be added to the
CNB to prevent this false alarm in the future and hence
reduce the false positive rate.

3.3 Detection phase
The detection phase includes two steps: (i) observed fea-

ture distributions are compared to their respective baseline
distributions and (ii) the corresponding representation in the
feature-deviation space is analyzed to see whether it acts as
an outlier with respect to normal behavior.

From observed network flow information within a time
period the feature distributions of for each f ∈ F are com-
puted. Then, the deviation mf between of and the baseline
distribution bf is measured using Eq. 1.

Analogous to the learning phase, we represent the ob-
served traffic as a behavior-characteristic point ~vo in the
feature-deviation space. Then, we determine its degree of
being an outlier (i.e., an anomaly) with respect to the CNB.
Our approach allows us to track back the feature(s) that
caused the largest deviations in ~vo. Moreover, for a given
abnormal feature, our technique provides, by backtracking
the KL divergence computation, on-demand insight as to
which sample(s) contributed most to the deviation.

4. PRELIMINARY RESULTS
First experiments of our feature distribution comparison

were done on real data collected in a large production envi-
ronment using NetFlow v9. A subset of 84 time periods of
5 minutes each were selected as training data to construct
the baseline distributions and the CNB. Then, the remain-
ing data was analyzed as described above (3.3-(i)). Figure 1
shows an excerpt of the plot of the values of mf and the
corresponding behavior-characteristic points. We observe a
large spike between 13:55 and 15:30 caused by a port scan
from outside the network; these points are reflected as out-
liers from the legitimate behavior in the CNB.

 0

 1

 2

 3

 4

 5

08/26
00:00

08/26
04:00

08/26
08:00

08/26
12:00

08/26
16:00

08/26
20:00

08/27
00:00

sK
LD

Date/Time

Behavior of symmetrized KL distance

durations
octs

octs_per_pkts
pkts

ports

0 1 2 3 4 5

0
1

2
3

4
5
0

1

2

3

4

5

octs

Distribution of behavior−characteristic points

ports

po
rt

s

Figure 1: Detection of a port scan.

5. OUTLOOK
At the current state of the project we are evaluating var-

ious algorithms to perform outlier detection in the feature-
deviation space. We are also analyzing methods to summa-
rize or age points in the CNB in order to reduce computa-
tional overhead. Furthermore, we will evaluate the various
kinds of anomalies that our technique is able to detect and
determine its limits. A proof-of-concept implementation of
our learning and detection phase based on feature distribu-
tions shows promising results and we will shortly implement
the outlier detection part.
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