
Quality of Service Routing in Peer-to-Peer Overlays ∗

[Extended Abstract]

Michael Gellman
Dept. of Electrical & Electronic Eng.

Imperial College London

m.gellman@imperial.ac.uk

1. INTRODUCTION
Peer-to-Peer (P2P) overlays have been used to support

a number of different applications: from their origins sup-
porting file-sharing, they have expanded to encompass ever
more real-time and interactive applications such as stream-
ing multimedia, Voice-over-IP, and real-time gaming. Each
of these applications requires different degrees of Quality
of Service (QoS); for instance, a file-transfer application re-
quires a path with the highest available bandwidth, while an
interactive, real-time application will have latency and jitter
requirements. However, the current approach of many P2P
overlays is to establish direct connections between overlay
participants using the underlying IP routing mechanisms
This disregards the potential for using the overlay to ex-
ert control over the path that an application’s packets take
through the network.

One of the most promising approaches to overcoming the
limitations of Internet routing is an overlay network. These
have shown the benefits in terms of increased QoS of adding
even a single network hop in today’s Internet. RON [1] was
the first to be implemented in a wide-area network; how-
ever, it did not scale beyond approximately 50 routers due
to the costly O(n2) overhead associated with probing each
overlay participant. When considering only the QoS met-
ric of availability, [3] showed that a simple one-hop source
routing scheme could mitigate 56% of the network failures
in their study. However, none of these existing overlays have
considered the problem of scaling towards an Internet-sized
population such as represented by today’s P2P networks.
Our work hopes to combine the ability of a routing overlay
to improve performance within a peer-to-peer framework for
scalability.

We do this by leveraging existing work in QoS routing
in wired networks [2] as a starting point. We use a rein-

forcement learning-based approach to learn the best route
between two nodes in a completely distributed manner. This
approach, referred to as the Cognitive Packet Network (CPN)
has been shown to be able to autonomously learn the best
route in the network in terms of a multitude of QoS ob-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT 2006 Lisboa, Portugal
Copyright 2006 ACM 1-59593-456-1/06/0012 ...$5.00.

jectives; it has been used to find optimal paths in terms of
available power, loss and delay, delay and jitter, and path
length. CPN uses what it calls Smart Packets (SPs) to
probe the quality of network paths, communicate these new
routes to the source, and at the same time deposit data
at the intermediate routers which future SPs use to route
themselves.

CPN is particularly attractive because it compactly rep-
resents the routing table options as the weights in a neu-
ral network, which the reinforcement learning algorithm up-
dates according to the state updates it receives. Also, as we
describe below, it can utilize data traffic as probes to gather
up-to-date network snapshots; the overhead of the approach
is greatly reduced compared to an overlay like RON which
uses explicit probe packets, and an aggressive probing strat-
egy to monitor each overlay participant. The network over-
head of CPN is limited to an additional header attached
to data packets, and the Acknowledgement packets which
communicate network snapshots taken by SPs back to the
overlay routers.

2. IMPLEMENTING QOS ROUTING IN A
P2P OVERLAY

Previously, CPN has been implemented in wired and wire-
less networks; the shift to overlay networking presents unique
challenges that must be overcome. First, and foremost, is
the scaling issue, which we approach by exploiting the same
properties of P2P overlays that allows them to scale. Sec-
ondly, we must also deal with the question of what to do
when the overlay introduces more overhead than it can com-
pensate for with a better path. Finally, we deal with the
question of how to send user data using the overlay.

2.1 Scaling the QoS Support
In a physical network, neighbors are those peers who are

directly reachable via a given network interface, whereas in
an overlay context, everyone is connected to each other via
the underlying network1. However, this problem is neatly
solved by taking into account the fact that existing P2P net-
works (such as Gnutella) have been shown to scale to mil-
lions of nodes. In [5], Gnutella was shown to scale through
two key features: its gossip-based self-organizing overlay
construction protocol, and its hierarchical structure. Its gos-
sip protocol efficiently disseminates neighbor information,

1We assume that all peers are virtually connected to each
other via the underlying network. We omit nodes who are
not directly addressable (i.e. those behind Network Address
Translation firewalls).

allowing new overlay peers to quickly discover other overlay
participants, and their status. In addition, it divides over-
lay participants into two classes, peers and ultra-peers. This
exploits the fact that some overlay peers are stronger than
others, relying on the former to perform more work than
the latter. We exploit this classification system by relying
on ultra-peers to perform routing for peers, and excluding
peers from any routing duties, thus reducing the number of
available routing decisions at any one overlay peer.

2.2 Learning to use the Overlay
Another important factor is that, because the underlying

network provides a functional route, we cannot make the
assumption that the overlay must be used. Rather, we will
learn when it is appropriate to use the overlay to improve
performance, and when traffic will be better off using the
underlay. We accomplish this by adding an extra decision
at each router in the network (including the source). If this
choice is selected as a Smart Packet’s next hop, it can be
interpreted as the decision to go directly to the destination
(i.e. the overlay egress). Thus, the decision to bypass the
overlay entirely is made at the source using exactly the same

process as deciding a next hop. The quality of the underlay
is compactly represented at each router in the network, and
no special treatment for the decision to exit the overlay need
be given.

2.3 Handling User Data
Finally we note that, depending on the QoS type, SPs

may or may not carry user data. The consideration here
is that, while there is no danger of the SP being lost as is
the case in a wired environment, an application which is af-
fected by out-of-order deliveries (e.g. TCP) may wish to not
have its packets encapsulated in SPs, while other applica-
tions (e.g. UDP) may be less sensitive, and may even benefit
since their data packets will use optimal routes as they are
discovered. In addition, by using data packets to function as
probes, we reduce the total number of new packets created
by the overlay, reducing overhead. Our preliminary expe-
rience with the overlay implementation has confirmed that
UDP benefits from SP encapsulation, and we will explore
its impact on the TCP-based applications in the future.

2.4 Implementation
We have initially implemented this algorithm using the

Click modular router [4] in C++. It runs as a user-level
process, with multiple configuration files. One core file spec-
ifies all of the overlay-specific operations common to all ap-
plications (e.g. sending Smart and Dumb packets, storing
routes, and performing the reinforcement learning opera-
tions), which is then combined with smaller configurations
which contain any of the ingress and egress-specific opera-
tions like capturing an application’s packet, possibly chang-
ing the source and destination address, and injecting it into
the CPN overlay.

Currently, we require that both the ingress and egress
nodes run the overlay software, which is attractive because
it allows us to capture QoS data on the end-to-end underlay
path for our decision making.

3. EVALUATION
For reasons of space, we do not provide a full set of re-

sults from our implementation. Rather, we summarize two

experiments using our current overlay implementation that
we have conducted using 46 Linux PCs, configured using
topology data of an ISP backbone, complete with artificial
delays on each link.

The first experiment took place in a network where the un-
derlying routing protocol (OSPF) had already constructed
the set of optimal routes using delay as the cost2. Our key
conclusion was that we were able to verify that our overlay
could learn to use this route, as opposed to its own, which
would invariably increase the delay by using unnecessary
hops. We also found that the overlay introduces minimal
overhead.

Our second experiment’s goal was to measure the overlay’s
ability to route around a hotspot in the underlying network.
To create the hotspot, we increased the artificial delay on
one link. Because the underlying OSPF costs do not change,
normally routed traffic will suffer increased delays. We have
been able to show that the CPN overlay is able to quickly
detect the disturbance along the optimal route, and discover
a new route with better performance.

4. CONCLUSIONS AND FUTURE WORK
We have presented a method for enabling QoS-based rout-

ing in a P2P overlay. This consists of 3 extensions: using
ultra-peers as routers, compactly representing the choice to
exit the overlay, and allowing for the option to encapsulate
user data in Smart Packets. Based on the experiments that
we have conducted, we have shown that this routing algo-
rithm can autonomously learn to use the underlay when no
better route exists, and also route around decreases in QoS
using the overlay.

The next step for this work is to compare it to an existing
overlay such as RON, expand its scope to consider overlay
dynamics, and test its performance “in the wild”. We have
combined our existing routing overlay framework with an
existing open-source Gnutella peer-to-peer client, and will
begin deployment in the near future. By using the global
PlanetLab testbed for a prolonged evaluation, we plan to
demonstrate our approach as a scalable approach to QoS
routing in P2P networks.

5. REFERENCES
[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and

R. Morris. Resilient overlay networks. SIGOPS Oper.

Syst. Rev., 35(5):131–145, 2001.

[2] E. Gelenbe, R. Lent, and Z. Xu. Measurement and
performance of a cognitive packet network. Journal of

Computer Networks, 37(6):691–701, December 2001.

[3] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble,
H. M. Levy, and D. Wetherall. Improving the reliability
of internet paths with one-hop source routing. In
Proceedings of the 6th Symposium on Operating

Systems Design and Implementation, 2004.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Trans.

Comput. Syst., 18(3):263–297, 2000.

[5] D. Stutzbach, R. Rejaie, and S. Sen. Characterizing
unstructured overlay topologies in modern P2P
file-sharing systems. In Internet Measurement

Conference, 2005.

2This will converge to the optimal set of routes because the
OSPF cost is directly proportional to the artificial delay.

