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ABSTRACT
We propose Otiy, a node-centric location service that lim-
its the impact of location updates generate by mobile nodes
in IEEE 802.11-based wireless mesh networks. Existing lo-
cation services use node identifiers to determine the loca-
tor (aka anchor) that is responsible for keeping track of a
node’s location. Such a strategy can be inefficient because:
(i) identifiers give no clue on the node’s mobility and (ii)
locators can be far from the destination thus increasing lo-
cation updates path length and bandwidth consumption. To
solve these issues, Otiy introduces a new strategy that identi-
fies nodes to play the role of locators based on the likelihood
of a destination to be close to these nodes – i.e., locators are
identified depending on the mobility pattern of nodes. Otiy
relies on the cyclic mobility patterns of nodes and creates a
slotted agenda composed of a set of predicted locations, de-
fined according to the past and present patterns of mobility.
Correspondent nodes fetch this agenda and use it as a refer-
ence for identifying which locator is currenty in charge for
the node. Over a period of about one year, the weekly pro-
portion of nodes having at least 50% of exact location pre-
dictions is in average about 75%. This proportion increases
by 10% when nodes also consider their closeness to the lo-
cator from only what they know about the network. In this
paper we focus on the analysis of the concepts behind Otiy
leaving more quantitative and comparative results for future
work.

1. INTRODUCTION
Promoting node mobility in self-organizing wireless
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networks implies setting up an efficient location man-
agement scheme. Indeed, the degree of node mobility
impacts the amount of location updates disseminated
throughout the network; this problem becomes even
more critical in dense areas, where the profusion of sig-
naling messages induces serious contentions and penal-
izes the overall performance of applications.

There are different techniques to implement location
services. In flooding-based approaches, when a source
wants to communicate with a destination, it floods the
entire network with a lookup message. Although sim-
ple, such an approach is very resource consuming and
thus inappropriate for wireless networks. In order to
solve this problem, some solutions propose to use lo-
cation anchors – when a source wants to communicate
with a destination, it must first ask the anchor about
the current location of the node. Anchor-based archi-
tectures can be implemented in a centralized or dis-
tributed manner [3, 8, 15]. Nevertheless, these solutions
share a common pitfall: they have no control on the lo-
cation of the anchor. The consequences are twofold: (i)
lookup phase may experience large delays and (ii) up-
dates messages may travel long distances, reducing the
overall capacity of the network.

To address the abovementioned problems, we propose
Otiy1, a two-tiered location service that relies on the
fact that most nodes present cyclic mobility patterns.
Indeed, many works have shown that, in many situa-
tions, nodes do show mobility characteristics that can
be quite well predicted based on the node’s mobility
history [1, 6, 9, 16, 17].

Otiy benefits from mobility prediction by decoupling
the location service into two tiers as follows:

1. Global service. This service determines the an-
chor of a node, in a similar way to traditional so-
lutions. The difference here is that anchors in Otiy
do not store the current location of nodes; instead,
it returns an agenda containing for each period of
the day the location server (or locator, cf., next
bullet) which is most probably the closest to the

1Oti’y is a Creole word meaning “where can I find him?”



mobile node. This agenda is available for a reason-
able amount of time and thus can be stored by the
communicating nodes to prevent frequent access
to the global service.

2. Local service. Locators are points in the in-
frastructure that effectively know at a given time
where mobile nodes are. They respond to lookup
requests and inform about the current position of
mobile nodes. To determine which of its locators is
currently in charge of storing its location, a mobile
node refers to its agenda. As a locator is chosen
by a mobile node because of its high probability
of being close to it, location updates remain local-
ized.

The idea behind this system is to use the global ser-
vice from time to time and the local service most of
the time – and thus reduce the overhead found in flat
solutions. More specifically, an agenda contains a list
of pairs (Time slot, Locator), where for the time pe-
riod Time slot the location information of the mobile
node will be managed by Locator. This agenda re-
mains valid for a certain period, after which it must be
renewed at the corresponding anchor. A source will-
ing to communicate with a destination first fetches the
agenda of the destination at its corresponding anchor.
It uses it to contact the current locator and obtain the
exact location of the destination. The generation of a
pertinent agenda to identify the best locator (closest to
the mobile node) for each time slot is thus at the heart
of Otiy.

Although the basic concepts of Otiy can be general-
ized to different types of self-organizing wireless net-
works, in this paper we focus on the context of wireless
mesh networks (WMN) composed of IEEE 802.11 ac-
cess points (mesh routers). In this case, mobility is
defined as a sequence of access points a node associates
to along time. We will see later in this paper that defin-
ing exact mobility patterns in a wireless mesh network
is a complex task. For instance, misinterpretations of
mobility may happen mainly due to ping-pong effects,
which are oscillations of associations/disassociations to
nearby mesh routers due to changes in medium condi-
tions. In order to address this problem, we introduce a
self-organizing scheme that groups nearby mesh routers
into clusters from each node standpoint. This clustering
scheme masks ping-pong effects, defines the differents
areas of micro-mobility, and allows reducing the space
of possible locations.

We evaluate Otiy under a large population of nodes
using real traces of mobility in a campus scenario. We
find that nodes, although heterogeneous in nature, do
show cyclic behaviors according to their own rules. The
analysis covers periods ranging from one month to more
than one year and presents results in function of the

number of active nodes and the different periods ani-
mating the campus (e.g., holidays, school periods, week-
ends). From the observations, the weekly proportion of
nodes having at least 50% of exact location predictions
is in average about 75%. This proportion increase by
10% if nodes also consider known properties on the de-
ployment area (e.g., buildings, offices, paths).

In Section 2, we present the rationale for a node-
centric approach and introduce Otiy’s architecture. In
Section 3.2, we present our algorithm to readapt the as-
sociation logs and to elect the appropriate locators. In
Section 3.3, we analyze the periodicity and the persis-
tence of the nodes’ behaviors upon which Otiy is based.
In Section 4, we evaluate the agenda’s accuracy accord-
ing to the wireless data traces from the Dartmouth cam-
pus. We delay our discussion of related work until Sec-
tion 5 in order to have enough contexts to make the
necessary connections. We finally present some conclu-
sion in Section 6.

2. OTIY’S DESIGN
Otiy introduces a different approach for distributed

location services in wireless mesh networks. In this sec-
tion we first present the motivations that lead to our
proposal and then Otiy’s architecture and operation.

2.1 Rationale
We consider wireless mesh networks with following

characteristics: (i) resources are scarce (wireless me-
dium), (ii) the backbone is static, (iii) nodes are mo-
bile, and (iv) the backbone can be highly dense (e.g.,
for over-provisioning) in localized hotspot areas. In such
a context, which is expected to happen in many situ-
ations, the networking architecture becomes fully de-
pendent on an efficient location service. An “efficient”
location service should have at least the following char-
acteristics:

1. Location updates do not create contentions with
other communications throughout the network.

2. Location signaling messages have low latency.

3. Location information is accurate.

This paper provides a response to these three require-
ments. We base our reasoning on the possibility of hav-
ing persistent location information (i.e., with long valid-
ity duration) – location updates to the anchor (called
location dissemination in the rest of the paper) become
then more spaced in time, which reduces the amount of
propagated signaling messages. This is the response to
requirement #1 above.

To provide persistent location information, we take
as a premise that different nodes have different levels
of mobility. Many studies in literature have shown that



there is a large part of predictability in how nodes move
at an AP [9, 13, 5] granularity. Location services that
are based on these studies use prediction to precisely
identify the APs to which nodes will be associated with.
Nevertheless, the presence of the ping-pong effect and
the development of cognitive radio can have major im-
pact on the efficiency of these approaches.

In Otiy, we take a different approach. Instead of try-
ing to obtain the exact location of a node, we use the
node’s past and present mobility pattern to distribute
locators throughout the network. With high probabil-
ity (as shown in Section 3.3), locator nodes are placed
close to the current location of the node and so, close
to the shortest path between sources and destinations.
This responds to both requirements #2 and #3.

2.2 The reasons for node-centric mobility
We have identified four aspects related to the mobility

of nodes:

• Periods of activity. Depending on the device
type and the necessity of being connected, nodes
can show completely different periods of activity,
ranging from diurnal activity to sporadic connec-
tions only on week-ends.

• Mobility coverage. We refer to “mobility cover-
age” as the number of different APs visited during
a single session. We observe that some nodes are
aware of the roaming capabilities offered by their
underlying network and take advantage of them,
while others remain static or have only a nomadic
behavior.

• Home location characterization. It is not al-
ways possible to identify for each node a home lo-
cation (an area where a node spends more than
50% of its association time [7]). This parameter
gives an indication on the regularity of the associ-
ations of the nodes to a specific location.

• Number of visited areas. This parameter is an
extended view of the mobility coverage; the num-
ber of visited areas accounts for all visits of a node
for the entire observed period (multiple sessions).
Mobile or not, the disparities between nodes on
this point are deep. The interest of visiting differ-
ent APs in the network has clear relationship with
the social interest of visiting different areas in the
environment.

Interests, constraints, and motivations behind the pat-
terns of mobility are manifold and have different impact
on the complexity of network management. Further-
more, each node has its own mobility pattern, which
itself varies in time. For these reasons, we advocate
that, for a location service to be efficient, it must man-
age mobility at a node scale.
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Figure 1: Example of a simplified agenda of as-
sociations.

Otiy goes a bit further and proposes that nodes self-
profile their behaviors. Such a node-centric approach
consists in having nodes themselves log their sequence
of associations together with timestamps and SSIDs.
We show in the following subsection how Otiy makes
use of such information.

2.3 Agenda of locators
The key element of our proposal is the agenda of lo-

cators. The image of the agenda is important and con-
tributes to highlight the relationship we want to give
between a precise location and the considered time.

We delay our discussion of cyclicity of mobility until
Section 3.3 in order to avoid interrupting our reasoning.

2.3.1 Description

We define the agenda for node n as table An. It is
composed of N columns defining the days of cycle and
M rows that give the granularity of the estimation we
give to the node’s mobility. Without loss of generality,
in this paper we consider a cycle of one week and a
granularity of one hour (i.e., N = 7 and M = 24). The
values of N and M will be motivated in Section 3.3).
We also assign a validity period for the agenda, which
is a multiple of N representing the number of full cycles
the agenda will remain unchanged (no updates will be
provided).

To each time slot aij (with 0 ≤ i < N and 0 ≤ j <
M) of an equal duration D = � 24

M � hour(s), is assigned
one locator node. The choice of this locator depends on
the mobility of the node observed during the same time
slot in the past and is typically a mesh router network
address.



We store the history of mobility pattern of node n in
a set of tables Hk

n (of same dimensions as An), where
k ≥ 0 indicates the “age” of the table. We define H0

n as
the table containing the current mobility of the node,
H1

n the mobility of the precedent week and so on until
k = kmax (kmax typically varies between 2 and 4). In
each time slot hk

i,j , the node records the location of the
area at which the node spent most of its time during slot
j for the day i, k weeks before, according to the mobility
log file. In this way, we define a notion of prevalence of
a particular area for a given time slot. Furthermore, for
each h0

i,j the node records the duration of association
d(h0

i,j) (where 0 < d(h0
i,j) ≤ D) of the selected location.

At the end of each validity period, the node gener-
ates a new agenda based on its mobility history (as on
Fig. 1). The resulting locator ai,j will depends on the
oldness he have in the network, the necessary mobil-
ity history needed to provide an accurate location kmax

(studied in Section 4), and the duration of association
d(h0

i,j).
We can now define the locator ai,j as:

ai,j =
{

h0
i,j if d(h0

i,j) = D

maxoccur(h0
i,j , ..., h

kmax

i,j ) otherwise,
(1)

In the case where d(h0
i,j) = D, we assume that the

duration of association at this particular area has been
greater than D. If in the node’s history it has always
been the same area, then giving a higher weight to the
latest observation does not improves the quality of the
estimation. If it is a different area, we conclude that it
indicates a deep change in the behavior of the node and
then we select this locator for the agenda.

If d(h0
i,j) < D, we choose the locator which has the

maximum number of occurrences in the mobility history
for the same time slot (if equal, we choose the most
recent locator). In this case, we can not judge on the
persistence that h0

i,j will have in the future; in this way,
we give more weight to the node’s habits for this time
slot.

Scheme 1. To avoid holes in the agenda, we extend
the locator of the preceding non empty slots to cover the
empty time slots.

2.3.2 Bootstrap

For the first association in the network, the node n
generates an agenda An where all ai,j are set to the lo-
cation of the first visited mesh router. This agenda has
a validity period until the end of the cycle (in our case
the end of the week). At the end of this period, the new
generated agenda will have logically the values given by
H0

n. After a longer period, the choice of the locators
become more accurate because the node disposes of a
larger history.

Node x
WMR a

WMR b
(Locator)

WMR c

WMR d

Location
lookup

Location
correction

Data Node y

Node z
Resp. [GET][PUT]

[SHARE]

Agenda

Anchor

Figure 2: Mechanisms for location dissemination
and updates.

Scheme 2. The bootstrap procedure is executed for
the first association in the network and also after long
periods of inactivity. In this latter case, we observe that
the behaviors of the nodes often become completely dif-
ferent (e.g., change of home location and different mo-
bility pattern). The minimal duration of inactivity be-
fore a restart of the bootstrap is discussed in Section 4.

2.4 Location updates
We make a logical distinction between updating the

generated agenda (called “location dissemination”) and
updating the current location to the corresponding lo-
cator in a given time slot (called “location correction”).
The term “correction” is related to the idea that we
hope that the locator will be the point where the node
will be directly associated with.

2.4.1 Agenda dissemination

As shown in Fig. 2, after having generated the agenda
of locators, the node has two ways to disseminate it
(dashed lines). The first is with the basic primitive
of sending (“PUT”) a copy of the agenda to the re-
sponsible anchor. The agenda will thus be available for
every new contact. The second is through a new prim-
itive “SHARE”. The node, in a P2P way, can share its
agenda or the agenda of a known contact with others
peers2. We added it for two main objectives: (i) to sup-
port viral dissemination of this agenda in order to push
decentralization to its limits, and (ii) to give a commu-
nity dimension to this agenda. Nodes in the same social
and/or physical community will be able to exchange be-
tween them the agenda of a particular server/device or
of a common friend. This ability to disseminate the
agenda is related to the interest of not using the global
location server to obtain a node’s agenda. This requires

2Although this is an important optimization aspect of Otiy,
we do not address it in details here.



further study of the different possibilities and will be
subject of future work.

2.4.2 Location correction

Location corrections (semi-dashed line in Fig. 2) oc-
cur at each association and at the begining of each time
slot while the node is not associated directly with its
assigned locator. We can differentiate, however, the
cases where the node is not in the area of the locator
and when it is. We can make this distinction between
the two situations because, for the latter one, one could
setup a local mobility management system in order to
limit the number of location corrections.

Location corrections are made pro-actively and are
used by the locator to return the current location of
the node when required by correspondent nodes.

2.5 Robustness and Privacy issues
Robustness and privacy are important issues related

to this work. We do not present details here, but give
some clues on how to address them. Concerning pri-
vacy, as the node creates its agenda, it can grant access
on a part or on the totality of the information. Fur-
thermore, there is a possibility to use private/public
keys to authenticate the information. For the robust-
ness problem, we propose two techniques (that can be
used simultaneously). The first one is to use the an-
chor node as a backup locator. When a mobile node is
unable to register to the expected locator, it immedi-
ately redirects the update to its corresponding anchor.
The second technique is to define backup locators close
to the original locator – if the main locator is down, a
recovery mechanism (performed locally) is able to han-
dle the operation (update or lookup). This technique is
similar to the ones used in peer-to-peer substrates like
Pastry [12].

3. PERSISTENCE OF NODES’ BEHAVIOR
In Otiy each node creates its own agenda, based on

simple information collected from its preceding associ-
ations and movements. In order to validate the con-
cept of agenda, we first need in this section to validate
the assumption that nodes’ behaviors are persistent and
mostly periodic by nature. We use the node movements
collected on the wireless access network of Dartmouth
campus to study the perception nodes can get of their
own mobility.

3.1 Retrieving behaviors from data logs

3.1.1 Experimental Data Set

The data set we use represents three years (2001-04-
11 to 2004-06-30) of collected information about all the
wireless cards connected to the wireless access network
of Dartmouth campus. The campus is composed of 188

buildings covered by 566 official APs on 200 acres and
about 5,500 students.

To better understand nodes’ mobility characteristics,
we focus our analysis on the movement files accompa-
nying these data traces [10]. These files detail the asso-
ciations and disconnections periods of each anonymized
wireless adapter to any of the APs. A disconnection is
recorded either as the result of disassociation requests
or after 20 minutes of inactivity.

Our analysis is based on a four-week period, from the
5th of January 2004 until the end of the 1st of February
of the same year. This period length has been chosen
to study the persistence of mobility behaviors on daily
and weekly bases.

3.1.2 Identification of movements and positions

The comprehension of node mobility is a tough prob-
lem when it relies on raw measurement data. The wire-
less nature of the network with all the variations and
their consequences, as well as the density of the APs in
the environment, is reflected as variations in the ob-
served topology. We can cite at least four types of
events that cause these variations:

1. Ping-pong effect. It refers to the succession of
associations-disassociations between two ore more
APs. It is caused by the closeness of the signal to
noise ratio (SNR) of neighboring APs and/or the
aggressiveness of the wireless card.

2. Localized network problems. If, for some technical
reasons, one AP becomes disabled for a certain
amount of time, the node probably associates with
another neighboring AP.

3. Physical micro-variations. The physical mobility
of nodes is frequently very localized (about a few
meters). In topological dense areas, these micro-
variations result in highly variable association pat-
terns.

4. Erroneous reproducibility. There is a probability
that the same physical movement results in differ-
ent association patterns.

Concerning this latter point, the repetition of move-
ments can create junctures between those different pat-
terns and create sectors of micro-mobility which can be
detected with a topological standpoint. The need of an
algorithm to recognize these junctures is then required
to better understand the real objectives of the observed
movements. To do so, we introduce a clustering algo-
rithm that uses sequence of associations contained in
the data logs to help each node identifying nearby APs
from their mobility point of view. Otiy relies on these
clusters to provide more accurate predictions of associ-
ations.



3.2 Individual-based clustering
The goal of the clustering algorithm we propose in the

following is to identify “places” of association that hide
areas of micro-mobility. The methodology is decoupled
in two parts: the collection of network associations and
the clustering procedure.

3.2.1 Collection of network associations

The collection of network events is assured by two
data structures. For each node, the relationship with
the M APs in the network are represented through
the roaming matrix R = M × M , where each element
rij ∈ R informs about the number of cumulated roam-
ing events from AP i to AP j. It is important to note
that the cumulated roaming events imply that the re-
lationship between two subsets of APs can appear after
independent sessions.

The second data structure is also created in a per-
node basis. It is an M -row table that stores general
information about each AP, such as the total number
of associations, the cumulated association duration, and
the average association duration.

3.2.2 The clustering algorithm

We now define the terms which will be used in the
algorithm:

• Link. There is a “link” lij between two APs i and j
if there are bi-directional roaming events between
these two APs (rij �= 0 and rji �= 0).

• Cost of a link. The cost of a link or “distance”
between two APs i and j is equal to rij + rji. We
thus define the cost of a link lij as cij = cji =
rij + rji.

• Cluster: A “cluster” is a group (possibly unitary)
of APs. Each AP belongs to only one cluster. Two
APs are eligible to be merged in the same cluster
if there exists a link between them.

• Weight of a cluster. The weight wi of a cluster ci

is the value of the maximum link cost within the
cluster.

We start with a graph whose vertices represent the
APs of the network. An edge exists between two ver-
tices if there is a link (as defined above) between the
corresponding APs. In order to limit the variations of
intra-cluster link costs, we define a threshold k (with
0 ≤ k ≤ 1). The k value is node-oriented and must
be set according to the node’s mobility, the gathering
steps, and the learning process. Parameter k affects
the performance of the system in two ways: (a) when
k → 0, the algorithm gathers WMRs that are likely
to belong to an area of interest for the node; (b) for
higher values of k, the algorithm gathers, most of the
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Figure 3: Clustering mechanism according to
the number of roaming events between access
points (with k = 0.5).

time, only WMRs involved in ping-pong effects (which
creates multiple nearby places of interest). In the sce-
narios analyzed in the paper, we empirically found that
k = 0.5 is a reasonnable value. We are aware however
that this is an important optimization problem that we
will address in future work.

At the beginning, each AP i becomes a cluster ci

of size 1 and weight wi = 0. We consider first the
link with the highest value in the graph. If two APs i
(cluster ci) and j (cluster cj) can merge together (i.e.,
cij ≥ k×max{wi, wj}), then the weight of the resulting
cluster is equal to the highest value of the links within
the cluster, i.e., wci∪cj = max{wi, wj}.

We repeat the clustering process until there are no
more links to be considered. An example of a resulting
clustered graph representation is illustrated in Fig. 3.
One can notice that the costs lDF and lDG are not suf-
ficient to merge both clusters. The same happens with
lAC , lCE , and lEG. Such an approach serves to differen-
tiate paths from locations where an node stays longer.

We can now define that within a cluster, an eligible
locator will be the mesh router with the greater cumu-
lated association duration to interpret the likelihood to
be associated on a particular AP.

3.2.3 Resulting properties

We study the variations of two important properties
of the resulting embedded graphs generated through our
clustering algorithm among the patterns of mobility of
the nodes (see Fig. 4). We ran the clustering algorithm
on 4 weeks by using k = 0.5 on 4,766 active nodes.

The gathering level. We define as “gathering level”
the ratio of the number of generated clusters on the
total number of visited APs. For 68% of the nodes, the
ratio is greater than 0.5 and strictly inferior to 1, while
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for 23% the ratio is equal to 1. The clustering algorithm
thus performs well as it gathers mostly APs involved in
ping-pong effects and high micro-mobility highlighting
the different places of association.

The completeness level. We define as “complete-
ness level” the ratio of the number of edges between
the clusters on the number of edges required to obtain
a complete graph. A graph of n vertices is complete
when there is an edge between every pairs of distinct
vertices. This represents n(n−1)

2 edges. With this ra-
tio, we have an idea of the closeness of the different
clusters according to the mobility of the nodes. 22% of
the nodes have a ratio equal to 0. They do not have
inter-clusters mobility and/or have only one generated
cluster. In contrast only 10% have a ratio equal to 1
which represents a limited coverage area of mobility.
Finally 58% of the nodes have a ratio comprised be-
tween ]0, 32]. They have inter-cluster mobility but not
completely connected graphs.

More details about this clustering approach can be
found in [2].

3.3 Persistence of cyclic behaviors
Otiy relies on notions of persistence of cyclic behav-

iors and preferential time of attachment to specific ar-
eas. In this section, we analyze patterns of association
with the above-created clusters. To do so, we rewrite
each movement file by replacing APs’ identifiers by their
corresponding clusters’ identifiers and by aggregating
the timestamps of consecutive associations in the same
cluster.

3.3.1 Cyclic time-related (re)association behavior

Individuals which have habits in an environment, show
cyclic patterns of mobility at the topological level. We
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Figure 5: Percentage of nodes which have been
associated to the same prevalent location of the
week before, during the same time slot.

asset this aspect through the analysis of the re-asso-
ciations at prevalent locations in an hourly basis by
making distinction between the days of the week.

For this analysis, we enlarge the observed period to
eight weeks to be sure to avoid situations where the
nodes show optimum cyclic behaviors. We define a lo-
cation (cluster) as prevalent for a specific time slot if
the cumulated duration of association in this location
is greater than in the others locations visited during the
same time slot. For a specific time slot we take into ac-
count only the nodes which have been associated the
preceding week of activity in the same time slot. Fi-
nally, each day are defined through 24 time slots of one
hour each.

In Fig. 5, we analyze the persistence of the prevalence
of a predicted location for each time slot by making
the distinction between the days. This persistence is
analyzed, each time, through two consecutive weeks of
activity. We plot the percentage of nodes for which the
analysis of the time slots have been possible.

From this figure we can make three main observa-
tions: (i) from week to week, the percentage of cor-
rect predictions stays approximately stable and high
between 75 and 95%. (ii) The differences between the
days are not strong. (iii) The percentage of nodes which
have correct predictions is minimal in diurnal periods
(in average 75%) and maximal the nights (in average
90%). This is because we have more observed nodes
during diurnal periods than in night periods.

However, this figure does not give information on
the correctness prediction of the intra-day sequence of
prevalent locations as we consider each time slot inde-
pendently. We thus consider that through the scheme
1 (the expanding of location prevalence in the following
empty slot) and changes in pattern of mobility, that the
accuracy of the predictions will slightly decrease.
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Figure 6: Different types of periods of activity.
It shows the results for two nodes on Monday of
each week of our observed period.

3.3.2 Persistent periods of activity

As mentioned in Section 2.2, the period of activity is a
node-related parameter. In this subsection, we analyze
the differences among the nodes and the persistence of
this parameter.

In this subsection, we provide results about nodes
which present a certain consistency in their activity in
the network. For instance, results about mobility pat-
terns every Monday are based on the nodes who were
active the four Mondays of the observed period. In the
same way, weekly results are based on nodes who were
active each day of at least one week. The constraint
about the consistency in the activity is mostly moti-
vated by the necessity to compare patterns of mobility
on a same plan, and to be able to analyze persistence
in behaviors.

Fig. 6 presents the periods of activity of two different
nodes for the same day (Monday) of the four weeks. In
this figure, we analyze the behavior of the nodes within
one particular day. While for the left-hand chart we
can observe regularity in the period of non activity (be-
tween 9h and 17h), the periods of activity of the node
at the right are completely different. The main impor-
tant aspect is in the regularity and so, the persistence
of the period of activity of the node at the left. For
the node at the right, the cumulated periods of activity
represents approximately an activity all the day. This
is an entirely different behavior which lets suppose that
the node can have access to the network at any time.

If these two patterns of activity can be classified in
two different categories, it should exist two more dif-
ferent categories in this classification: (i) nodes active
along the day and (ii) nodes active only during work
hours. Under this classification, it is different ways for
different needs which can dictate the behavior of the
nodes in the access of the network. This supposes per-
sistence at short and average terms of the behaviors.
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However, we can not conclude on this intra-day behav-
ior without comparing with the periods of activity the
others days of the week.

Fig. 7 represents, for each day, the CDF of the ma-
ximum consecutive duration of non activity in the net-
work. For each day, the periods of activity of the four
weeks are cumulated to give the periods of non activity.
Then the durations of non activity observed correspond
to periods where the nodes have never been active in
the network. The first observation is that around 40%
of nodes are active all the day for every week days and
48% to 70% the week-end. The second observation is
that for 60% of nodes the maximum consecutive period
of non activity is nearly the same for each day of the
week days except for the Fridays. 40% of these nodes
is, for 12 hours and less, absent from the network.

It is important to note that the durations of non ac-
tivity are clearly different between the week days and
the week-end. The nodes which are subject to con-
straints (social or not) the week days are more free to
access the network differently the week-end.

To summarize, the nodes can have cyclic periods of
activity which can be for a majority of them persistent.
These behaviors are not directly correlated from one
day to another. We thus make the choice to take each
day independently.

4. EVALUATION
As explained previously, a locator is assigned to each

time slot. To generate an agenda, each mobile node
first determines for each time slot what is the prevalent
cluster. At the end of the validity period of its agenda,
it schedules the new locators’ positions. For each time
slot, the locator is positioned in the prevalent cluster.
To evaluate the accuracy of our predicted agenda, we
need to check for each time slot whether or not the



mobile node was close to its locator. Therefore we verify
if the mobile node has visited its locator’s cluster during
the given time period.

4.1 Methodology
For this evaluation we enlarge the period of analysis.

It starts now from the 6th of January 2003 (timestamp
1041829200) to finish the end of the 29th of February
2004 (timestamp 1078117200). We choose this period
length to see how the learning step can improve the
accuracy of our predictions after each school holidays
and with the arrival of new nodes.

To evaluate the pertinence of our agenda, we check
whether the mobile node has visited its locator’s cluster
during a time slot. If we find a match, we consider the
mobile node has effectively been close to its locator. We
perform this comparison for each time slot, each time a
mobile node was connected to the network at least once
during a time slot. We do not consider time slots where
a node is inactive. Similarly, we do not include in our
study the reliability of the first bootstrapped agenda,
as it does not reflect an observed mobility pattern. The
creation of the first agenda is detailed in Section 2.3.2.

For each time slot, we can thus define a good or a bad
prediction. We evaluate the accuracy of the agenda as
the ratio of bad predictions (NbBadPredictions) over
the total number of considered time slot (TotalNbSlots).
We define the error of prediction in the agenda as Aer

by:

Aer =
NbBadPredictions ∗ 100

TotalNbSlots
.

W.l.g, we choose to update, each week and for each
node the clusters by taking into account the recent pat-
terns of mobility but also all the preceding history of
patterns of mobility. The update of the clusters is made
after the agenda evaluation and we make sure that the
preceding locator predictions are still correct even if the
eligible locators for the clusters have changed.

Every AP is a potential locator of a given node, for
a given time period. But, once determined, this locator
is unique (exception would be backup locators if some
robustness mechanism is used). If there is not enough
mobility information to gather two nearby locators in
a single cluster, then the MN might hop between the
two clusters. Nonetheless, since these two locators are
nearby, updates are generated in a local scope, still lead-
ing to significant improvements.

4.2 Evaluation of the Aer

For each week in Fig. 8, we plot the histogram of
the proportion of nodes which have an Aer value of 0%
(perfect prediction), less or equal to 25%, 50%, 75%
and 100%. We used a minimum of one week and up to
two weeks of mobility history to predict the value of the
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Figure 8: Histogram of the proportion of nodes
according to their Aer for each week.

agenda.
The first observation is the large proportion of nodes

having an accurate agenda for the all week, Aer = 0%.
Peaks of this phenomenon can be observed at summer
breaks or during Christmas holiday. This certainly re-
sults from a static behavior of nodes. This proportion
increases as the number of active node decreases.

We also observed that only around 40% of the average
proportion of nodes have at least 25% of incorrect pre-
dictions in their agenda. Depending on the observed
week, this proportion of nodes varies between 20 and
50%. An average of 15% of the proportion of nodes have
more than 75% of wrong predictions in their agenda and
approximately 10% have between 50% and 75% of bad
accuracy.

It is important to note that if a node is not active dur-
ing a time slot, a default locator is set in the agenda,
thus repeating the value of the previous locator as ex-
plained in Section 2.3.1. A bad prediction can be easily
explained by a lack of information about a node’s mo-
bility pattern. This phenomenon can be observed in
Fig. 8, when the proportion of active nodes increases
and remains stable (marked as a line on the plot). We
can note that the persistence of the patterns of mobil-
ity then improves the accuracy of the generated agenda.
This accuracy decreases logically at the beginning and
at the end of the different holidays periods as mobility
constraints are relaxed during holidays and new nodes
join the network.

In fact, the reasons of most of the wrong matches are
simple: (i) often, nodes active only two weeks in the
observed period do not develop any cyclic pattern of
mobility and thus have an high Aer value. (ii) More
rarely, places which certainly constitute part of a path
between two significant areas are assigned to time slots
(through scheme 1). Finally, (iii) overlapping between
prevalent places for one node occurs most of the time
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Figure 9: Impact of history length used to gener-
ate the agenda on the number of correct matches
(Aer ≤ 50%).

between 9am and 3pm.
These first results appear extremely promising for

Otiy, our location scheme, as it provides in mosts cases
an agenda that can allow the optimization of the local-
ization process.

4.3 Impact of the history length
In Fig. 9, we analyze the contribution of the length

of mobility history used to create the agenda on the
percentage of correct matches. Here, we plotted only
the case where there are up to 50% bad matches in the
agenda prediction.

We get the higher proportion of nodes having at least
50% of the time a good estimation of their agenda pre-
diction for a mobility history of one week. This means
that recent mobility patterns are sufficient to estimate
an accurate agenda. Nevertheless, the duration of ac-
tivity during the current and preceding weeks also has
a clear impact on the Aer .

A convergence between different length of history can
be observed after as a result of more stable behavior of
nodes. But using long mobility history, one can note
that the agendas appears more sensitive to changes of
mobility patterns. On the figure (week 11, weeks 20 to
23, and weeks 32 to 35), we clearly see that the accuracy
of the agendas drop roughly at the beginning and the
end of the school holidays period.

In order to get an agenda reactive to the changes of
mobility pattern but also be able to gather enough data
about nodes’ behavior to get the right locator estimate,
we choose in the rest of our tests to use at a two weeks
mobility history.

4.4 Comparison between the different days
It is interesting to check whether the mobility behav-

iors affect differently the percentage of incorrect pre-
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Figure 10: Proportion of the nodes which have
an Aer ≤ 50% for each day.

dictions depending particular week days. In Fig. 10
we compare the proportion of nodes which have an
Aer ≤ 50% for each day of the week.

The first observation, is that the proportion of nodes
with the same accuracy in their agenda remains approx-
imately the same whatever day is considered (between
70 and 90%). However, the variations of proportion are
more pronounced for week-ends and Mondays. These
days are more sensitive to changes in nodes’ behavior
at the beginning and at the end of the holidays. The
rest of the time the pertinence of the agenda seems more
important for these three days.

We envision taking advantage of this phenomenon to
better detect changes in behaviors and to more accu-
rately restart the bootstrapping procedures.

4.5 Evaluation of the physical distance
As mentioned before, the topology of the network is

not provided with the data traces. As a consequence
we cannot determine the topological path length(s) be-
tween the visited areas during a time slots and the lo-
cator’s position.

In order to have an idea of how close the nodes have
been from the locator’ cluster, we use the graph from
which is built the clusters. In Fig. 11, we evaluate Aer

considering a prediction as correct, if during a time slot,
a node has visited the locator’ cluster until a cluster one
hop away.

Comparing the results with Fig. 8, we observe that
the number of nodes with an Aer value of up to 50% of
their agenda increases roughly by 10% for each week.
The number of nodes which have made more than 75%
of incorrect predictions is reduced to, in average, 5%
per week.

These results show, that for the majority of the nodes
and most of the time we successfully provide a locator
close to the current physical location of the nodes. We
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if the node has visited at least one cluster con-
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therefore can provide an agenda that satisfactory re-
flects nodes mobility.

5. RELATED WORK
The problematic of reducing the amount of generated

location updates in a wireless network has been well
studied in Personal Communication Services (PCS) and
is very close to our work. Even if the proposals are not
really adapted to IEEE 802.11 wireless mesh networks,
we will relate the different concepts of most relevant
works.

Tabbane is one of the firsts to have introduced the
node (mobility) profiling to improve location manage-
ment in PCS. In [14] the profiling is operated by the
network and shared with the node’s subscriber iden-
tity module SIM. Thanks to this profiling, whatever
the period of time [ti, tj) the system can find a list of
areas where the nodes could be. This list of areas is de-
creasingly ordered by the probabilities of being in the
different areas. One probability is dependent of a func-
tion associated with and has several parameters such
as the time, the pattern of mobility, the last location,
the weather etc. Until the node is in one of these ar-
eas it does not update its location. When the system
needs to locate him, it asks sequentially the different
areas within the list. Two notions are shared with our
approach: (i) the node profiling although in Otiy it is
the nodes which make theimself their profiling. (ii) The
relation with the time. However, in Otiy the periods
of time are predefined and only one area (locator) is
assigned to each time period.

Chuon et al. in [4] by calculating the prevalence of the
daily different visited cells create a node profile graph

(IPG) per node and through their monitoring by the
network. This graph is composed by vertices (cells)
where the normalized probability of visit on N-days is
greater than a specified value (comprised between 0 and
1) and the connectors between these cells (also called
anchors). Furthermore, the vertices in the IPG are clas-
sified by decreasing order of probability of visit. Until
the node stays in the set of vertices in his IPG it does
not have to updates its location. To locate it in its IPG,
the network pages it in the decreasing order of proba-
bility of the anchors as in [11]. We differ from this
approach in several ways. We do not cumulate daily
patterns of mobility to see a prevalent mobility graph.
Rather, we distinguish each daily pattern of mobility of
the week to capture the different constraints and inter-
ests that are dependent of the days.

In [16], Wu et al. mine the mobility behavior individ-
ually (operated by the nodes) from long term mobility
history. From this information they evaluate the time-
varying probability of the different individually defined
regions. Finally, they obtain a vector < time, regions >
of mobility which will define the region to be paged in
function of the time. We share with the same objective:
to locate a node in function of the time. However, we
take a different approach starting from the time space.
We obtain a predifined maximum agenda size, when,
them, have to multiplicate the time periods whenever a
location have a higher probability to be visited accord-
ing to the mobility history.

Finally in IEEE 802.11 wireless networks, Ghosh et
al. profiled the nodes associations sequences by mak-
ing the difference between the days in [6]. The result
is several patterns of mobility such as Weekend Profile,
Home Profile, etc. Here, the areas are called “socio-
logical hub” and are defined at a building granularity.
With this set of profiles they are capable to determine
which mobility profile the node currently follows (from
the firsts associations) and/or define a window of day
with attributed mobility profiles. This approach is dif-
ferent of Otiy but, here, we recognize the necessity to
differentiate the patterns of mobility that could be dif-
ferent from day to day. Furthermore, our significant
areas (they “hub”) are determined by the local micro-
mobility of each node and are not based on any geo-
graphical information (e.g., building segmentation).

6. CONCLUSION
We introduced Otiy, a node-centric architecture to

control the propagation of the location updates in net-
works of mobile nodes. To limit the impact of location
updates, each node creates an agenda of locators, which
are access points at which the node will probably get
associated with according to the past and present pat-
terns of mobility. The idea behind this approach is to
make location update overhead more localized.



The keys principles we achieve are:

• A fully decentralized location service.

• Short path lengths for location updates.

• Shared knowledge on absolute time locations. At
anytime, both the node and its interlocutor(s) know
the location of the locator.

To achieve our goals, we proposed to gather nearby
APs in terms of node roaming events in order to create
areas (clusters) of micro-mobility. Our clustering algo-
rithm does not use any geographical information and is
based only on the sequence of associations/disassocia-
tions. This drastically limits the propagation of updates
due to artifacts such as ping-pong effects.

Using around one year of mobility traces, we have
in average 75% of the nodes that have at least 50% of
their time slots that match exactly the right predictions.
These results encourage us to keep improving Otiy and
evaluate it using real testbeds.
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