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1. INTRODUCTION
Lossy links used in a sensor network affect network

performance, and hence need to be detected and re-
paired [1, 2]. One approach to detect lossy links is
that each node monitors the loss rates on its neighbor-
ing links and reports them to the sink. This approach,
although straightforward, causes large amount of traf-
fic. Another approach to detect lossy links is through
end-to-end data that are transmitted periodically from
sources to the sink(s) [3, 1, 2]. This end-to-end ap-
proach has the advantage of not generating any addi-
tional monitoring traffic. The challenge is, however, to
develop accurate inference algorithms for lossy link de-
tection based on end-to-end measurements.

Techniques for lossy link inference in wired networks
cannot be applied directly to sensor networks since the
topology in a wired network is typically a static tree
while the topology in a sensor network is a reverse
broadcast tree that changes over time. The studies in [3,
1, 2] develop inference algorithms for sensor networks.
The techniques in [3, 1] heavily rely on a data aggre-
gation procedure. Furthermore, their assumption of a
fixed tree limits their applicability. The study in [2]
considers dynamic network topologies. Their schemes,
however, are based on heuristics.

In this paper, we formulate and solve an optimiza-
tion problem to detect lossy links using end-to-end data
in sensor networks, taking account of dynamic network
topologies. Preliminary evaluation results indicate that
our approach provides high detection ratio and moder-
ate amount of false positives in a short amount of time.

2. PROBLEM SETTING
Consider a network represented as a graph G = (V, E),
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where V and E are the set of nodes and links in the
graph, respectively. A set of sources, S, transmit data
to the sink t, S ⊂ V, t ∈ V (our solution can be easily
extended to multiple-sink settings). The routing path
from a source to the sink may change over time. We
assume that, for each source-sink pair, the set of paths
used by this pair and the probability of using each path
are known (through a path reporting service, e.g., [4]).
However, the exact path used at a given point of time is
unknown (since the path reporting service can only run
at coarse time scales to conserve network energy). Sup-
pose source s sends ns packets to the sink and the sink
receives rs packets successfully, rs ≤ ns. Let ψs denote
the transmission probability from source s to the sink,
that is, ψs = rs/ns.

We assume that packet losses on different links are
independent. Under this assumption, only a binary
performance characterization is feasible [5]. That is,
a link is classified as either lossy (bad) or not lossy
(good). Existing measurement studies (e.g., [6]) have
demonstrated that links in sensor networks are either
good or bad. Furthermore, good and bad links are suf-
ficiently distinct. Based on this, we assume that the
transmission probability of a link is either larger than
α or smaller than β, α > β. A link satisfying the former
is classified as good, while a link satisfying the latter is
classified as bad. Our goal is to infer lossy links based
on end-to-end measurements.

3. LOSSY LINK INFERENCE
Since we do not know the path used by a source-sink

pair at a given point of time, we infer lossy links based
on the performance measures of the source-sink pairs.
We can show that, under the loss model in Section 2, for
an arbitrary s-t pair, we can find a threshold, cs ∈ (0, 1),
such that ψs < cs iff at least one link used by this pair
is lossy (the cs for different s-t pairs can be different).
We say the s-t pair is lossy (or bad) if ψs < cs, and
not lossy (or good) otherwise. Let Tg and Tb denote
respectively the set of good and bad pairs. Our goal is
to infer the most likely set of lossy links, X, that leads
to the observed good and bad source-sink pairs. That



is to solve

max
X⊆E

P (X | Tg, Tb). (1)

The optimal solution of (1) is as follows (derivation
omitted). Let Ē denote the set of links that are not
used by good pairs. Let xl = 1 denote that link l
is lossy; xl = 0 denotes otherwise. Then, the most
likely set of bad links, X = {l | xl = 1}, needs to sat-
isfy the following conditions: (1) X ⊆ Ē; (2) at least
one link in X is used by a bad pair; (3) X maximizes∑

l∈Ē xl ln(pl/(1−pl)), where pl is the prior probability
that link l is lossy and is known a priori (e.g., based on
historical data). The above is a generalized set-covering
problem and is NP-hard. However, there are efficient
approximate algorithms for it (e.g., [7]).
Remarks: When all the pl’s are the same and less than
0.5, the optimal solution is equivalent to finding a min-
imum number of bad links that cover Tb, which reduces
to the Smallest Consistent Failure Set algorithm in [5]
when each source uses only a single path to the sink.

For sensor networks with high fraction of lossy links,
the above solution may lead to low detection ratio. In-
spired by [5], we develop the following iterative algo-
rithm to improve the detection ratio. Suppose in the
i-th iteration, the set of lossy links Xi = {l1, . . . , lni},
ranked from high to low in how well they explain the ob-
servation of bad source-sink pairs. We inspect the links
in Xi in a greedy manner (an inspection is to compare
the inferred result with the ground truth, i.e., local mea-
surement of the link status), starting from link l1 until
finding the first false positive (i.e., a good link judged
as bad), link j, 1 ≤ j ≤ ni; if no false positive is found,
we set j = ni + 1. If j = 1, we exclude link lj from
Ē and solve the optimization problem again (since the
measurements are still valid) to obtain a new set of lossy
links and repeat the inspection process. Otherwise (i.e.,
j > 1), we repair links l1 to lj−1 (i.e., pinpoint the root
causes and eliminate them), and restart measurements
to obtain a new set of good and bad pairs. We repeat
the iteration until all bad links are found (i.e., until all
s-t pairs are classified as good).

4. PERFORMANCE EVALUATION
We consider a sensor network with 500 sources and

a sink. At a certain time, the routes from the sources
to the sink form a tree. In each tree, an intermediate
node has 2 to 10 children (chosen uniform randomly).
Each source has two paths to the sink (from two trees)
and has equal probability to choose these two paths.
All links have the same prior probability of being lossy.
We use a loss model in [3, 1, 2], where good and bad
links have transmission probabilities of 0.99 and 0.75,
respectively. The fraction of lossy links varies from 0.01
to 0.20. Fig. 1 plots the results of detection ratio and
false positive ratio. When not using the iterative al-
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Figure 1: Detection ratio (DR) and false posi-
tive ratio (FPR) when using and not using the
iterative algorithm.

gorithm, the detection ratio is close to 1 for very low
fraction of lossy links and decreases as the fraction of
lossy links increases. When using the iterative algo-
rithm, the detection ratio is 1 with lower false positive
ratios than those not using iteration; and the average
number of iterations is from 3.0 to 33.5 as the fraction of
lossy links increases from 0.01 to 0.20 (figure omitted).

5. CONCLUSIONS AND FUTURE WORK
We have formulated and solved an optimization prob-

lem to detect lossy links using end-to-end data in sensor
networks. Preliminary results are encouraging. We plan
to perform more comprehensive evaluation and consider
other types of lossy models.
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