
Exploiting Dynamicity in Graph-based Traffic Analysis:
Techniques and Applications

Marios Iliofotou
UC Riverside

Riverside, CA 92521
marios@cs.ucr.edu

Michalis Faloutsos
UC Riverside

Riverside, CA 92521
michalis@cs.ucr.edu

Michael Mitzenmacher
Harvard University

Cambridge, MA 02138
michaelm@harvard.edu

ABSTRACT
Network traffic can be represented by a Traffic Dispersion
Graph (TDG) that contains an edge between two nodes that
send a particular type of traffic (e.g., DNS) to one another.
TDGs have recently been proposed as an alternative way
to interpret and visualize network traffic. Previous stud-
ies have focused on static properties of TDGs using graph
snapshots in isolation. In this work, we represent network
traffic with a series of related graph instances that change
over time. This representation facilitates the analysis of
the dynamic nature of network traffic, providing additional
descriptive power. For example, DNS and P2P graph in-
stances can appear similar when compared in isolation, but
the way the DNS and P2P TDGs change over time differs
significantly. To quantify the changes over time, we intro-
duce a series of novel metrics that capture changes both in
the graph structure (e.g., the average degree) and the par-
ticipants (i.e., IP addresses) of a TDG. We apply our new
methodologies to improve graph-based traffic classification
and to detect changes in the profile of legacy applications
(e.g., e-mail).

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring; C.2.5
[Local and Wide-Area Networks]: Internet

General Terms
Measurement, Experimentation, Security

Keywords
Behavioral approach, network-wide interactions, dynamic
graphs, network monitoring

1. INTRODUCTION
A recently introduced way of analyzing network-wide be-

havior of traffic uses the “social” interaction of the network.
This approach leads to a directed graph, where each node

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’09, December 1–4, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-636-6/09/12 ...$10.00.

is an IP address, and each edge represents a particular in-
teraction between two nodes. For example, we can use the
DNS interactions to form a graph with the IP-hosts involved
in the DNS protocol. The term Traffic Dispersion Graph or
TDG is used to refer to such a graph [17]. TDGs appear
to have excellent descriptive power, but they require novel
metrics and tools to extract and utilize the information they
can provide.

A number of studies have explored the capabilities of TDGs.
Early graph-based efforts focused on specific problems, mainly
security issues such as intrusion detection [36] and worm
propagation [10, 40]. Network-wide interactions at the back-
bone were studied in [41], targeting the automatic group-
ing and profiling of network applications using information
about their degree and port distributions. A more recent
study [16] argues for wider capabilities of TDGs, with di-
rect application in traffic classification. In [16], the graph
signature of P2P applications is used in order to distinguish
P2P applications from other network applications. A recent
work by Jin et al. [18] studies the dominant communities
within a graph making it easier to interpret the graph and
characterize its structure. A fundamental characteristic of
all previous work, however, is that they focus on graphs de-
rived from static snapshots, or a single graph representing a
short period of time. Even though network traffic is by na-
ture dynamic, previous efforts do not incorporate the impact
of time in the graph representation of interactions.

Our goal is to provide a set of traffic analysis techniques
useful to network administrators, to aid them in managing,
provisioning, and protecting their networks. To give focus
in our work, we specifically consider two problems: (a) How
can we classify traffic to its originating application? (b) Can
we detect polymorphic blending, i.e., when a new appli-
cation (e.g., a new P2P protocol) attempts to hide within an
existing application (e.g., e-mail)? Although polymorphic
blending can be seen as a part of the general traffic classifi-
cation problem, it is an interesting problem in its own right,
but has received very little attention. Both these problems
are of interest in practice as we mentioned above and further
elaborate later on.

In this paper, we expand on the potential of TDGs to
address these problems by explicitly considering how they
change over time. To achieve this, we shift away from look-
ing at single graph snapshots and instead associate to each
TDG a sequence of static graph instances collected over dif-
ferent time periods. To analyze these graph sequences, we
need novel metrics and techniques. As our key contribution,
we propose a systematic set of methods for quantifying the

241

changes between snapshots and develop methods for the two
traffic analysis tasks we mentioned above. To the best of
our knowledge, this is the first work to address the prob-
lem of analyzing network traffic using graphs that captures
the dynamics over periods of time. However, we note that
such graph representations have been successfully used in
different contexts [32]. The key message of our work is that
considering the dynamic nature of TDGs can open the doors
to new, powerful techniques for traffic analysis.

Our work makes the following specific contributions:
(a) We present a systematic way to generate and

analyze TDGs that capture changes over time. In
§2, we introduce a framework (metrics and methodologies)
to generate, model, and analyze TDG snapshots over time.
Our work complements existing graph-based methods by in-
troducing metrics that explicitly capture the inherently dy-
namic nature of network traffic.

(b) We apply our methods to the problem of traf-
fic classification. In our previous work [16], we showed
how TDGs can be used to identify P2P flows in a network
traffic trace. More details about [16] are given in §5. In
§3, we go beyond the previous results by showing that us-
ing the dynamic changes of TDGs can isolate the traffic of
P2P applications as well as distinguish between the traffic
of legacy applications (e.g. DNS vs. SMTP) and some net-
work games, which are particularly notorious in classifica-
tion. Our new method operates on behavioral aspects of the
applications using no port specific information. Note that
other behavioral approaches, such as BLINC [21], require
port numbers to achieve the granularity of classification we
achieve here, e.g., to separate DNS traffic from P2P [22].
We believe that our findings can be used to enhance other
traffic classification methods [3, 11, 26] that are based on
the automatic grouping of related network flows.

(c) We show our methods are successful in detect-
ing polymorphic blending. In §4, we use graph metrics
to profile the TDGs of well known applications and use this
profile to detect polymorphic blending. Using five different
P2P protocols as intruders, we show that we can detect such
behavior more than 68% of the time, even when a P2P appli-
cation tunnels as little as 10% of its traffic. The key results
from our experiments are that changes in the dynamic be-
havior of TDGs are better than changes in static behavior
for detecting small-scale blending, and further that a com-
bination of dynamic and static behavioral changes provides
better results than each type separately. We believe that
our methods can open the door to detect other types of be-
havioral changes and anomalies.

The rest of the paper is organized as follows. In §2, we
formally define TDGs and present an array of static and dy-
namic graph metrics. In §3, we present graph-based heuris-
tics that can be used to isolate all P2P TDGs from all our
backbone locations. In §4, we show how we use TDGs to
identify polymorphic blending by detecting changes in the
profile of legacy applications. A discussion of related work
and our conclusions appear at the end of the paper.

2. DEFINITIONS AND GRAPH METRICS
In this section, we provide definitions and an array of

graph metrics we use throughout the paper. The definitions
of static snapshots and of many metrics can be found in [17,
16], but we include them here for completeness. The met-
rics capturing dynamicity do not appear in previous work.

Readers may wish to skip the details of §2.1 and return to
it as a reference when needed.

In [17, 16], a TDG refers to a graph G(V, E) that repre-
sents the network-wide interaction (say“who talks to whom”)
from a data trace1. In a TDG, each node corresponds to a
distinct IP address, and an edge signals an interaction be-
tween a pair of nodes. The power of TDGs lies in the flexi-
bility of deciding what constitutes an interaction, which can
be implemented in practice by what we refer to as edge
filter. An interaction could correspond to a simple packet
exchange, or could be determined by a complex rule, such as
“at least three TCP packets at port 25 were exchanged”. We
discuss edge filters in more detail in §2.2. In their more gen-
eral form, TDGs can be a sequence of directed and weighted
graphs as we discuss below.

Static TDG snapshots. Given an edge filter, we can
create a TDG snapshot that represents all the edges that
matched the filter during a fixed interval of observation,
which we denote by T . Depending on the edge filter, we can
direct the edges; for example, we might have the sender of
the first packet in an interaction be the head of the directed
edge. In addition, the edge can be associated with a weight
or other associated useful information, such as the number
of packets exchanged. A real-world example of a static snap-
shot is shown in Figure 1, representing the FTP traffic over
a five-minute interval.

Extended definition: TDGs as a sequence of static
graph snapshots. To capture dynamic behaviors, we
represent TDGs as series of graph snapshots G1, G2, ..., Gn

with a common edge filter. Each graph Gi corresponds to
a particular interval of observation Ti. In practical terms,
the initial data trace is split into subintervals and we apply
the same edge filter to create a graph for each subinterval.
We emphasize that we have now extended the definition of
a TDG from a single graph (as given in [17]) to include also
a sequence of graphs; we believe the meaning remains clear
and this should cause no confusion. We adopt the framework
that a node that is inactive (with respect to the edge filter)
during a particular interval will not appear in the graph for
that interval. Therefore, nodes as well as edges can vary
among the Gi. Next, we describe metrics that can explicitly
quantify the changes between graph snapshots of a TDG.

2.1 Quantifying TDGs
Graph metrics are used to describe and compare graphs.

The set of metrics presented here are naturally divided in
two groups: static or unary metrics metrics that operate on
individual graph snapshots, and dynamic or binary metrics
that compare between snapshots of a particular TDG. Sev-
eral metrics introduced here are not commonly used in the
measurement community currently, and our choices repre-
sent experience based on time-consuming trial and error.

Unary Metrics: Quantifying Static Snapshots.
We start by reviewing standard graph terminology and

terminology used in previous studies of TDGs [17]. Let us
consider a TDG G(V, E), with V the set of nodes and E the
set of edges. We use |X| to denote the cardinality of a set.
For any edge (u, v) the nodes u, v are called the endnodes of
the edge. In Figure 1 we show a graph visualization example
of a TDG snapshot. The main goal of the metrics we de-

1We refer to an ordered sequence of network packets as data
trace.

242

1

2

3

4

2 3 1

3 1 2

9

1 0

7

8

1 6

9 7

7 1 8

5

6

1 2 1

4 6 1

6 1 3

6 8 5

1 1

1 2

1 5

1 3

1 4

9 5 0

1 7

1 8

4 2 5

1 9

2 0

2 3

2 4

2 1

2 2

9 6 8

2 5

2 6

5 6

6 4 0

6 6 6

2 7

2 8

2 9

3 0

3 1

3 2

8 7 6

3 3

3 4

5 5

7 4

1 1 4

1 4 3

1 5 4

1 8 0

2 9 2

3 3 9

3 4 3

4 3 0

4 8 2

4 8 3

5 5 6

5 8 6

6 1 9

6 3 2

6 4 5

6 7 3

6 7 9

7 2 6

7 2 3

7 8 8

8 2 2

8 3 2

8 5 5

8 7 9

9 4 5

9 4 9

9 5 4

1 0 3 1

1 0 4 4

1 0 4 8

3 5

3 6

3 7

9 5 5

3 8

3 9

7 7 0

4 1

4 0

4 2

4 3

4 4

4 5

4 6

4 7

4 8

2 7 1

4 0 2

4 2 7

5 1 3

7 3 4

8 3 8

4 9

5 0

5 1

5 2
1 5 1

1 9 1

3 3 1
3 4 5

5 3

5 4

4 3 1

5 9

5 7

5 8

6 0

6 1

6 4

6 2

6 3

5 8 7

6 0 3

7 1 5

6 5

6 6

6 7

6 8

6 9

7 0

7 1

7 2

7 3

1 7 3

4 5 8

5 3 3

7 7

7 8

7 5

7 6

7 9

8 0

8 1

8 2

1 1 1

8 7

8 8

8 5

8 6

6 7 6

8 3

8 4

8 9

9 0

9 1

9 2

1 0 1

9 5

9 6

9 3

9 4

9 8

9 9

5 1 4

1 0 0

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

1 0 8

1 0 9

1 1 0

1 1 2

1 1 3

1 1 5

1 9 7

1 2 0

1 1 8

1 1 9

1 1 6

1 1 7

1 2 2

1 2 5

1 2 6

3 7 5

1 2 3

1 2 4

1 2 7

1 2 8

1 2 9

1 3 0

1 3 1

1 3 6

1 3 4

1 3 5

1 3 2

1 3 3

1 3 7

1 3 8

1 4 1

1 4 2

1 3 9

1 4 0

2 7 0

4 6 0

7 5 8

9 9 5

1 4 8

1 4 9

1 4 6

1 4 7

1 4 4

1 4 5

1 5 5

1 5 6

1 5 2

1 5 3

1 5 0

1 5 7

1 5 8

1 5 9

1 6 0

1 6 1

1 6 2

1 6 3

1 6 4

1 6 5

1 6 6

1 6 7

1 6 8

1 6 9

1 7 2

1 7 0

1 7 1

7 8 3

1 7 4

1 7 5

1 7 6

1 7 7

1 7 8

1 7 9

1 8 1

1 8 2

2 5 7

6 4 1

6 9 9

1 8 3

1 8 4

1 8 5

1 8 6

1 8 7

1 8 8

1 8 9

1 9 0

1 9 2

1 9 3

1 9 4

1 9 5

1 9 6

1 9 8

1 9 9

2 0 0

3 5 6

2 0 1

2 0 2

2 0 3

2 0 4

2 0 5

2 0 6

2 0 7

2 0 8

2 0 9

2 1 0

2 1 1

2 1 2

2 1 3

2 1 4

2 1 7

2 1 8

2 1 5

2 1 6

2 1 9

2 2 0

3 0 1

2 2 1

2 2 2

2 2 3

2 4 4

2 2 4

2 2 5

3 0 8

2 2 7

2 2 6

2 2 9

2 2 8

7 2 7

2 3 0

2 3 4

3 2 6

2 3 2

2 3 3

3 1 0

2 3 7

2 3 8

2 3 5

2 3 6

6 1 0

2 3 9

2 4 0

2 4 3

2 4 1

2 4 2

2 4 5

2 4 6

2 4 7

2 4 9

2 4 8

2 5 1

2 5 0

2 5 2

2 5 5

2 5 3

2 5 4

2 5 6

2 5 8

2 5 9

2 6 0

2 6 1

2 6 2

2 6 3

9 9 4

2 6 4

2 6 5

2 6 6

2 6 7

7 1 6

8 9 2

1 0 0 4

2 6 8

2 6 9

2 7 4

2 7 5

2 7 2

2 7 3

2 8 0

2 8 1

5 3 9

2 7 8

2 7 9

2 7 6

2 7 7

2 8 4

2 8 2

2 8 3

2 8 7

2 8 8

2 8 5

2 8 6

5 0 9

2 8 9

2 9 3

2 9 0

2 9 1

2 9 4

2 9 5

2 9 6

2 9 7

2 9 8

2 9 9

3 0 3

3 0 2

7 4 7

3 0 0

3 0 4

3 0 5

3 0 6

3 0 7

3 6 9

3 1 1

3 0 9

3 1 3

3 1 4

3 1 7

3 1 8

3 1 5

3 1 6

3 1 9

3 2 0

3 2 4

3 2 3

3 2 1

3 2 2

3 2 7

3 2 8

3 2 5

3 2 9

3 3 0

3 3 2

3 3 3

3 3 4

6 8 0

3 3 8

3 3 6

3 3 7

4 5 1

3 3 5

3 4 0

3 4 1

3 4 2

3 4 4

3 4 6

3 4 7

3 4 8

3 4 9

3 5 0

3 5 1

8 9 5

9 3 7

3 5 2

3 5 3

3 5 4

3 5 5

5 4 5

3 5 7

3 5 8

3 5 9

3 6 0

3 6 1

3 6 2

3 6 3

3 6 4

3 6 5

3 6 6

3 6 7

3 6 8

3 7 0

3 7 1

3 7 2

3 7 3

3 7 4

3 7 6

3 7 7

3 7 8

3 7 9

3 8 2

1 0 3 6

3 8 0

3 8 1

3 8 5

3 8 3

3 8 4

1 0 2 8

3 8 6

3 8 7

3 9 1

8 1 1

3 8 9

3 9 0

8 3 1

3 8 8

3 9 2

3 9 3

3 9 8

3 9 6

3 9 7

3 9 4

3 9 5

5 3 4

3 9 9

4 0 0

4 0 1

4 0 3

4 0 4

4 0 5

4 0 6

5 9 3

1 0 3 3

4 0 7

4 0 8

4 0 9

4 1 0

4 1 2

4 1 1

4 1 4

4 1 3

4 1 5

4 1 7

4 1 8

1 0 1 4

4 1 6

4 1 9

4 2 4

4 2 2

4 2 3

5 0 0

1 0 1 0

4 2 0

4 2 1

8 4 8

4 2 6

4 2 8

4 2 9

4 3 3

4 3 2

4 3 4

4 3 5

4 7 5

4 9 7

5 9 1

9 6 1

9 8 4

1 0 0 0

1 0 2 4

4 3 6

4 3 7

4 3 8

4 3 9

4 4 0

4 4 1

4 4 2

7 4 8

4 4 3

4 4 4

4 4 5

1 0 1 7

4 4 6

4 4 7

6 6 0

4 4 8

4 4 9

4 5 0

4 5 3

4 5 2

4 5 4

4 5 5

4 5 6

4 5 7

4 5 9

4 6 2

4 6 3

4 6 6

4 6 4

4 6 5

4 6 9

4 7 0

4 6 7

4 6 8

4 7 1

4 7 7

4 7 6

4 7 3

4 7 4

4 7 2

4 7 8

4 7 9

4 8 0

4 8 1

6 8 7

4 8 4

4 8 5

4 8 6

4 8 7

4 8 8

4 9 0

4 9 1

4 8 9

4 9 5

4 9 6

5 4 8

4 9 3

4 9 4

4 9 2

9 6 5

4 9 8

4 9 9

5 0 1

5 0 2

5 0 3

5 0 4

5 0 5

5 0 6

5 0 7

5 0 8

5 1 1

5 1 0

5 1 2

5 1 5

5 1 8

5 1 6

5 1 7

5 2 0

5 2 1

5 1 9

5 2 3

5 2 2

5 2 5

5 2 4

5 2 8

5 2 6

5 2 7

5 2 9

5 3 1

5 3 2

5 3 0

5 3 6

5 3 5

5 3 7

5 3 8

5 4 1

5 4 0

5 4 2

5 4 3

5 4 4

5 4 6

5 4 7

5 5 2

5 5 3

5 5 1

5 4 9

5 5 0

5 5 4

5 5 5

5 5 7

5 5 8

5 5 9

9 4 4

5 6 0

5 6 1

5 6 2

8 9 3

5 6 5

5 6 6

5 6 3

5 6 4

5 7 1

5 6 9

5 7 0

5 6 7

5 6 8

5 7 2

5 7 3

5 7 4

5 7 5

5 7 7

5 7 8

5 7 6

5 7 9

5 8 0

5 8 1

5 8 2

5 8 3

9 7 0

5 8 4

5 8 5

5 8 8

5 8 9

5 9 0

5 9 4

5 9 2

6 0 0

5 9 8

5 9 9

5 9 6

5 9 7

5 9 5

6 0 2

6 0 1

6 0 4

6 0 7

6 0 5

6 0 6

6 1 1

6 1 2

6 0 8

6 0 9

6 1 5

6 1 6

6 1 4

6 1 7

6 1 8

6 2 0

6 2 1

6 2 2

6 2 3

6 2 4

6 2 5

6 2 6

6 2 7

6 2 8

6 2 9

6 3 1

6 3 0

6 3 3

6 3 4

6 3 5

6 3 6

6 3 7

6 3 8

6 3 9

6 4 4

6 4 2

6 4 3

6 4 7

6 4 6

6 5 1

6 5 0

6 4 8

6 4 9

6 5 3

6 5 4

6 5 2

6 5 7

6 5 5

6 5 6

6 5 8

6 5 9

6 6 2

6 6 1

6 6 3

9 1 6

6 6 4

6 6 5

6 6 7

6 6 8

6 6 9

6 7 0

6 7 1

6 7 2

6 7 4

8 3 6

6 7 5

6 7 7

6 7 8

6 8 1

6 8 2

6 8 3

6 8 4

6 8 6

6 9 0

6 9 1

6 8 8

6 8 9

6 9 2

6 9 3

6 9 4

6 9 5

6 9 7

6 9 6

6 9 8

7 0 0

7 0 1

7 0 2

7 0 3

7 0 4

7 0 5

8 2 0

7 0 6

7 0 7

7 0 8

7 0 9

7 1 0

7 1 1

7 1 2

7 1 3

7 1 4

7 1 7

7 2 0

7 2 1

7 1 9

7 2 2

7 2 4

7 2 5

7 2 8

7 2 9

7 3 1

7 3 2

7 3 0

7 3 3

7 3 5

7 3 6

7 3 7

7 3 9

7 3 8

7 4 2

7 4 3

7 8 9

8 2 7

9 6 2

7 4 1

7 4 0

7 4 4

7 4 5

7 4 6

7 4 9

7 5 0

7 5 1

7 5 2

7 5 3

7 5 4

7 5 5

7 5 6

7 5 7

7 5 9

7 6 0

7 6 1

7 6 2

7 6 3

7 6 4

7 6 5

7 6 6

7 6 8

7 6 9

7 6 7

7 7 1

7 7 29 9 9

7 7 5

7 7 3

7 7 4

7 7 6

7 7 9

7 7 7

7 7 8

7 8 0

7 8 1

7 8 2

7 8 5

7 8 4

7 8 6

7 8 7

7 9 0

7 9 1

7 9 2

7 9 3

7 9 4

7 9 5

7 9 6

7 9 7

7 9 8

8 0 0

8 0 1

7 9 9

8 0 2

1 0 1 3

8 0 6

8 0 5

8 0 3

8 0 4

8 0 9

8 0 7

8 0 8

8 1 0

8 1 5

8 1 6

8 1 4

8 1 2

8 1 3

8 1 7

8 1 8

8 1 9

8 2 5

8 2 6

8 2 4

8 2 3

8 2 1

8 2 8

8 2 9

8 3 0

8 3 3

8 3 4

8 3 5

8 3 7

8 3 9

8 4 0

8 4 1

8 4 2

8 4 3

8 4 4

8 4 5

8 4 6

8 4 7

8 4 9

8 5 0

8 5 1

8 5 2

8 5 3

8 5 4

8 5 7

8 5 6

8 5 8

8 6 1

8 5 9

8 6 0

8 6 2

8 6 3

8 6 4

8 6 5

8 6 6

8 6 7

8 6 8

8 6 9

8 7 0

8 7 1

8 7 2

8 7 4

8 7 5

8 7 3

8 7 7

8 7 8

8 8 0

8 8 1

8 8 3

8 8 4

8 8 2

8 8 5

8 8 6

8 8 8

8 8 7

8 8 9

8 9 0

8 9 1

8 9 4

8 9 7

8 9 8

8 9 6

8 9 9

9 0 0

9 0 5

9 0 3

9 0 4

9 0 1

9 0 2

9 0 6

9 0 7

9 0 8

9 0 9

9 1 0

9 1 1

9 1 2

9 1 3

9 1 4

9 1 5

9 1 8

9 1 7
1 0 1 5

9 2 0

9 2 1

9 1 9

9 2 2

9 2 4

9 2 3

9 2 8

9 2 9

9 2 6

9 2 7

9 2 5

9 3 0

9 3 1

9 3 2
9 3 3

9 3 4

9 3 5

9 3 6

9 3 8

9 3 9

9 4 1

9 4 0

9 4 2

9 4 3

9 4 6

9 4 7

9 4 8

9 5 1

9 5 2

9 5 3

9 5 6

9 5 7

9 5 8

9 5 9

9 6 0

9 6 3

9 6 4

9 6 6

9 6 7

9 6 9

9 7 1

9 7 2

9 7 5

9 7 3

9 7 4

9 7 6

9 7 7

9 7 8

9 7 9

9 8 0

9 8 3

9 8 1

9 8 2

9 8 6

9 8 5

9 8 7

9 8 9

9 8 8

9 9 0

9 9 3

9 9 2

9 9 1

9 9 6

9 9 7

9 9 8

1 0 0 1

1 0 0 2

1 0 0 3

1 0 0 5

1 0 0 7

1 0 0 6

1 0 0 8

1 0 0 9

1 0 1 2

1 0 1 1

1 0 1 6

1 0 1 8

1 0 1 9

1 0 2 0

1 0 2 1

1 0 2 2

1 0 2 3

1 0 2 6

1 0 2 5

1 0 2 7

1 0 3 0

1 0 2 9

1 0 3 2

1 0 3 4

1 0 3 5

1 0 3 9

1 0 3 7

1 0 3 8

1 0 4 0

1 0 4 1

1 0 4 2

1 0 4 3

1 0 4 6

1 0 4 7

1 0 4 5

1 0 4 9

Figure 1: A static TDG snapshot of the FTP application
using a 5 minute interval of observation. The largest connected
component is located in the center of the figure.

scribe next is to translate the visually meaningful aspects of
a graph into quantitative measures that can automate the
processes of comparing graphs (§3) and detecting changes
(§4).

TDGs are typically directed, and hence we can group
nodes based on the direction of their edges. Sinks (Vsnk)
are nodes that have only incoming edges and sources (Vsrc)
are nodes that have only outgoing edges; we also refer the set
of nodes having both incoming and outgoing connections as
VInO , or In-and-Out (InO). These subsets VInO , Vsnk, and
Vsrc partition V (so |V | = |VInO | + |Vsnk| + |Vsrc|). We say
that a pair of nodes u, v has a bidirectional edge if and only
if (u, v) ∈ E and (v, u) ∈ E. To quantify the symmetry of a
graph, we use the percentage of communicating node-pairs
that have a bidirectional edge (BiDir).

To quantify the connectivity of a graph, we use the size
of its Largest Weakly Connected Component (LWCC). If
we consider again the graph as undirected, the LWCC is the
size of the largest connected component; we report these
quantities as a percentage of the total number of nodes in
the graph. The LWCC for the graph visualization exam-
ple of Figure 1 is located in the middle of the figure and
is highlighted with darker colored edges (better viewed on
a computer screen or colored print-out). From the figure
we see that TDG snapshots can be disconnected. We have
observed that measuring the size of the top 10 LWCCs is
a good metric for characterizing TDGs as we show in §4 in
more detail.

The neighborhood of a node u is the set of nodes ad-
jacent to u and is denoted by Γ(u). The degree of u is
defined as d(u) = |Γ(u)|. The minimum endnode degree
(MED) of an edge e = (u, v), is defined as MED(e) =
min(d(u), d(v)). We define the average degree of a TDG
as k̄ =

P
u∈V d(u)/|V |. We denote the number of nodes

with degree k as n(k). We denote the maximum degree of

the graph as kmax. The degree distribution of a graph
captures the probability that a randomly selected node has
degree k, and is defined by P (k) = n(k)/n for k = 1, kmax.
The entropy of the degree distribution H(X) is defined as
−P

k=1,kmax
P (k) log(P (k)), with each term in the sum be-

ing 0 if P (k) = 0. For measuring the uniformity of the distri-
bution, we use the Relative Uncertainty (RU); given by
RU = H(X)/ log2 kmax as defined in [41]. (The maximum
entropy is achieved with the uniform distribution, so an RU
value of 1 denotes the uniform distribution.) Note that all
the above metrics can also be defined for the marginal dis-
tributions of incoming and outgoing edges of nodes, e.g.,
in-degree distributions, average in-degree, etc.

The assortativity coefficient r is a summary metric of
the correlation of the degree between endpoints of edges in
the graph [27]. The value is the Pearson correlation coef-
ficient of the degrees of the endnodes of edges and lies in
the range [−1, 1]. If r = 0, the graph appears to have ran-
dom degree correlations, and there is no linear relationship
between the degrees of neighbor nodes. If r > 0 then the
graph is assortative, and high degree vertices are likely to
connected to other high degree vertices. Conversely, if r < 0
then the graph is disassortative, and high degree vertices are
likely to connect to low degree vertices.

Binary Metrics: Quantifying Dynamic Changes.
We can quantify the dynamic behavior of TDGs by com-

paring successive snapshots or snapshots separated in time.
Toward this end, we consider metrics that capture differ-
ences between graphs. All previously described metrics in
this section can be consider as “unary” since they operate
on a single graph instance. We now present “binary” met-
rics that operate on two snapshots of a TDGs. The use of
binary metrics in this context is one of our contributions. In
what follows we use V1 and V2 (and similarly E1 and E2) to
refer to node (and edge) sets corresponding to two graphs
G1 and G2, which in context generally correspond to two
snapshots over distinct intervals.

We can compare graphs using either labeled or unlabeled
representations. Thinking of unlabeled graphs, where nodes
do not have identities, we focus at the structure of the graph
using metrics such as average degree, InO, RU, etc. Using
the labeled representation, we can study the membership
consistency (i.e., if a node/edge is present in both snap-
shots), and status consistency of individual nodes and edges
(e.g., if the maximum degree node of instance A is also the
max degree node in instance B). Both frameworks can offer
insight; note that two graphs can be isomorphic, but still
differ significantly in their underlying nodes.

For quantifying changes in node and edge membership
consistency, we use the following graph metrics. The Rel-
ative Inclusion (RI) of nodes of a graph G1 relative to
another graph G2 is defined as RI(V1, V2) = |V1 ∩ V2|/|V1|.
For edges the definition is RI(E1, E2) = |E1 ∩ E2|/|E1| (in
general our metrics can be defined both for edges and nodes).
Comparing a current snapshot (G1) with a snapshot of the
graph after 2 hours (G2), the RI captures the percentage of
nodes (or edges) that remained in the graph. These defini-
tions also hold for comparing appropriate subsets of nodes
or edges. For example, we can also consider the relative
inclusion of InO (VInO) nodes in the graph.

Detailed Edge Similarity. We introduce metrics that
more finely quantify the similarity of the edges between two

243

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60 70 80 90 100 110 120

0-
N

 E
dg

es
 (%

)

Time Gap (minutes)

DNS
SMTP

eDonkey
FastTrack

Gnutella

Figure 2: The “edge volatility” of five different applications
over time for the PAIX trace (see Table 1). All P2P TDGs
change more over time compared to the SMTP and DNS TDGs.

graphs G1 and G2. We have RI(E1, E2) representing the
percentage of edges in G1 that are also present in G2. We can
group the edges e ∈ E1 of G1 into 4 different sets based on
whether both, only one, or none of the endnodes of e belong
in G2. The groups are as follows: (a) the common (C) edges
EC

1 = E1∩E2; (b) the 2N -edges with both endnodes present
in V2, E2N

1 = {(u, v) ∈ E1 : u, v ∈ V2}; (c) the 1N -edges
with exactly only one endnode in V2, E1N

1 = {(u, v) ∈ E1 :
(one of u or v) ∈ V2}; (d) the 0N -edges with both nodes
not present in V2, E0N

1 = {(u, v) ∈ E1 : u, v �∈ V2}.
Detailed edge similarity can be seen as a more informa-

tive alternative to the graph edit distance for labeled
graphs, which is defined as edit(G1, G2) = |V1| + |V2| −
2|V1∩V2|+ |E1|+ |E2|−2|E1∩E2|. (One could also consider
weighted versions of the edit distance, with the vertex terms
in the sum weighted differently than edge vertices; we use
the unweighted edit distance here.) For comparing labeled
sets, one can also use the Jaccard Index (JI) defined as
|V1∩V2|/|V1 ∪V2| or |E1∩E2|/|E1∪E2| for nodes and edges
respectively. The JI and edit distance quantify the changes
in the graphs in a single value. These metrics can be used
to detect graph anomalies as shown in [32].

Edge Volatility. Binary metrics offer the potential to
capture the dynamic trends of TDGs. For example, sup-
pose that at t = 0 we create the reference graph Gt=0 us-
ing a five-minute interval of observation, and our goal is
to measure how much the edges of Gt=0 change over time.
Intuitively, we expect that the changes from graphs taken
back-to-back (Gt=0, Gt=5min) compared to the changes be-
tween graphs taken few hours apart (Gt=0, Gt=2hours) will
be smaller for legacy applications, such as DNS and SMTP,
compared to P2P activity where graphs change more with
time due to ephemeral interactions. Here, we use the De-
tailed Edge Similarity (DES) defined above. Intuitively, as
time evolves, it will be more likely to see both endnodes of
an edge become inactive (i.e. not present after some time)
in a P2P TDG compared to DNS/SMTP. An example of
this process is shown in Figure 2 showing the percentage of
0N-edges (over all the edges of Gt=0) as we increase the gap
between a graph snapshot and the reference graph (Gt=0)
for the PAIX trace (see Table 1). Even if the initial percent-
age of 0N-edges is lower for some P2P applications (e.g.,
eDonkey), the rate of increase is higher than SMTP and
significantly higher than DNS.

Discussion: While we have focused on metrics for TDGs
based on comparing snapshots, given a complete data trace
one could consider further dynamic graph properties not
based solely on such comparisons. For example, one could
ask if the TDG becomes more connected (higher LWCC) or
if it gets more dense (higher average degree) as we increase
the interval of observation. In this work we consider the
utility of comparing snapshots, but examining other metrics
on TDGs remains an interesting direction for future work.

2.2 Edge Filters
For completeness, we present a set of general edge filters

that can be used in isolation or in combination to select the
right set of flows depending on the focus of the study as
discussed in previous work [17, 16, 10].

With a port-based filter, we collect traffic for a fixed
destination (source) port. If the port number corresponds to
a well-behaved single-port application, this can correspond
to monitoring the traffic of that application. Signature or
content-based filters, match string patterns in the pay-
load of the packet. These filters can be very effective, but
assume that we have the signature of the desired traffic, and
we have access to the content of the packet. These assump-
tions are not always true for all applications or all traces.
Using a flow-level filter, we create a graph with flows that
meet certain flow-level features, such as specific packet sizes,
packet inter-arrival times, or number of packets. In fact, the
grouping of flows into TDGs can be automated (unsuper-
vised). This can be achieved with machine learning and
clustering algorithms [22, 39]. The advantage of these filters
is that they can be made to work with no a priori infor-
mation of how applications behave. We have used this ap-
proach successfully for application classification in our work
on graph-based traffic classification [16]. Similar methods
have also been used successfully in other works [2, 3, 11, 12,
26, 29].

How do we decide which edge filters to use? This depends
on the focus and purpose of the measurement study. If the
protocol we want to observe (e.g. DNS) operates under a
default port (e.g., port 53) we can use port-based filters. If
the target application is a P2P protocol that uses ephemeral
port number then we can choose to use a content-based or
flow-level filter. We further discuss the selection and use of
edge filters in §2.3 and in the context of application classifi-
cation in §3.

Some practical considerations. Throughout this pa-
per, we assume that packets are grouped into flows using the
standard methods based on the five tuple (SrcIP, SrcPort,
DstIP, DstPort, Protocol). For a TCP flow, we create a
directed edge starting at the node that sent the SYN packet.
In the case where we only observe the SYN/ACK-packet, the
direction of the link is reversed and set to point from dstIP

to srcIP (as directly derived from the packet). For a UDP
flow, we create a directed edge starting from the sender of
the first packet in our trace.

2.3 Data Sets
We present a summary of the backbone traces that we

use in this study in Table 1. All traces with the exception
of PAIX are publicly available from NLANR/CAIDA [5].
Using publicly available traces allows other researchers to
extend and verify our findings and contributions, and we
attempted to use a rich set of currently publicly available

244

Alias Start Date/TimeDuration IPs Bytes

CLEV 2002-08-14/ 09:00 2 hour 232,579 777.2 GB
KSCY-MON 2002-09-01/00:00 1 month 258,535 5.3 TB

KSCY 2002-08-14/ 09:00 2 hour 198,752 683.05 GB
CLEV-DAYS 2002-08-27/ 09:00 5 days 171,359 898.5 GB

PAIX 2004-04-21/17:59 2 hour 258,636 891 GB
OC48 2002-08-14/09:00 3 hour 480,637 864.7 GB

Table 1: The IPs report the average values over
5-minute long intervals. Traces (except PAIX) can
be found at http://pma.nlanr.net/Special/ and
http://www.caida.org/data/passive/.

backbone traces. All traces are IP-anonymized and contain
traffic from both directions of the link. The traces were col-
lected during both night and day hours as well as workdays
and weekends, accounting for around 10 terabytes of raw
TCP/UDP traffic.

We use six data sets from four different links. Traces OC48
and PAIX (Palo Alto Internet eXchange) are collected from
backbone links of two Tier-1 commercial ISPs. The other
four traces are collected from two different backbone links
of the Abilene (Internet2) academic network. The {KSCY-
MON, KSCY} traces are from a link connecting Kansas
City to Indianapolis and {CLEV, CLEV-DAYS} are from
a link connecting Cleveland to Indianapolis. The CLEV-
DAYS and KSCY-MON traces, are comprised of several five-
minute-long samples taken daily over five consecutive days
and one month respectively. Even though the OC48 trace
spans over three hours, it contains two hours of actual packet
collection; between 09:00 - 10:00AM and 11:00-12:00PM. All
the remaining traces contain uninterrupted consecutive col-
lections of packet traces.

Ground truth. In this work, we use a combination of
signature-based and port-based filters to define TDGs and
we establish the ground truth using existing methods [20,
4, 34]. The PAIX trace contain up to 16 bytes of payload
from each packet, thereby allowing the classification of flows
into applications using standard signature matching tech-
niques [19, 21, 34]. The payload classifier managed to clas-
sify 99.3% of the flows while only 0.7% did not match a
known signature.

3. TDG CLASSIFICATION
In this section, we answer the following question: Can

TDGs be used to distinguish between different classes of ap-
plications, for example, identify the set of graphs that cor-
respond to P2P applications? The key observation is that
static metrics provide useful information about the behav-
ior of an application but they have their limits. Our dynamic
metrics can further capture inherent behavioral properties of
the underlying applications which makes them easy to un-
derstand by network administrators and (debatably) harder
to hide by an application. For example, a P2P overlay will
be hard to sustain a graph structure with the stability over
time of the DNS TDGs (see Figure 2).

To provide a concrete problem, we focus on the detec-
tion of P2P applications. P2P applications are particularly
challenging due to their continual change of characteristics
(upgrades with additional functionality) and the continual
appearance of new P2P protocols (especially in Asia). Our
main goal in this section is to isolate P2P TDGs from the
rest of the Internet applications. We want to achieve this

by identifying a minimal set of discriminating features for
separating TDGs of P2P protocols from those of other ap-
plications. A traffic classifier based on TDGs was the topic
of an earlier work [16]. In [16] we show how TDGs can help
to classify individual network flows. More details about our
previous work [16] can be found in §5.

Collaborative Applications. We here use the term
collaborative applications to include all Internet protocols
where hosts: (a) are required to interact (collaborate) with
a relative large number of other hosts and (b) have in-
terchangeable roles with hosts acting both as clients and
servers. All known P2P applications, as well as legacy ap-
plication such as DNS, NTP, and SMTP have these two
features in common. For example, in DNS servers collabo-
rate with other servers in order to resolve DNS queries. To
achieve this, DNS requires the servers to be“connected”with
one-another as well as operate both as servers (replying to
queries) and clients (issuing queries).

Our classification methodology has two steps. First, we
start by isolating all typical client-server applications (e.g,
POP3, Web, FTP) from the remaining types of collaborative
applications. This is achieved by using a small set of static
graph metrics which have been shown to work well in other
works [17, 16]. At the second step, we use metrics on dy-
namic behavior to further isolate P2P TDGs from the bulk
of collaborative applications.

We show that trying to isolate P2P from other collabo-
rative applications using only static graph snapshots can be
a challenging task. This fact highlights the benefit of using
a combination of unary and binary metrics. Our final set
of classification rules can be used to improve current traf-
fic classification methodologies such as Graption [16], as we
discuss next in more detail.

3.1 Experimental Setup
Applications Involved. We used the following applica-

tions, grouped as being collaborative or non-collaborative.
Collaborative applications include: P2P (Gnutella, Fast-
Track, eDonkey, MP2P, WinMX), DNS, SMTP, NTP, and
HalfLife (Game). The Non-Collaborative includes: Web
(http and https), POP3, SNMP, FTP, SSH, Streaming (Real
Time Streaming Protocol). Discussion about other applica-
tion (e.g., BitTorrent) that existed in a small subset of our
traces are given later in the section.

Traces Used. To evaluate our findings we tested all our
rules on four two-hour-long, one week-long and one month-
long traces from four deferent locations. When we report
results on static (unary) metrics, we include all our traces.
Since our dynamic (binary) metrics require the IP anomymiza-
tion to be consistent across all intervals, we do not include
KSCY-MON and CLEV-DAYS. These traces, comprise of
five minute samples with different randomization of IPs which
does not allow graph comparisons between samples.

TDG Creation. For selecting the right edge filter we
can use any of the current methods to automatically group
related flows. Such methods are described in for example
[11, 16, 26]. A complete traffic classification system is out
of the scope of this work. As we show next, we have in-
corporated our methodology to our work on Graption [16]
allowing it to operate entirely in the “dark” without relying
on any port- or signature-based information. Our main goal
here is to identify the set of behavioral properties that can
distinguish between applications. For the remainder of the

245

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30

C
or

re
ct

ly
 C

la
ss

ifi
ed

 (
%

)

Training Set Used (%)

Naive
C4.5

BayesNetworks

Figure 3: Collaborative vs Non-Collaborative applications:
graph classification performance using static metrics. For each
experiment we executed 50 runs with different random training
samples.

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30

C
or

re
ct

ly
 C

la
ss

ifi
ed

 (
%

)

Training Set Used (%)

Naive
C4.5

BayesNetworks

Figure 4: P2P vs Rest: Graph classification performance
using static metrics. We need a larger training size in order
to achieve good results compared to the Collaborative vs Non-
Collaborative classification.

section, we assume that application specific edge filters are
known (e.g., extracted by methods such as in [16, 3, 26, 11]).
We generate all TDG snapshots over five-minute intervals.
Five-minute intervals have been used before [16, 17, 41] and
give good results here.

3.2 Deriving Classification Rules
For selecting the set of discriminating features, we pose

the following requirements: (a) the metrics should be intu-
itive, making them easy to be used by network operators,
(b) they must apply to different locations, avoiding particu-
larities of a single locations (e.g., a metric to detect the Web
TDG could be the existence of a high degree server, which
might not be visible from all locations).

3.2.1 Static Behavior Heuristics
Our experience and findings from prior work [17, 16] show

that static metrics can be used to efficiently distinguish be-
tween collaborative and non-collaborative applications. In-
tuitively, most collaborative applications have more dense

graphs (higher average degree), less skewed degree distribu-
tions, and a higher percentage of InO nodes.

Static Metrics Used. For each application, we ex-
tracted a large set of static graph metrics as defined earlier in
§2: assortativity, RU for degree/in-degree/out-degree distri-
butions, average degree/out-degree/in-degree, max degree,
max in-degree, max out-degree, LWCC, InO (%), Sinks (%),
75th and 95th percentile of the degree/in-degree/out-degree
distribution, and BiDir(%). For the classification process,
each TDG snapshot is represented as a vector of numerical
values each representing a distinct graph metric. We used
TDG snapshots over all five-minute long disjoint intervals
from all six traces. Our final set contained more than two
thousand graphs.

To automate the classification of TDG snapshots, we use
standard machine learning (ML) methods: Naive Bayes,
Bayesian Network, and C4.5 Decision Tree classifier. For
these algorithms we used the standard implementations of
WEKA [39]. The Naive Bayes is the simplest of classifiers.
Bayesian networks are more complex but offer more power
when the independence assumption does not hold. Finally,
the Decision Tree can be easily transformed to IF-THEN
rules which are easy to understand by humans (e.g., net-
work administrators). These machine methods have been
also used in the past for classifying network flows [22, 31].
We emphasize that the use of ML methods provides a rigor-
ous framework to determine what metrics are most appro-
priate for classification, and hence our utilization of a large
number of possible metrics is not as ad hoc as it may first
appear. As we show next, these basic classifiers achieve very
good results. However, the Decision Tree and Bayes classi-
fier can overfit when large training sizes are used. The use
of more advanced ML methods, such as Support Vector Ma-
chines (SVMs) [39], can further improve the classification
performance as well as eliminate the problem of overfitting
and this is included for future work.

Static metrics: Separating between Collaborative
vs Non-Collaborative applications. The classification
results for all three ML methods are shown in Figure 3. For
this experiment, we increased the size of the training size,
shown here as a percentage over the data set, and calculated
the instances classified correctly. For each training set size,
each algorithm is executed 50 times with different randomly
selected samples of the training set. The figure shows the
average value over the 50 runs and the standard deviations.
As we see, even for a 5% training size we can extract clas-
sification rules that clearly separate between Collaborative
vs Non-Collaborative applications with above 99% correct
classifications. The two dominant features as selected by
the C4.5 decision tree classifier are: Average Degree and
InO nodes. Using only these two metrics we can distinguish
between our two classes of applications in all 4 backbone link
locations. Moreover, our automatically extracted rules cap-
ture inherent properties of collaborative applications. The
high average degree represents collaboration (communica-
tion) between multiple hosts and InO captures the inter-
changed roles of the hosts.

Static metrics: identifying P2P is harder. Using
static graph metrics to further distinguish between applica-
tions is harder. To show this we use the same classification
methodology to try to distinguish P2P snapshots from our
set of graphs. The classification results for this experiment
are shown in Figure 4. Comparing Figure 4 and 3, we can

246

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

DNS SMTP NTP GM GNU EDO WIN FT MP

0N
-E

dg
es

 (
%

)

DNS SMTP

(a) Edge Volatility: DNS and
SMTP change much less over time
compared to P2P TDGs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

NTP DNS SMTP GM GNU EDO WIN FT MP

JI
 E

dg
es

 (
%

)

NTP

(b) Edge Consistency: NTP has
the higher percentage of identical
edges.

 0

 10

 20

 30

 40

 50

 60

 70

GM NTP DNS SMTP GNU EDO WIN FT MP

2N
-E

dg
es

 (
%

)

Game

(c) Long Stay or Early Departure:
Games appear to have very low
number of 2N-edges.

Figure 5: Our three dynamic heuristics for the KSCY trace. The applications separated at each heuristic are reported first (leftmost
side). Notations: Game (GM), Gnutella (GNU), FastTrack (FT), WinMX (WIN), eDonkey (EDO), MP2P (MP).

clearly see that separating P2P graphs is a much harder task.
Even though the decision tree algorithm can extract classifi-
cation rules that yield 98% correct classifications, it requires
a large training set (> 30%) to achieve this and results in a
large tree (twenty-seven rules involving eight metrics). The
classification problem is much harder for the two Bayes clas-
sifiers where classification accuracy remains lower than 95%
for 90% training size. In contrast, in our previous experi-
ment (Figure 3) we achieve 98% accuracy using the simple
naive Bayes classifier with 5% sample size.

3.2.2 Dynamic Behavior Heuristics
Next, we introduce a set of heuristics that capture charac-

teristic dynamic behaviors for specific applications. We show
that such heuristics can easily be used to further separate
between user-generated P2P file-sharing TDGs from the re-
maining collaborative applications, including DNS, SMTP,
NTP, and a network game application (Half Life). For the
following heuristics, we use the binary operators for anno-
tated graphs as described in §2. For all experiments, the
two compared graph snapshots are taken to be two hours
apart from each other. Since traces KSCY-MON and CLEV-
DAYS comprise of only 5-minute-long samples, we do not
include them in our results. For presentation purposes, we
will report results for the KSCY trace. Our results on other
traces are similar.

Edge Volatility: Even though DNS/SMTP form TDG
snapshots similar to file sharing P2P applications, we would
expect them to have a dynamic behavior that is more sta-
ble than end-user formed overlays. Intuitively, DNS/SMTP
are based on an “infrastructure” of commercial servers, thus
we would expect these protocols to have TDGs with lower
volatility. To measure Edge Volatility, we repeat the same
process as in §2 (see also Figure 2). The results of Edge
Volatility are summarized in Figure 5(a). We see that DNS
and SMTP have the smallest volatility values over all collab-
orative applications. Note that DNS is generally less volatile
than SMTP so we can always use this distinctive behavior
of DNS to distinguish between the two. We also observe
that eDonkey is the P2P protocol with the lowest volatil-
ity. We speculate this is because eDonkey utilizes a hybrid
architecture of both long-lived servers and a standard P2P
architecture. We see this as evidence that our approach may
be able to distinguish between distributed and centralized
P2P architectures, but we leave this for future work.

Edge Consistency: A distinctive characteristic for some

applications is the consistency of their interactions. We cap-
ture this behavior using the Jaccard Index on the edges of
the graphs. Intuitively, TDGs that don’t change signifi-
cantly over time have a large number of identical edges. The
NTP has this property since NTP nodes constantly commu-
nicating with a small subset of their peers leading to graphs
that change very slowly over time. In Figure 5(b), we show
the Edge JI for our set of collaborative applications. From
the figure we can see that NTP stands out from the remain-
ing of collaborative applications.

Long Stay or Early Departure: On all four backbone
locations we had a strong presence of the Half Life online
game which allowed us to study this game application in
more detail. Our findings suggest that a known behavior of
online gamers can also be observed using TDGs. In partic-
ular, gamers are known to query a large number of game
servers in order to identify a server that satisfies their re-
quirements for game type, round trip delay, and number of
active players [14, 25]. If the player finds a server she likes,
then she will continue to play the game, otherwise she will
leave the system. This behavior is captured by the small
number of 2N-edges, as seen in Figure 5(c), where Half Life
has the smallest percentage of 2N-edges.

3.3 TDG Classification Process
Our proposed classification process is graphically illus-

trated in Figure 6. The decision tree is derived by hand
based on the following rule. From top to bottom, at each
level of the decision tree we classify the application(s) that
is(are) more easily identified. At the first stage, we use
static graph properties to group applications into collabo-
rative and non-collaborative sets. We then use binary graph
metrics for dynamic behavior to identify NTP, Games, and
DNS/SMTP. Using this process, we are able to correctly
classify all TDGs from our 4 different backbone locations
using a common set of thresholds. An automatic pro-
cess for deriving such classifications trees would be a subject
for further work.

To further evaluate our TDG classifier, we have incorpo-
rated all our heuristics on the Graption P2P traffic classi-
fier [16] using our 3 traces to train the classifier and the PAIX
trace for testing. Our classifier identified P2P traffic with
above 92% accuracy using only behavioral-based rules with-
out using port-based heuristics (which existed in the original
version of the system). Note that BLINC [21] achieves 85%
accuracy on the same trace. BLINC requires port-based fil-

247

Client
Server

Collaborative?

Edge
Consistency

NTP
Game

Heuristic

GAME
Edge

Volatility

High?

SMTP DNS

P2P

True False

Yes No

True False

FalseTrue

Yes No

Static
Metrics

Dynamic
Metrics

Figure 6: Final TDG-based classification process combining
static (unary) and dynamic (binary) metrics. From top to bot-
tom, at each level of the decision tree, the classifier selects the
easier to identify application.

tering for the DNS application and 27 other parameters in
order to achieve this accuracy [22].

The BitTorrent (BT) protocol has dynamic behavior and
an InO threshold similar to other P2P applications, but it
shows lower average degree. This could be due to early
stages in the use of BT in 2004. Since we only observe
BT from a single location we cannot generalize our findings.
Obtaining more recent traces with ground truth would allow
a more robust characterization. Even with BT we can create
a simple classification rule. To show this, we included BT in
or P2P set and repeated the aforementioned process. The
C4.5 decision tree increased by one rule to include BT by
using two graph metrics (95th percentile of the graphs in-
degree and the max out degree). The classifier correctly
classified (99.83%) of the graphs without affecting the size
of required training set.

Discussion: Our study shows that TDG-based features
can be used to discriminate among different applications
even when TDGs are observed from different backbone loca-
tions. This observation suggests that our selection of metrics
and observed properties are not specific to a single location.
In addition, we acknowledge that, in some cases, it is easy
to identify a group of flows as belonging to a legacy ap-
plication such as DNS without using TDGs. For example,
one could use port numbers or IP addresses of well-known
servers. However, these methods have their limitations. For
example, port numbers can be easily faked and IP addresses
may not be usable in an anonymized trace.

4. DETECTING CHANGES IN TDGS

Network administrators need to be able to detect changes
and anomalies. Here we focus on polymorphic blending, an
anomalous behavior in which an evading application such
as a P2P file sharing protocol, attempts to pass as a legacy
application. Currently, because of rate limiting policies en-
forced by many ISPs, P2P applications use polymorphic
blending by typically changing their port to a number used
by a legacy application (e.g., port 80). We expect such at-
tacks to increase in intensity and sophistication making the

problem of detecting these anomalies more challenging for
network administrators.

We emphasize that our goal here is not to find specific mis-
behaving nodes, although TDGs should be useful for such
a task. Rather, here we are showing only that TDGs can
be useful to detect the change in the profile of a legacy ap-
plications and inform the network administrator about the
event. Extending the approach to the task of identifying
misbehaving entities remains a promising subject for future
work.

4.1 Experimental Setup
To detect polymorphic blending, the monitoring system

must first generate a profile of each application under nor-
mal conditions. Then, it must monitor the TDGs of a set
of applications (e.g., DNS), looking for behaviors that de-
viate from their expected profile. Throughout this section,
we use the term target applications to refer to the set of
legacy applications that we monitor and the term polluting
applications for the “intruding” applications.

Applications Involved. Our set of target applications
includes {HTTP, DNS, SMTP, NTP} and the set of pol-
luting applications includes {Gnutella, eDonkey, FastTrack,
MP2P, WinMX}. All target and polluting applications are
present in all our backbone locations. This allows us to com-
pare the detection ability of each metric over the same appli-
cation at different points in time and over different backbone
locations. In a practical setting, we will also be interested
to detect changes in a small set of legacy applications. The
four target applications we inspect here account for more
than 50% of the flows in all our traces.

Traces Used. For the experiments that follow, we use
traces PAIX, KSCY, and CLEV which contain two hours of
contiguous traffic. Such traces are required for applying our
dynamic (binary) metrics. We assume that our traces repre-
sent the behavior of the application under normal (without
pollution) conditions. We verified this using payload analy-
sis and methods from [22, 16].

Graph Metrics. For each five-minute snapshot we
compute all static (unary) metrics as listed in §3.2.1. From
the binary metrics, we compute the Jaccard Index (JI) for:
nodes, edges, VInO, Vsnk, and Vsrc; the 2N-edges, 1N-edges,
0N-edges; and the graph edit distance. We also compute
each of the above metrics for particular subsets of the edges:
(a) the top 10% edges from each graph ordered using the
MED (which we defined to stand for minimum endnode de-
gree of an edge), (b) the bottom 10% edges from each graph
ordered using MED, (c) top 10% edges from each graph or-
dered using the number of bytes transfered over the edge,
and (d) bottom 10% edges from each graph ordered using
the number of bytes. Intuitively, by sorting edges according
to their MED and number of bytes gives a more focused view
to the network by isolating edges with high/low endnode de-
grees and high/low traffic intensities respectively.

For unary metrics, we calculate all metrics over each five-
minute interval resulting to 24 values for each target applica-
tion over a two hour-long trace. The binary metrics are ap-
plied to five-minute snapshots with a 30 minutes gap; using
a sliding window of 30 minutes and a 5 minute step. Time
gaps between 20 to 30 minutes (depending on the trace) give
similar results and are omitted due to space limitations. Us-
ing a 30 minute window, for each target application, we get
18 values for each binary metric over the two hour trace.

248

Experimental Methodology. For evaluation, we use
standard methods from anomaly detection [6] and count the
number of true positive (TP), true negative (TN), false pos-
itive (FP), and false negative (FN) alarms. For each tar-
get application, we first generate a sequence of snapshots
that contain no injected P2P edges and compute all met-
rics (unary and binary). For each metric, we use half of the
values to learn the behavior of the target application under
normal (no pollution) conditions. The remaining values are
used to count for any wrong alarms (FP) and for no-alarms
(TN). We measure the level of pollution using the ratio of
edges from the P2P TDG that we inject to the target appli-
cation’s graph; which we refer to as pollution intensity.
We “pollute” all target applications each time with a differ-
ent polluting P2P and different pollution intensity {0.001,
0.01, 0.1, 0.5, 1}. For each experiment, we have a single
target and a single polluting application. Using the previ-
ously extracted profile of the target application, we look for
deviations that can trigger an alarm. Given that there is
pollution, all alarms are counted as TP and all no-alarms as
FN. We elaborate more on the metrics (unary and binary)
that we used and our detection processes later in the section.
We here note that for injected P2P traffic, we use the actual
P2P IPs and edges present in the interval we are polluting.
For example, to pollute the first five minute DNS snapshot
using Gnutella, we will use the actual Gnutella edges from
the same trace that are present during the first five min-
utes. In this way, we simulate a real-world scenario where
the Gnutella application changes its traffic to look like DNS,
say in terms of port number or flow characteristics, and thus,
appears in the same TDG as DNS.

4.2 Experimental Results
Analyzing both static and dynamic graph properties can

result in a large collection of metrics. Our first goal is to
select the best metrics for the task at hand.

Let us see an example to get the visual intuition of the
process. In Figure 7 we show an example of two candidate
features, namely the average degree (bottom) and the num-
ber of edges (top). Our goal here is to detect the pollution
by Gnutella to the Web TDG over a month long trace2. Un-
til 08/09 we do not inject any Gnutella traffic, so the normal
and polluted traffic streams are the same. At 12/09 we be-
gin injecting Gnutella traffic thereby causing the metrics for
the normal (without Gnutella) and the polluted Web TDGs
(with Gnutella) to deviate. We see that the average degree
appears to offer better discrimination between the normal
and polluted streams, and hence rates to be more useful in
designing a test for anomalies. It is clear that we need to
select our metrics carefully.

Selecting Relevant Metrics. To evaluate each metric
we use Accuracy which is defined as (TP + TN)/(TP +
TN + FP + FN). For these experiments, an alarm is trig-
gered when the value of a metric deviates X number of
standard deviations from the average value over the train-
ing period (under no pollution). To rank metrics we do the
following. We calculate the average accuracy over a series
of experiments where we vary: the target application, the
polluting application, the pollution intensities, and the de-
tection threshold (1,2,3 and 4 standard deviations). From
our results we observed that entropy metrics have lower

2Because of technical problems, for this trace, there is no
data between the period 08/09 and 12/09.

1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

07/09 14/09 21/09 28/09

A
ve

ra
ge

 D
eg

re
e

Polluted
Normal

20
40
60
80

100
120
140
160
180
200

07/09 14/09 21/09 28/09

E
dg

es
 (

x1
,0

00
) Polluted

Normal

Figure 7: The changes in average degree (bottom) and the
number of edges (top) of the Web TDG after we inject Gnutella
traffic. Plots show both the values of the metrics under no
pollution (normal) and after pollution (polluted).

accuracy compared to other metrics, such as: directional-
ity (InO), component sizes, and average degree. Moreover,
component-based metrics work well, and the size of the 10
LWCCs (Top10) is consistently among the best metrics se-
lected. Component-based metrics work well since, in most
cases, P2P nodes tend to form their own components that
are disconnected from the components of the target applica-
tion. We repeated the same experimental process using all
our dynamic metrics. It is interesting to note that the dy-
namic metrics appear to be more application-specific. Given
the distinct dynamic behavior of different TDGs (as shown
in §3) this observation is expected. For example, NTP is
more sensitive to the JI of edges, as we have seen in §3.2.2,
whereas DNS is more sensitive to 0N-Edges. This suggests
for a more “personalized” selection of metrics for different
target applications.

Detection Method. We first measure the average and
standard deviation of each metric over the normal period.
We set a “violation” to be triggered when a metric value
exceeds three standard deviations from the average. Our
selection of the threshold works well for all traces and for
both static and dynamic metrics. Such basic distance-based
detection methods are used in other areas of anomaly de-
tection [6] and have showed success in detecting network
anomalies [23]. To reduce false positives, we use a more
advanced detection process. We give an alarm after three
consecutive “violations” on the same metric, for any of the
metrics we use. We can use this very simple heuristic under
the assumption that a P2P application that uses polymor-
phic blending will do so persistently over time (otherwise
there is little gain from blending, and relatively little cost
of not detecting it). This will result in multiple alarms over
time.

For our experiments, we use three configurations, each in-
volving ten metrics: (a) monitoring only the top ten static
metrics, (b) monitoring only the top ten dynamic metrics,
and (c) monitoring the top ten from both the static and
dynamic metrics together (still ten metrics in total). The
best metrics are selected using our ranking method (Select-
ing Relevant Metrics).

Using the combination of static and dynamic metrics gives

249

 0

 0.2

 0.4

 0.6

 0.8

 1

0.001 0.01 0.1 0.5 1

R
at

io
 o

f S
uc

ce
sf

ul
l D

et
ec

tio
ns

Pollution Intensity

Dynamic
Static

Combination

Figure 8: Successful detections over different pollution in-
tensities. For small intensities, our dynamic metrics result in
more detections compared to the static. The combination of
dynamic and static metrics gives better results in the majority
of our experiments.

higher detection ratio. The results for all three configura-
tions are summarized in Figure 8 for the KSCY trace. Us-
ing the best ten metrics and our detection heuristic resulted
in zero FP in all experiments. Note that for each pol-
lution intensity we measure the alarms for each of the four
target applications for each of the five polluting P2P proto-
cols. The reported successful detection represents the ratio
of successful detection over all twenty experiments (one for
each target and polluting pair). One important observation
from Figure 8 is that the combination of the best static and
dynamic metrics works better than using any of the two
groups in isolation. We observed this for the majority of
our experiments. In Figure 8, we see that our successful
detections are high, especially for pollution above 0.1. We
also have many detections for pollution intensities as small
as 0.01 and 0.001. Considering the large size of most of the
target applications compared to the polluting applications
our results are very good for most configurations. Similar
observations were reported for the other traces as well.

Dynamic metrics result in more detections for small pol-
lution intensities. From the results in Figure 8, we see that
for small pollution intensities (≤ 1%) dynamic metrics are
more sensitive in detecting anomalies. Most of the detec-
tion concern DNS and NTP TDGs. We attribute this to the
very characteristic dynamic behavior of these applications
compared to P2P (see Figure 5). For example, even a small
number of P2P edges can change the edge volatility of DNS
making it easy to detect the change. We have observed this
behavior in all our traces.

In Figure 9, we show the overall detection performance
using the combination of static and dynamic metrics over
a range of pollution intensities for three different backbone
links. Using the combination, we achieved above 68% de-
tection ratio for pollution intensities as low as 10%, which is
very encouraging. Our results show that using this combina-
tion of static and dynamic metrics works better in all cases.
In the future, we plan to use methods that can better utilize
information from all the metrics, both static and dynamic.

Discussion: Other network changes can be caused by
misbehaving nodes3 and upgrades to the existing network in-

3In [7], the authors show how the size of the LWCC for

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.001 0.01 0.1 0.5 1

R
at

io
 o

f S
uc

ce
sf

ul
l D

et
ec

tio
ns

Pollution Intensity

PAIX
CLEV
KSCY

Figure 9: Detection rate per pollution intensity for three
different backbone links.

frastructure (e.g., the addition/removal of high degree servers).
Incorporating additional causes of anomalies appropriately
is a subject for future work.

5. RELATED WORK
Many papers use graphs to model various interactions in

network settings. For example, trust propagation networks
and other social networks (e.g., [42]) are often expressed as
graphs. What separates our paper from others is the fo-
cus on dynamically changing graphs, and the application
to network traffic classification and anomaly detection. We
provide comparisons with the most closely related work be-
low.

The first use of TDGs we know of was for the detection
of worm activities within enterprise networks [36, 10]. Their
main goal was to detect the tree-like communication struc-
ture of worm epidemics within an enterprise. This character-
istic of worms was also used for post-mortem trace analysis
using backbone traces [40]. More recent studies use graph
techniques to detect hit-list worms within an enterprise net-
work, based on the observation that an attacker will alter
the connected components in the network [7].

Graph-based Flow Classification (Graption) [16].
In our previous work on TDGs we focused on graphs de-
rived from “static snapshots”, or a single graph representing
a short period of time [17, 16]. In Graption [16], the static
profile of P2P applications was used to classify their traf-
fic. In more detail the method in [16] works as follows.
Graption first uses unsupervised methods (clustering) to
automate the grouping of network flows into different ap-
plications using flow-level features (e.g., payload-signatures,
packet sizes, etc.). The output of this step is a set of groups
each containing flows from (ideally) a single application but
without knowledge of which application is in each group.
The network-wide profile of P2P traffic is then used to iden-
tify which groups belong to P2P applications. Our current
work represents a significant advance in several regards: we
introduce dynamic metrics, allowing us to go beyond a sin-
gle snapshot; and we perform a large-scale study of TDGs
with traces over multiple time periods and locations in the
backbone.

the Web application changes during the presence of a hit-
list worm. Other examples of misbehaving nodes can be
triggered by scanning activity.

250

A recent work by Jin et al. [18] uses graph-partitioning
methods to extract and study smaller communities (sub-
graphs) within a TDG. Such communities can represent com-
munications between known servers (e.g., Google) and clients
accessing the particular service. In [18], they also study
the temporal properties of the subgraphs showing that they
are persistent over time. The work in [18] is different from
our study of the dynamic characteristics of TDGs where the
changes of the entire graph are used to describe the dynamic
behavior of an application (e.g., DNS).

Another set of related work studies the connectivity pat-
terns of users within enterprise networks for the extraction
of Communities of Interest (CoI) [1, 37, 28, 38]. Any partic-
ular CoI will contains enterprise hosts with similar behavior
(e.g., connections) and habits (e.g., a common mail server).
In [37], graphs are used as a means of modeling connec-
tions and grouping similar hosts within corporate networks.
Again, these papers differ substantially from ours in that
we focus on using graphs to understand and model network-
wide behavior of Internet applications.

Anomaly detection is a well studied research area [23, 6].
However, the problem of detecting polymorphic blending at-
tacks by P2P applications is new and to the best of our
knowledge has not been addressed before. Most prior ef-
forts on anomaly detection focused on changes in resource
consumption [23], without monitoring the behavior of par-
ticular applications. The problem of profiling applications in
the backbone was the topic in [41], where they used entropy
to summarize distributions and group related applications
(e.g., client-server) together. However, the authors in [41]
did not address the detection of changes in the profile of net-
work applications. We have included entropy metrics in our
feature set for profiling network traffic. Indeed, we build on
prior efforts on application profiling [41] and anomaly detec-
tion [23] by utilizing unary and binary metrics for TDGs.

Tools for the analysis and visualization of network traffic,
such the Autofocus tool [13] and Plonka’s FlowScan [33]
can infer volume-based anomalies by highlighting patterns
of large resource consumption in network data. Our work
can be seen as a complementary approach to these tools, by
providing a means to visualize, understand, and analyze the
static and dynamic network-wide behavior of applications.

A host-based method for traffic classification is BLINC [21].
In [21], “Graphlets” were used as method to model the flow
level characteristics of particular IP address (host). BLINC
hints at the benefit of analyzing the node interaction at the
“social” level, but it ultimately follows a different path fo-
cusing on the behavior of one node at a time and does not
use network-wide graphs or graph differences as we do here.

Passive monitoring of P2P overlays is studied by Sen et
al. [35], targeting mainly the profiling of P2P hosts, includ-
ing the measurement of bandwidth usage, how long they
remain active, etc. The goal of the measurement is to sup-
port traffic engineering and not for profiling the application.
A similar study for large DNS traces [8] uses graphs in the
context of classifying DNS servers according to their role in
the DNS-hierarchy and for generating a space-efficient DNS
traffic summary. Moreover, neither work uses the dynamic
nature of the graphs as we define them here.

A recent study by Latapy et al. [24] measured the evolu-
tion of TDG-like graphs between all the hosts exchanging
a single packet of any type. The high aggregation of this
graph is very different from our separate view of the traffic

generated by different applications. Meiss et al. [30] used
sampled Web flows to extract statistics for the behavior of
clients and servers regarding their cardinalities and the level
of traffic exchanged between them. While similar in spirit,
we believe our work greatly expands and improves on these
approaches.

Polymorphic Blending (PB) Attacks. These at-
tacks have been introduced by Fogla et al. [15] in the context
of network intrusion detection. The basic idea is very sim-
ple. If an attacker mimics the behavior of legitimate traffic,
it can be very hard for an intrusion detection system (IDS)
to identify the intruder. This is similar to the adversarial
classification problem [9] where an adversary uses its knowl-
edge about the IDS in order to constantly change its pro-
file and evade detection. A general solution to the problem
does not exists. In [15] they suggest a method to address
the problem by applying multiple IDSes that operate at dif-
ferent levels. Our approach follows this basic direction by
detecting PB attacks at the level of network-wide interac-
tions using TDGs.

6. CONCLUSIONS
The key contribution of this paper is the introduction of

the study of dynamic behaviors in graph-based traffic anal-
ysis. We achieve this by expanding the definition of TDGs
to a collection of graph snapshots of network behavior over
time. To the best of our knowledge, this is the first study
that uses dynamically changing graphs to characterize and
classify network traffic.

We explore metrics that effectively capture and summarize
the changes of a TDG over time and apply our approaches
to two network monitoring problems: traffic classification
and the detection of polymorphic blending attacks. Our
results show that when studying TDGs a combination of
static (unary) and dynamic (binary) metrics give higher de-
scriptive power to the use of TDGs. Our findings are very
promising and strongly suggest that our methods can form
the basis for a new wave of techniques for traffic analysis
and monitoring.

7. ACKNOWLEDGMENTS
Support for Marios Iliofotou and Michalis Faloutsos is pro-

vided by the NSF grant NETS-0721889 and URP grants
from Cisco Systems, Inc. Michael Mitzenmacher is sup-
ported in part by NSF grant CNS-0721491 and a URP grant
from Cisco Systems, Inc. The computer resources provided
by SDSC’s are founded by the National Science Foundation
TeraGrid project. Support for CAIDA’s Internet traces is
provided by the National Science Foundation, the US De-
partment of Homeland Security, CAIDA Members, and the
DatCat system.

8. REFERENCES
[1] W. Aiello, C. Kalmanek, P. McDaniel, S. Sen,

O. Spatscheck, J. Merwe. Analysis of communities of
interest in data networks. In PAM, 2005.

[2] L. Bernaille, R. Teixeira, I. Akodjenou, A. Soule, and
K. Salamatian. Traffic Classification on the Fly. ACM
SIGCOMM CCR, 36(2):23–26, April 2006.

[3] L. Bernaille, R. Teixeira, and K. Salamatian. Early
Application Identification. In ACM CoNEXT, 2006.

251

[4] CAIDA Org. The CoralReef Project,
http://www.caida.org/tools/measurement/coralreef/.

[5] CAIDA Trace Project. http://www.caida.org.

[6] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
Detection: A Survey. ACM Computing Surveys, 2009.

[7] M. P. Collins and M. K. Reiter. Hit-List Worm
Detection and Bot Identification in Large Networks
Using Protocol Graphs. In RAID, 2007.

[8] C. Cranor, E. Gansner, B. Krishnamurthy, and
O. Spatscheck. Characterizing Large DNS Traces
Using Graphs. In ACM IMW, 2001.

[9] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and
D. Verma. Adversarial Classification. In ACM
SIGKDD, 2004.

[10] D. Ellis, J. Aiken, K. Attwood, and S. Tenarglia. A
Behavioral Approach to Worm Detection. In ACM
CCS WORM, 2004.

[11] J. Erman, M. Arlitt, and A. Mahanti. Traffic
Classification Using Clustering Algorithms. In ACM
SIGCOMM MineNet, 2006.

[12] J. Erman, A. Mahanti, M. Arlitt, and C. Williamson.
Identifying and Discriminating Between Web and
Peer-to-peer Traffic in the Network Core. In WWW,
2007.

[13] C. Estan, S. Savage, and G. Varghese. Automatically
Inferring Patterns of Resource Consumption in
Network Traffic. In ACM SIGCOMM, 2003.

[14] W. Feng, F. Chang, W. Feng, J. Walpole. A Traffic
Characterization of Popular On-line Games.
IEEE/ACM Transactions on Networking,
13(3):488–500, 2005.

[15] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and
W. Lee. Polymorphic Blending Attacks. In USENIX
Security Symposium, 2006.

[16] M. Iliofotou, H. Kim, P. Pappu, M. Faloutsos,
M. Mitzenmacher, and G. Varghese. Graph-based P2P
Traffic Classification at the Internet Backbone. In
IEEE Global Internet Symposium, 2009.

[17] M. Iliofotou, P. Pappu, M. Faloutsos,
M. Mitzenmacher, S. Singh, and G. Varghese. Network
Monitoring Using Traffic Dispersion Graphs (TDGs).
In ACM IMC, 2007.

[18] Y. Jin, S. Esam, and Z. L. Zhang. Unveiling Core
Network-Wide Communication Patterns through
Application Traffic Activity Graph Decomposition. In
ACM SIGMETRICS, 2009.

[19] T. Karagiannis, A. Broido, N. Brownlee, kc claffy, and
M. Faloutsos. Is P2P dying or just hiding? In IEEE
GLOBECOM, 2004.

[20] T. Karagiannis, A. Broido, M. Faloutsos, and kc claffy.
Transport Layer Identification of P2P Traffic. In ACM
IMC, 2004.

[21] T. Karagiannis, K. Papagiannaki, and M. Faloutsos.
BLINC: Multi-level Traffic Classification in the Dark.
In ACM SIGCOMM, 2005.

[22] H. Kim, K. Claffy, M. Fomenkov, D. Barman,
M. Faloutsos, and K. Lee. Internet Traffic
Classification Demystified: Myths, Caveats, and the
Best Practices. In ACM CoNEXT, 2008.

[23] A. Lakhina, M. Crovella, and C. Diot. Mining
Anomalies Using Traffic Feature Distributions. In

ACM SIGCOMM, 2005.

[24] M. Latapy and C. Magnien. Complex Network
Measurements: Estimating the Relevance of Observed
Properties. In IEEE INFOCOM, 2008.

[25] Y. Lee, S. Agarwal, C. Butcher, and J. Padhye.
Measurement and Estimation of Network QoS Among
Peer Xbox 360 Game Players. In PAM, 2008.

[26] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and
G. M. Voelker. Unexpected Means of Protocol
Inference. In ACM IMC, 2006.

[27] P. Mahadevan, D. Krioukov, B. Huffaker,
X. Dimitropoulos, kc claffy, A. Vahdat. The Internet
AS-Level Topology: three data sources and one
definitive metric. ACM SIGCOMM CCR, 36(1), 2006.

[28] P. McDaniel, S. Sen, O. Spatscheck, J. Merwe,
B. Aiello, C. Kalmanek. Enterprise Security: A
Community of Interest Based Approach. In NDSS,
2006.

[29] A. McGregor, M. Hall, P. Lorier, and J. Brunskill.
Flow Clustering Using Machine Learning Techniques.
In PAM, 2004.

[30] M. Meiss, F. Menczer, and A. Vespignani. On the
Lack of Typical Behavior in the Global Web Traffic
Network. In WWW, 2005.

[31] A. Moore and D. Zuev. Internet Traffic Classification
Using Bayesian Analysis Techniques. In ACM
SIGMETRICS, 2005.

[32] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina.
Web Graph Similarity for Anomaly Detection.
Technical report, Stanford University, 2008.

[33] D. Plonka. FlowScan: A Network Traffic Flow
Reporting and Visualization Tool. In LISA, 2000.

[34] S. Sen, O. Spatscheck, and D. Wang. Accurate,
scalable in-network identification of p2p traffic using
application signatures. In WWW, 2004.

[35] S. Sen and J. Wang. Analyzing Peer-to-peer Traffic
Across Large Networks. IEEE/ACM Transaction on
Networking, 12(2):219–232, 2004.

[36] Steven Cheung et al. The Design of GrIDS: A
Graph-Based Intrusion Detection System. UCD
Technical Report CSE-99-2, 1999.

[37] G. Tan, M. Poletto, J. Guttag, and F. Kaashoek. Role
Classification of Hosts within Enterprise Networks
Based on Connection Patterns. In USENIX Annual
Technical Conference, 2003.

[38] J. Tolle and O. Niggenmann. Supporting Intrusion
Detection by Graph Clustering and Graph Drawing.
In RAID, 2000.

[39] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan
Kaufmann, 2nd edition, 2005.

[40] Y. Xie, V. Sekar, D. Maltz, M. Reiter, and H. Zhan.
Forensic Analysis of Epidemic Attacks in Federated
Networks. In IEEE ICNP, 2006.

[41] K. Xu, Z. Zhang, and S. Bhattacharyya. Profiling
Internet Backbone Traffic: Behavior Models and
Applications. In ACM SIGCOMM, 2005.

[42] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman.
SybilGuard: Defending Against Sybil Attacks via
Social Networks. In ACM SIGCOMM, 2006.

252

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

