
SafeGuard: Safe Forwarding during Route Changes

Ang Li
Dept. of Computer Science

Duke University
angl@cs.duke.edu

Xiaowei Yang
Dept. of Computer Science

Duke University
xwy@cs.duke.edu

David Wetherall
Intel Research Seattle &
University of Washington

djw@cs.washington.edu

ABSTRACT
This paper presents the design and evaluation of SafeGuard, an
intra-domain routing system that can safely forward packets to their
destinations even when routes are changing. SafeGuard is based on
the simple idea that packets carry a destination address plus a lo-
cal estimate of the remaining path cost. We show that this simple
design enables routers to detect path inconsistencies during route
changes and resolve on a working path for anticipated failure and
restoration scenarios. This in turn means that route changes do
not disrupt connectivity even though routing tables are inconsis-
tent over the network. We evaluate the router performance of Safe-
Guard using a prototype based on NetFPGA and Quagga. We show
that SafeGuard is amenable to high-speed hardware implementa-
tion with low overhead. We evaluate the network performance of
SafeGuard via simulation. The results show that SafeGuard con-
verges faster than a state-of-the-art IP fast restoration mechanism
and reduces periods of disruption to a minimal duration, i.e., the
failure detection time.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design; C.2.2 [Computer-Communication Networks]:
Network Protocols—Routing Protocols

General Terms
Algorithms, Design, Performance, Reliability.

Keywords
Routing, convergence, protocols.

1. INTRODUCTION
One of the well-known problems in networking is to reduce for-

warding disruptions while routes are changing. When a network
change occurs (e.g., a link goes down), routers will be informed and
recompute their forwarding tables to adapt to the change, a process
known as routing convergence. During convergence, routers ad-
jacent to failures may not have valid routes, or routers may have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNE X T ’09, December 1–4, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-636-6/09/12 ...$10.00.

inconsistent next hop sequences that form temporary loops called
micro-loops. Micro-loops can cause packet loss due to TTL expi-
ration. They can also amplify traffic that is trapped in a loop and
congest the network links, causing collateral damage to other traffic
not affected by the topology change.

Unfortunately, network changes happen frequently and are part
of daily operations [20, 28], while real-time applications such as
VoIP, online gaming, video conferencing, and IPTV need network
services that are free of interruption [5, 9]. Even sub-second peri-
ods of packet loss or delay may adversely impact the users of these
applications [9, 29], but the present Internet routing system can
easily produce noticeable periods of disruption following a change
in the network, e.g., a failure or restoration of equipment, an ISP
policy change, or a traffic engineering route adaptation.

This long-standing networking problem has brought forth a ple-
thora of solutions both from academia and industry: [8, 13, 14, 15,
16, 17, 21, 23, 25, 31, 37]. However, all of the effective solu-
tions [14, 16, 21, 25] that can minimize the disruption period to
its theoretical minimal (i.e., the failure detection time) require a
burdensome change of the underlying routing protocol; some also
require on-demand route computation and variable packet header
length. Consensus routing replaces routing convergence with dis-
tributed consensus protocol that synchronizes route updates among
routers [21]. Other approaches introduce a strict update order [14,
17] that prevents routers from independently updating their rout-
ing tables in parallel. The convergence-free routing [25] approach
abandons routing convergence, but requires packets to carry all
failed components they encounter and routers to compute paths on
demand; it also requires an additional centralized protocol to dis-
seminate and update static network maps at routers.

A simple, effective, and efficient solution that minimizes for-
warding disruptions while routes are changing remains elusive. By
simple, we mean a solution that does not increase the complex-
ity of routing convergence. Link state routing protocols such as
OSPF introduce no state dependency among routers and allow each
router to dynamically update their routing tables independently and
in parallel. It has been shown to have the least complexity and con-
verge faster than other alternative convergence proposals [12]. By
effective, we mean to minimize periods of disruption to the failure
detection time, a minimal period that cannot be shortened without
physical layer improvement. By efficient, we mean a solution that
is amenable for high-speed hardware implementation and retains
much of the IP forwarding design: simple table lookups with fixed
packet header length. We recognize that satisfying all three goals
may not align well with commercial market constraints such as im-
malleable router hardware, but we believe an intellectual endeavor
to explore this unique design point is worthwhile and may influence
future network designs.

301

As a first step, this paper presents a new approach called Safe-
Guard that is simple, effective, and efficient at minimizing network
service interruptions for intra-domain route changes. In SafeGuard,
a packet carries the cost of the remaining path to its destination.
Routers use this cost to detect route changes and resolve on a valid
alternative path. The routing system can rapidly disseminate the
news of a failure (or a restoration) to quickly return to its optimal
state. It can do this in any update order without the concern of
breaking connectivity. We believe that this work is the first design
to achieve the effective and efficient goals without increasing the
complexity of routing convergence.

A key observation underlying this design is that the remaining
path cost succinctly encodes valuable path information that we can
leverage. On one hand, it can be embedded into a fixed-length
field, similar to a forwarding label [34]; on the other hand, it sheds
light on what links lie on the remaining path, approximating the
effect of a full source route. When a router’s local path cost dif-
fers from that carried by a packet, it indicates route changes; the
cost difference informs a router whether its local path is valid or
not, as outdated paths using failed components would have lower
costs than a working one. A router can use this information to se-
lect a working path from a set of pre-computed alternatives and
forward packets to their destinations along the working path. Of
course, pre-computation limits protection to anticipated failure or
restoration scenarios (such as single links, nodes, or shared risk link
groups), but the trade-off is favorable: multiple independent events
rarely occur in complete synchrony, and events that are off by a
few hundreds of milliseconds (i.e., the routing converge periods)
are fully protected as consecutive anticipated events.

We evaluate SafeGuard in terms of both router and network per-
formance. To assess router performance, we implement SafeGuard
in hardware using the NetFPGA platform [18] and in software us-
ing the Quagga routing suite [4]. Our experiment results show
that SafeGuard is amenable to high-speed hardware implementa-
tion and introduces memory and computational overhead compa-
rable to other practical solutions that use pre-computed paths to
suppress failures [10].

We use simulations over a range of real, inferred, and randomly
generated topologies to assess network performance. We find that
no packets are trapped in loops with SafeGuard even when two
independent links fail simultaneously, versus micro-loops that can
amplify traffic up to 50 folds and occur on average for 16% of the
routing transitions we test. After single component failures, Safe-
Guard fully restores connectivity after the failure detection time.
Further, SafeGuard achieves the same convergence time as vanilla
OSPF, which is up to 15% shorter than the convergence time of a
state-of-the-art loop-avoidance mechanism.

The rest of the paper is organized as follows. § 2 introduces
the problem we address. § 3 and § 4 describe SafeGuard and its
properties. § 5 evaluates the router and network performance of the
SafeGuard design. We compare SafeGuard with related work in § 6
and conclude in § 7.

2. COST AS A SAFEGUARD
The SafeGuard design aims to provide a simple and efficient so-

lution that reduces forwarding disruption during route changes to
the failure detection time without altering or increasing the com-
plexity of the routing convergence process. To achieve this goal,
we make each packet carry the remaining path cost to its destina-
tion and routers pre-compute alternative paths for anticipated net-
work changes. In this section, we first use a simple example to
illustrate how SafeGuard works. We present the detailed design in
the following section.

Figure 1: Forwarding using cost-carrying packets on the Abi-
lene network.

2.1 Using Cost to Resolve Inconsistencies
Figure 1 shows an example using the Abilene network topol-

ogy. All link weights are taken from the Abilene network configu-
ration [1]. Suppose the link between Denver and Kansas City fails,
and the Denver node has updated its forwarding table to use the
Sunnyvale node to reach Kansas City. The Sunnyvale node has not
learned of the failure nor updated its forwarding table. Without car-
rying a path cost, packets will loop temporarily between Sunnyvale
and Denver, as the Sunnyvale node is still using the outdated next
hop Denver to reach Kansas City.

If instead, packets carry the remaining path cost and routers up-
date this cost at each hop using their local estimates, the Sunnyvale
node will stamp the remaining path cost to Kansas City (639) into
the packets it forwards to Denver. As the Denver node has updated
its forwarding table to bypass the failed link to Kansas City, its
local path cost (4456) is larger than the packet cost (639). This
difference indicates that routes are changing and some node may
have incorrect forwarding paths. More importantly, it suggests that
Denver’s path bypasses a failure that has not been seen by its up-
stream router Sunnyvale. This is because the updated topology that
does not contain a failed component must have “longer” shortest
paths. Therefore, the Denver node can infer that its path is work-
ing. It then forwards the packet to its default next hop Sunnyvale
and updates the packet cost to the remaining path cost (3161).

Here we emphasize again that what distinguishes path cost from
a path identifier (e.g., an MPLS label) is the ability to resolve which
path may have included a failed (or a newly restored) component.
This in turn assists a router to choose a working path. In contrast,
if a packet simply carries a path identifier, a router may detect a
path inconsistency, but cannot tell which path, its default path or an
upstream router’s default path, is a working path.

When the Sunnyvale node receives the packet with a path cost
3161 from the Denver node, it can infer that its default path has a
failure of which it has not learned. This is because its local cost
(1934) is lower than the packet cost (3161). Instead of using its
default path, the Sunnyvale node will try to find an alternative path
that matches the packet cost. By pre-computing all alternative paths
that bypass a single component on its default shortest paths, the
Sunnyvale node is able to map the path cost (3161) to an alterna-
tive path: Sunnyvale→Los Angeles→Houston→Kansas City, and
forwards the packet to the correct next hop (Los Angeles) without
forming a loop.

2.2 Distinguishing Equal-Cost Paths
As shown in the above example, after detecting a path inconsis-

tency, a router may also use the path cost carried by a packet to
select a working path that matches the cost. This would work well

302

Figure 2: In this simple topology each link has the cost of one.
There are two equal cost paths from a to c: a → b → c and
a→d→c.

if different paths to the same destination have different costs. How-
ever, practical network configurations may have equal cost paths
for load balancing and backup reasons. When this occurs, a path
cost may not reliably identify a working path as shown in Figure 2.
There are two equal-cost paths from a to c: a→b→c and a→d→c.
Suppose the node d that detects the link failure to c reroutes the
packet to a with a remaining path cost 2. When node a receives
this packet, the packet cost matches both paths: one valid and one
failed. The node a may erroneously forward the packet along the
invalid path a→d→c.

To address this issue, the SafeGuard design adds a random noise
to a regular link cost to help distinguish equal-cost paths. With this
design, a node is able to select a valid alternative path with high
probability. We describe this design in more detail.

3. DESIGN
The SafeGuard design has four main components: enhanced link

and path costs, packets that carry enhanced path costs, a pre-computed
alternative path database (APD) maintained by routers, and a for-
warding algorithm that is provably safe and can forward packets
to their destinations without forming loops during anticipated route
changes. We describe each design component in turn.

3.1 Enhanced Link and Path Costs
The SafeGuard design embeds a noise into the lower k-bit of a

link’s cost metric to help distinguish multiple equal cost paths to the
same destination. We refer to this metric as the enhanced link cost
metric, and denote it as cost. An enhanced link cost can be viewed
as a pair of two values: (cost, noise), where the higher-order bits
cost is the regular link cost configured by a network operator with-
out considering failure recovery issues, and the lower order k-bit
noise is a random value within [0, 2k − 1].

We further define the addition and comparison functions over
the enhanced link cost metric to enable shortest path computa-
tion using enhanced costs. If two enhanced link costs: l1.cost =
(l1.cost, l1.noise) and l2.cost = (l2.cost, l2.noise), are added to-
gether, each part is added separately: l1.cost + l2.cost = (l1.cost
+ l2.cost, l1.noise + l2.noise). Two enhanced link costs are
compared lexicographically: l1.cost > l2.cost, if l1.cost > l2.cost,
or l1.cost ≡ l2.cost and l1.noise > l2.noise.

An enhanced path cost is the sum of all enhanced link costs on
the path p: p.cost = (

P

li∈p li.cost ,
P

li∈p li.noise). We re-
fer to the first term as the regular path cost p.cost, and the sec-
ond as the path noise p.noise. When a router stores an enhanced
path cost, it only stores the last k-bits of the path noise: p.cost ←
(p.cost, p.noise mod 2k) to ensure that an enhanced path cost can
be encoded in a fixed-length label.

3.2 Packets that Carry Costs
In the SafeGuard design, a packet carries a fixed-length label

pkt.cost that encodes the enhanced path cost of its remaining path

Figure 3: In this simple topology each link has the cost of one
and a link noise. The enhanced cost of each link is marked
in the format (cost, noise). There are two paths with equal
regular cost from a to c: a→b→c and a→d→c.

to the destination. Routers use the regular path cost field pkt.cost
to detect path inconsistencies and to resolve whether its default path
or an upstream router’s default path is a working path. In the lat-
ter case, the router uses the entire packet cost pkt.cost to select a
working path.

We also use 1-bit in a packet header to indicate whether a packet
has been detoured before due to path inconsistency. When this bit is
off, a packet is called in the normal mode; otherwise, it is called in
the escort mode. Routers can use this bit to detect non-anticipated
topology events and abort the effort of searching for a working path.
This is because for anticipated events, a packet only needs to be
detoured at most once before it reaches its destination (§ 4).

3.3 Alternative Path Database
The SafeGuard design uses an alternative path database (APD)

to store alternative paths to reach a destination if a failure occurs
on a router’s current network map. Conceptually, an APD is a table
that maps the destination and enhanced path cost pair: (dst, cost),
to a valid next hop: (dst, cost) → nexthop.

To avoid on-demand computation, SafeGuard makes a router
pre-compute alternative paths by anticipating a future failure on
its current network map G. If a router anticipates a network ele-
ment e (a link, node, or shared risk link group (SRLG) [33]) may
fail in the future, it computes an alternative shortest path to reach
a destination by removing the element e from the network map G.
This computation uses the enhanced link cost metric. The router
stores the enhanced path cost and the next hop in its APD. If the
same alternative path can bypass multiple elements, the router only
stores the path once.

As we will discuss in § 3.5, with randomly chosen link noises,
different alternative paths will have different enhanced path costs
with high probability. This would warrant that a router selects a
working path with high probability. As shown in Figure 3, the en-
hanced path cost for the path a→ b→ c is now (2,13), different
from the enhanced path cost (2,11) of a→ d→ c (had d→ c not
failed). When the node d reroutes a packet to a, it will carry the
enhanced path cost (2,13), which unambiguously identifies the al-
ternative path a → b→ c that bypasses the failed link. If in the
unlikely case that a router has different alternative paths with the
same enhanced path costs, the router will store the path that by-
passes the largest number of failed elements on its default paths to
maximize the utility of this path.

A router may re-compute its APD whenever it receives a routing
update that changes its current network map. In the case of a failure
event, the updated APD is only used when the next topology change
occurs. Thus the computation is not urgent and could be done in
low priority after a router has updated its forwarding tables. In the
case that a topology update results in a better connected topology,
e.g., a link up, a router can save computation by swapping the next
hops and path costs in its previous forwarding tables to its APD

303

before updating its forwarding tables. As we will soon describe in
the next subsection, paths in a router’s previous forwarding tables
would be the alternative paths computed without the newly added
topology element.

3.4 Forwarding
We now describe how a SafeGuard router forwards packets with-

out loops during routing transitions. We first describe how a router
sets up its forwarding tables and then the forwarding algorithm.

3.4.1 Forwarding Table Entries
As in the current intra-domain routing system, an entry in a

router ni’s forwarding table contains the mapping between a desti-
nation prefix to a set of next hops ni+1. These next hops are com-
puted using the regular link costs without considering link noises.
This design ensures that packets are always forwarded along their
regular shortest paths, i.e., any of the equal cost multiple paths,
when routing is not in transition.

The SafeGuard design also adds path cost information to a router’s
forwarding tables. Each forwarding table entry includes not only
the next hops ni+1, but also the enhanced path cost from each of
the next hop ni+1 to the destination: ni+1.cost. Moreover, it also
includes the enhanced path cost from the current router ni to the
destination: ni.cost. These path costs are used by the forwarding
algorithm to detect route changes and choose a working path.

A router ni may efficiently compute the enhanced path costs af-
ter it computes its regular shortest paths. Let T denote the shortest
path graph generated by the regular shortest path computation. The
router can compute the enhanced path cost ni.cost for each des-
tination by running a shortest path computation on T (rather than
the full network map) using the enhanced link cost metric. This
algorithm is correct because enhanced costs are compared lexico-
graphically, so the shortest path defined over the enhanced cost
metric must be one of the shortest paths defined over the regular
link costs. Similarly, the enhanced path cost associated with each
next hop (ni+1.cost) can be computed efficiently using the shortest
path graph T with each next hop node being the root node of the
shortest path computation.

3.4.2 Packets in the Normal Mode
When a packet arrives at a router ni, the router first checks its

forwarding mode. If the packet is in the normal mode, the router
ignores the path noise and only compares its local regular cost
ni.cost with the packet cost pkt.cost. It uses this comparison to
detect and resolve any inconsistency, and turns on the escort mode
if necessary. If the packet is already in the escort mode, the router
uses the enhanced packet cost pkt.cost to identify a working path
and forwards the packet along the path.

A packet enters the network in the normal mode. When a router
ni receives an incoming packet in the normal mode, it compares
the regular costs only. There are three possible outcomes:
Matching Costs (ni.cost ≡ pkt.cost): This indicates that the
router ni and its upstream router have consistent forwarding paths.
The router ni selects a next hop ni+1 from its forwarding table,
updates the packet’s cost label using the enhanced path cost asso-
ciated with the next hop ni+1: ni+1.cost, and forwards the packet
to the next hop ni+1.
Higher Local Cost (ni.cost > pkt.cost): This inconsistency shows
that a router’s local cost is higher than its upstream router’s cost.
The network must be in a routing transition, as the router ni has
computed different paths from other routers. As the packet is in the
normal mode, this is the first cost inconsistency the packet encoun-
ters. The router will attempt to resolve the dispute.

Given the local cost is higher, the router ni resolves the inconsis-
tency by forwarding the packet along its default paths. Its default
paths must be valid because ni must have a less connected topol-
ogy than other routers, as it has a higher path cost. If it is a failure
event, ni must have already updated its forwarding table according
to the event, and its path will bypass the failed component. If it is
a restoration event, ni must have not updated its forwarding table,
and its path will not use the newly restored or added component,
but can still reach the destination. Therefore, same as in the match-
ing costs case, the router selects one of its next hops, updates the
packet’s cost label using its local cost, and forwards the packet to
the next hop. The router will also turn on the escort bit to notify the
downstream routers that a path inconsistency has been encountered.

A special case of higher local cost inconsistency occurs when a
packet reaches a router adjacent to a failure. The router has detected
the failure but has not updated its forwarding table yet. Therefore,
the router’s next hop is invalid and its local cost ni.cost is infinite.
In this case, a router ni will immediately start using the alterna-
tive path pre-computed to bypass its next hop to forward and up-
date the packet cost. The router will first try to use the alternative
path that bypasses its next hop node. If such a path is unavailable,
e.g., the next hop is the destination, the router uses the alternative
path computed by removing the link to reach the next hop. Let
the enhanced cost of the alternative path be ni.cost′, and the next
hop of it be n′

i+1. The router ni turns on the escort bit, updates
the packet’s cost to be the remaining enhanced path cost of the al-
ternative path by subtracting the next hop link cost: pkt.cost ←
ni.cost′ − lni→n′

i+1
.cost. The subtraction is done separately for

regular cost and noise and the subtraction of noises is modulo 2k

based as described in § 3.1.
Lower Local Cost (ni.cost < pkt.cost): This inconsistency shows
that a router’s local cost is lower than its upstream router. Again,
the network must be in a transition. As the router has a lower local
cost, it must have a network topology with more components. It
is no longer safe to forward along the router’s default next hops,
because it may include a failed component.

To resolve a lower local cost inconsistency, a router uses the
packet’s enhanced cost pkt.cost to look up an alternative path in
its APD, because its APD is computed using smaller topologies
than its current one, and a path with higher cost may be found in
the APD. Suppose this lookup returns a next hop n′

i+1. The router
ni updates the packet’s cost label using the alternative path’s cost,
turns on the escort bit, and forwards the packet to n′

i+1.

3.4.3 Packets in the Escort Mode
If an incoming packet is in the escort mode, the router will try to

forward the packet along the working path chosen by the upstream
router who detects the cost inconsistency. It is not enough to only
consider the regular costs because they may not uniquely identify
the valid path among equal cost paths. In this case, the router ni

will try to find a path whose enhanced cost matches exactly with
the incoming packet’s enhanced cost. To do this, the router first
compares its local enhanced path cost ni.cost with the packet’s
cost pkt.cost. There are two outcomes:
Matching Costs (ni.cost ≡ pkt.cost): This indicates that the
router’s shortest path with cost ni.cost is consistent with the cho-
sen working path. In this case ni will forward the packet using the
next hop associated with the enhanced path cost, and update the
packet’s cost label accordingly.
Non-matching Costs (ni.cost �= pkt.cost): In this case, the up-
stream router that detects a route inconsistency has chosen a work-
ing path that is different from the router’s current shortest path de-
fined over the enhanced costs. The router uses the packet’s cost

304

k Collision Probability
10 0.0097
16 0.00015
24 6.0 × 10−7

32 2.3 × 10−9

Table 1: The probability of having two equal enhanced cost
paths between two nodes when there are c = 5 regular equal
cost paths, given different noise length k.

label pkt.cost to look up an alternative path in its APD. If an al-
ternative path is returned, it updates the packet’s cost and forwards
the packet to the corresponding next hop.

If there is an APD look-up failure, it indicates unexpected topol-
ogy changes such as multiple independent failures or different al-
ternative paths having the same enhanced cost. In this case, not all
routers would have a working path. Any further forwarding may
risk forming a loop. When this occurs, a router may either demote
the packet to lower priority or discard it. Our design chooses to
discard for simplicity.

3.5 Cost Collision Analysis
The link noises are introduced to distinguish equal cost paths.

We assign random values to link noises to distinguish any two equal
cost paths with high probability. We analyze this probability, and
also discuss an alternative mechanism that deterministically gener-
ates collision-free link noises for a given network topology.

A link noise is chosen randomly within [0, 2k − 1]. A path
noise that is the sum of link noises modulo 2k is also randomly
distributed. If a node has c paths to the same destination with the
same regular path cost, the probability that no two such paths have
the same enhanced path cost is:

1 · (1 − 1

2k
)...(1 − c − 1

2k
) =

2k!

2ck(2k − c)!

Table 1 shows the probability of collision when c = 5 for various
values of k. In practice, c is typically small (< 5) 1, because two
backup paths usually suffice.

As can be seen, with practical values of c and k, the probability
of collision is low. Our simulations use a 10-bit noise value, and we
do not run into any collisions on all simulated topologies, including
an inferred tier-1 topology. Therefore, we think that the probability
of collision can be practically ignored if we use a 32-bit or longer
noise label.

Alternatively, we have also designed an algorithm that determin-
istically generates a collision-free noise configuration for a given
network topology. The algorithm runs in polynomial time in terms
of the number of equal cost paths (see details in [26]). One caveat
about this algorithm is that the collision-free noise configuration is
generated for a given network topology; a future topology change
may require a new noise configuration to be collision-free (although
this occurs with low probability). For simplicity, we opt to use ran-
dom noises.

3.6 Practical Considerations
Atomic Update: One practical issue worth mentioning is par-
tial router updates. A topology change involving multiple links
(such as a node or SRLG failure) will trigger multiple routing up-
dates in a link-state routing protocol such as OSPF or IS-IS. If a
1This observation is based on five proprietary ISP topologies with
real link costs.

router partially updates its forwarding tables according to a sub-
set of the routing messages, its local cost may not match the al-
ternative paths’ costs in other routers’ APDs, as an APD only in-
cludes paths that bypass a whole component (e.g., a node with all
its links removed). The issue does not only happen for SafeGuard:
other loop-avoidance techniques such as [14] would also work in-
correctly if partial updates occur.

Fortunately, there already exist several practical techniques to
enable atomic router updates, as partial updates churn up routers’
CPU power and are harmful for routing convergence. These tech-
niques include OSPF and IS-IS’s delay timers that batch route up-
date processing, throttling techniques [3] that automatically adjust
the delay timer according to the incoming rate of route updates, and
the recent proposed LSA correlation technique [19] that identifies
concurrent multiple link updates by correlating the information in
different LSAs. Therefore, in the SafeGuard design, we assume
that routers use atomic updates for an anticipated topology update.

Deployment: The SafeGuard design can be deployed by individ-
ual ISPs on the Internet without introducing new protocols. Routers
need to upgrade to pre-compute alternative paths (§ 3.3), add the
enhanced path costs in its forwarding tables (§ 3.4.1), and support
the new forwarding algorithm (§ 3.4).

One possible way of deploying SafeGuard on today’s hardware
routers is to exploit the MPLS infrastructure. A path cost label
may be embedded into an MPLS label upon a packet’s entrance to
an ISP’s network and swapped at each hop during forwarding. We
defer a complete deployment study of SafeGuard as future work.

4. PROPERTIES
We now briefly describe the forwarding properties of the Safe-

Guard design. We omit formal proofs due to the lack of space, and
refer interested readers to our technical report [26]. When stating
those properties, we do not consider congestion loss, because it is
not caused by violations of forwarding consistency. We also ig-
nore the failure detection time during which routers may forward
packets to a failed link without noticing the failure, and the router
initialization period during which a newly added router has not ob-
tained any topology information.

Property 1 Packets will follow regular shortest paths, including
equal cost paths, to reach their destinations in the normal mode
when the network is in steady state.

This property holds because routers compute the next hops in
their forwarding tables using only the regular link costs. The Safe-
Guard forwarding algorithm compares only the regular path cost
in a packet with a router’s local estimate for normal-mode pack-
ets. In steady state when routes are not changing, these two costs
will always match and packets will reach their destinations without
encountering any inconsistency.

Property 2 If enhanced path costs are distinct, during the rout-
ing transition period in which only one network element changes
its status and the network is not partitioned, a packet will be for-
warded to its destination in either the normal or the escort mode.

This property holds because when there is only one element
changing its status, a router always has a working path in either
its forwarding tables or its APD, dependent on whether the router
has learned of the change and updated its forwarding tables. There-
fore, if any router on a packet’s path detects a cost inconsistency, it
is able to either use its default path or a valid alternative path in its
APD to forward the packet.

305

Topology # of Forwarding # of NotVia Entries # of APD Entries APD Computation NotVia Computation
Table Entries Time (ms) Time (ms)

Abilene Avg 15.4 Avg 17.3 Avg 0.165 Avg 0.093
Node:11 11 Max 17 Max 26 Max 0.176 Max 0.112
Link:28 Min 14 Min 12 Min 0.157 Min 0.073
Sprint Avg 368.8 Avg 777 Avg 79.4 Avg 49.7

Node:315 315 Max 449 Max 1769 Max 89.2 Max 84.2
Link:1944 Min 278 Min 534 Min 71.9 Min 36.8
Random Avg 116.6 Avg 276.1 Avg 6.2 Avg 2.7

Node:100 100 Max 140 Max 376 Max 11.9 Max 10.6
Link:394 Min 102 Min 149 Min 5.8 Min 2.0

Table 2: Summary of the memory and computational overhead introduced by SafeGuard. For memory overhead the normal for-
warding table size and the number of NotVia entries are shown for comparison. For computational overhead the NotVia computation
time is shown for comparison.

Property 3 A packet will not be trapped in a micro-loop without
being discarded.

By trapped in a micro-loop, we mean that if all routers stop up-
dating their forwarding tables after forming a loop, a packet will not
escape the loop until its TTL expires. This property holds because
a packet cannot traverse a node twice without a cost inconsistency.
After one inconsistency is detected, the packet is marked as in the
escort mode, and it will either follow a working path to reach the
destination, or be discarded by a router that detects another cost
inconsistency and cannot find a cost-matching path in its APD.

5. EVALUATION
In this section, we describe the evaluation of SafeGuard. We

have evaluated both the router performance and network perfor-
mance of SafeGuard.

5.1 Router Performance
The SafeGuard design adds computational and memory over-

head to a router. A router does an additional cost comparison and a
possible APD lookup during packet forwarding time. It also needs
to compute the enhanced path costs in a router’s forwarding tables,
pre-compute alternative paths that bypass anticipated network fail-
ures, and store the alternative paths in its APD. To quantify the
overhead, we implement our design using NetFPGA [18] and the
Quagga routing suite [4].

NetFPGA provides a hardware-accelerated data plane that em-
ulates the real hardware-based forwarding engine in commodity
routers. It comes with a reference implementation of an IPv4 router
that leverages TCAMs (Ternary Content-Addressable Memories)
built from on-chip registers. Quagga comes with a full-fledged
OSPFv2 daemon (ospfd), which we use as the underlying routing
protocol. We implement the alternative path database using TCAM,
and modify the NetFPGA reference router to support our forward-
ing algorithm described in § 3.4. We extend ospfd to compute
the enhanced path costs and the alternative paths needed for Safe-
Guard after each routing update. The total modification includes
∼800 lines of Verilog code and ∼3000 lines of C/C++ code.

To evaluate the forwarding overhead of SafeGuard, we bench-
mark its forwarding performance using the NetFPGA implementa-
tion. We send small packets with 64 bytes to the NetFPGA data
plane using a PC machine, and measure the packet throughput and
the per-packet processing time. Our experiments show that Safe-
Guard increases the per-packet forwarding time by 48ns (equiva-
lent to 6 clock cycles as the development board runs at 125Mhz by

default), and has a total per-packet forwarding overhead of 120ns.
This would translate into 4.3Gbps throughput if per-packet pro-
cessing is the bottleneck on a SafeGuard router’s forwarding plane.
Moreover, since the extra cycles are mostly spent at accessing the
new APD table, the forwarding performance of SafeGuard can be
further optimized by parallelizing the lookups in both the forward-
ing table and the APD.

We then evaluate the computational and memory overhead of
SafeGuard. We first feed the modified ospfd daemon with dif-
ferent network topologies. To evaluate the overhead of computing
shortest paths with the enhanced path costs (§ 3.4.1), we measure
the time to compute all forwarding entries with the enhanced path
costs, and compare it with the regular shortest path computation
time. The results show that the modified shortest path computation
with the enhanced costs only increases the computation time by
1%∼3% compared to a router’s regular shortest path computation.
As we describe in § 3.4.1, this is because the extra computations
based on the enhanced link costs can be optimized by using only
the links on the regular shortest paths, which typically are a small
portion among all links in the network.

We also measure the time it takes to compute the alternative
paths and the size of the APDs. In comparison, we also implement
the algorithms to compute the backup paths for NotVia [10], a prac-
tical IP fast reroute technique that uses pre-computed backup paths
to bypass temporary failures, but does not prevent micro-loops dur-
ing routing convergence. For both mechanisms, we compute the
alternative paths for all single link and node failures. Our experi-
ments run on a Pentium D 2.4GHz machine with 2GB memory.

Table 2 shows the time it takes to finish computing the alterna-
tive paths, and the number of additional entries a router keeps for
SafeGuard and NotVia on various topologies. As can been seen, al-
ternative path computation in SafeGuard takes less than 100ms on
the largest Sprint topology, and this time is comparable to NotVia.
The number of entries in a router’s APD may be 2-8 times larger
than a router’s intra-domain forwarding table, but is comparable to
that of NotVia’s, suggesting that SafeGuard’s memory overhead is
practically affordable. If the memory overhead becomes a practi-
cal concern, we can further reduce it by applying optimization. We
omit the details for ease of exposition, but a detailed description
about the optimization technique can be found in [26].

5.2 Network Performance
We use simulations to further study the network performance of

SafeGuard. We have implemented SafeGuard in SSFNet [6], an
event-driven simulator that has a complete OSPFv2 implementa-
tion. We use the simulator to evaluate whether SafeGuard can en-

306

Topology Type # of Nodes # of Links
Abilene Real 11 28
Telstra Inferred 108 306
Exodus Inferred 79 294
Sprint Inferred 315 1944

Random Random 100 394

Table 3: Summary of the topologies used in our simulations.

Parameter Value
HelloInterval 50ms

RouterDeadInterval 250ms
SPF Delay 200ms

SPF Computation Time (0.00247n2+0.978)ms
FIB/RIB Update Time rand([0.1, 0.11])pms

Table 4: Summary of the simulation settings. n is the number
of routers in the network. p is the number of entries in the
forwarding table.

able safe forwarding during route changes without altering the rout-
ing convergence process. To do so, we compare SafeGuard with
both the vanilla IP forwarding and a state-of-the-art IP fast restora-
tion mechanism. For each of the mechanisms, we simulate routing
convergence caused by various types of topology updates, and mea-
sure packet forwarding performance during the convergence peri-
ods. Next we describe the simulation details and the results.

5.2.1 Metrics

Flow Amplifying Factor: We measure how many times a packet
passes the same unidirectional link during route changes. We refer
to this metric as the flow amplifying factor, because if a traffic flow
of t Mb/s passes the same link for K times, then the flow’s peak
rate on that link would become K × t Mb/s. This metric helps
answer the question whether SafeGuard prevents forwarding loops
during route changes.

Packet Loss Rate: We measure the packet loss rate of the flows
that are affected by the updated component. This metric shows
whether SafeGuard is effective in minimizing periods of disruption
during route changes.

Path Stretch: A path stretch is defined as the ratio of the cost of a
path taken by a packet to the shortest path cost in the network. Path
stretch shows the forwarding sub-optimality during route changes.
This metric measures the quality of the alternative path SafeGuard
chooses to resolve a cost inconsistency. The lower the path stretch
is, the better the path.

Convergence Time: We also measure the time it takes for the net-
work to converge after a topology change. The convergence time
is measured from the change happens to the last router update fin-
ishes. This metric shows whether SafeGuard delays convergence.

5.2.2 Simulation Setup

Mechanisms: We simulate SafeGuard as described in § 3.4 with
the OSPF implementation of SSFNet. We configure SafeGuard
to pre-compute alternative paths for all single link and node fail-
ures. The various timers and delays of the OSPF implementa-
tion are summarized in Table 4. These parameters are set accord-
ing to the values recommended by various fast convergence tech-
niques [8, 22] and the values observed in commercial production
routers [7, 15, 36]. We simulate fast convergence because Safe-

Guard’s benefits are even more prominent during slow convergence
during which micro-loops last longer, but we desire to emphasize
only the benefits not replaceable by fast convergence techniques.

For comparison, we also simulate vanilla IP forwarding with
OSPF and a state-of-the-art IP fast restoration mechanism, which
includes a fast rerouting technique called NotVia Addresses [10]
and a loop-avoidance convergence mechanism called Ordered FIB
Update (oFIB) [14]. NotVia fast reroutes packets through a pre-
computed backup path when they encounter a failed component. It
does not by itself prevents micro-loops, and thus needs to be com-
bined with a loop-avoidance mechanism such as oFIB. oFIB pre-
vents micro-loops during convergence by enforcing a strict order
of routing updates across different routers. We simulate the “fast
mode” of oFIB which uses signaling messages to impose the up-
date order. The two mechanisms are chosen because they together
can reduce the disruption after route changes to the failure detec-
tion time after single failure, and are now under standardization at
IETF. SafeGuard can also reduce the disruption to the failure detec-
tion time, but without modifying the routing convergence protocol
or enforcing any router update order.

Network Topologies: We simulate on real, inferred, and randomly
generated topologies summarized in Table 3. The inferred topolo-
gies are from the Rocketfuel project [38], and the random topology
is generated using the BRITE topology generator [2]. Real and in-
ferred topologies contain precise or inferred link weights [27]. We
use the random topology to test how SafeGuard works on asymmet-
ric networks. The link weight in each direction is set independently,
each using a random integer between 1 and 50.

Link delays of each topology are set according to the geographic
proximity of their end nodes. If two routers are in different Points-
of-Presence (PoPs), we infer the link delay between them from the
geographical distance, and in the generated topology the nodes are
randomly spread on a plane as large as the US continent. If two
routers are in the same PoP, we assume the link delay is 0.1ms.

Topology updates: We simulate routing transitions for both sin-
gle element update and multiple independent update events. For
single element update, we test single link up/down events and node
up/down events. For multiple independent updates, we test two
concurrent link failures. For each type of update we run 100 exper-
iments with randomly chosen element updates.

After each update event, we send probing packets every 5ms be-
tween each pair of nodes. We use the probing packet traces to
compute various metrics such as the traffic amplifying factor and
packet loss rate. The probing packets’ TTLs are initialized to 128,
the default TTL value of the Windows XP operating system. We
do not simulate real traffic patterns because it is extremely time-
consuming to simulate, and the simulations would not finish in a
reasonable time, i.e., a few days.

5.2.3 Avoiding Forwarding Loops
Figure 4 and 5 compare the distributions of the flow amplify-

ing factors of vanilla IP forwarding with OSPF, NotVia with oFIB,
and SafeGuard with OSPF in a real network topology (Abilene),
an inferred tier-1 network topology (Sprint), and a randomly gen-
erated network topology (Random). Results from other topolo-
gies are similar and omitted. The distributions are drawn from all
micro-loops we have observed in the tests. As shown in the figure,
SafeGuard’s flow amplifying factor is ≤ 2. This result shows that
SafeGuard prevents packets from being trapped in micro-loops, as
packets at most take one detour to reach their destinations.

In contrast, the vanilla IP forwarding with OSPF can have ampli-
fying factors greater than 50. The trapped flows will be amplified

307

Update Type # of Tests Total # of Total # of Loop Duration (ms)
Containing Loops Micro-loops Links Involved Avg Max Min Stddev

OSPF
Link Failure 19 81 132 12.5 44.6 0.32 15.4
Node Failure 17 125 154 11.5 26.3 0.10 26.7

Link Up 4 7 14 11.9 40.7 0.80 21.8
Node Up 11 20 38 6.32 24.8 0.19 6.45

Two Link Failures 38 144 182 9.0 39.7 0.39 11.2
oFIB

Two Link Failures 36 138 178 8.8 41.2 0.18 10.8

Table 5: Summary of loops during convergence in the Sprint topology. For each update type we run 100 experiments with randomly
chosen topology updates.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
um

ul
at

iv
e

F
ra

ct
io

n

Flow Amplifying Factor

SafeGuard+OSPF
NotVia+oFIB

IP+OSPF

(a) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
um

ul
at

iv
e

F
ra

ct
io

n

Flow Amplifying Factor

SafeGuard+OSPF
NotVia+oFIB

IP+OSPF

(b) Sprint

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
um

ul
at

iv
e

F
ra

ct
io

n

Flow Amplifying Factor

SafeGuard+OSPF
NotVia+oFIB

IP+OSPF

(c) Random

Figure 4: The cumulative distribution of the loops’ flow amplifying factor on three topologies for single link failure case. The lines
of SafeGuard+OSPF and NotVia+oFIB overlap with each other at the left side of the figures, because both of them can prevent loops
after single topology changes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
um

ul
at

iv
e

F
ra

ct
io

n

Flow Amplifying Factor

SafeGuard+OSPF
NotVia+oFIB

IP+OSPF

(a) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
um

ul
at

iv
e

F
ra

ct
io

n

Flow Amplifying Factor

SafeGuard+OSPF
NotVia+oFIB

IP+OSPF

(b) Sprint

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
um

ul
at

iv
e

F
ra

ct
io

n

Flow Amplifying Factor

SafeGuard+OSPF
NotVia+oFIB

IP+OSPF

(c) Random

Figure 5: The cumulative distribution of the loops’ flow amplifying factor for two link failures case.

for 50 times, which is likely to congest a link and cause conges-
tion loss. One can also note that the Sprint topology suffers from
loops with much larger amplifying factors than the other two. This
is because routers in Sprint are aggregated in different Points-of-
Presence (PoPs), and the latencies between routers in the same PoP
are small, as they are usually co-located in the same facility. Hence
the forwarding loops occurred inside a PoP usually have high am-
plifying factors.

NotVia with oFIB also has a flow amplifying factor ≤ 2 after
single link failures, which is consistent with previous studies [14].
However, when two links fail simultaneously, NotVia with oFIB
has flow amplifying factors comparable with vanilla IP with OSPF,
suggesting micro-loops can still occur. This is because oFIB falls
back to fast convergence when multiple topology changes occur. In
contrast, SafeGuard can prevent micro-loops even under two simul-
taneous link failures, because it discards packets in escort mode if
a cost matching alternative path cannot be found in a router’s APD.

Table 5 summarizes the characteristics of micro-loops observed
under the Sprint topology in our simulations. As can be seen, in
case of a failure, more than 15% of the simulations contain for-
warding loops, and the loops can involve many links (∼ 10% of
the total number of links in the topology) and cause congestion on
them. Although with fast convergence the loops only last for less
than 50ms, given the large amplifying factors shown above they
may still cause voluminous flow amplification.

5.2.4 Reducing Packet Loss
Figure 6 and 7 show the average packet loss rates after a link

failure and two link failures for each mechanism in three topolo-
gies. Note that the packet loss rates do not include congestion loss
caused by micro-loops, because we do not simulate real traffic load.
Therefore, the packet loss rates we measure are those caused by
failed routes. For vanilla IP forwarding, the packet loss rate could
be much higher in practice, because micro-loops would lead to con-

308

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

P
ac

ke
t L

os
s

R
at

e

Time (s)

IP+OSPF
NotVia+oFIB

SafeGuard+OSPF

(a) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

P
ac

ke
t L

os
s

R
at

e

Time (s)

IP+OSPF
NotVia+oFIB

SafeGuard+OSPF

(b) Sprint

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

P
ac

ke
t L

os
s

R
at

e

Time (s)

IP+OSPF
NotVia+oFIB

SafeGuard+OSPF

(c) Random

Figure 6: The average packet loss rate after a single link failure. X-axis is the time-line. The failure happens at time 0, and is detected
after 200 ∼ 250ms. Y-axis is the packet loss rate for all probing flows that use the failed link. The line of SafeGuard+OSPF overlaps
with that of NotVia+oFIB.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

P
ac

ke
t L

os
s

R
at

e

Time (s)

IP+OSPF
NotVia+oFIB

SafeGuard+OSPF

(a) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

P
ac

ke
t L

os
s

R
at

e

Time (s)

IP+OSPF
NotVia+oFIB

SafeGuard+OSPF

(b) Sprint

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

P
ac

ke
t L

os
s

R
at

e

Time (s)

IP+OSPF
NotVia+oFIB

SafeGuard+OSPF

(c) Random

Figure 7: The average packet loss rate after two link failures. Other configurations are the same as in Figure 6.

gestion loss. We measure the packet loss rate at time t by counting
how many probe packets sent during the period [t, t + 10ms] are
lost. We average the loss rates over all experiments for each type
of update event.

Figure 6 and 7 show that SafeGuard successfully reduces packet
loss rates, while vanilla IP forwarding has much higher packet loss
rate. Packets may encounter failed routes until the network has con-
verged, and the forwarding disruption times may last about 600ms.
In a single failure case, after the failure is detected (after ∼ 200ms),
SafeGuard is able to rapidly bypass failures through the alternative
paths. The time is independent of the size of the network, as Safe-
Guard only needs the routers adjacent to the failure to detect the
failure and does not need the failure to be disseminated over the
network. In some of the figures, the packet loss rates do not reach
zero because the network is disconnected. In the two link failure
case, SafeGuard may also experience packet loss during routing
convergence as routers have not pre-computed the alternative paths
to bypass them.

NotVia with oFIB also reduces the packet loss rates, and achieves
similar performance to SafeGuard. This is because NotVia can fast
reroute packets along pre-computed alternative paths once they en-
counter a failure. However, because oFIB cannot prevent micro-
loops when multiple components fail simultaneously, in practice
NotVia with oFIB may have higher packet loss rate due to link
congestion under the case of two links failure.

5.2.5 Path Stretch
Figure 8 shows the average path stretch during routing conver-

gence for a single link failure case. The path stretch is averaged
over all source and destination pairs whose default forwarding paths

include the failed link. As can be seen, with SafeGuard the path
stretch smoothly reduces to 1 during convergence, indicating that
the forwarding paths gradually shift to the new shortest paths as
routers update their states independently. However, under vanilla
IP forwarding, one can observe path stretch surges during routing
convergence because of micro-loops: some packets reach their des-
tinations after a micro-loop is resolved but have looped for dozens
of times. NotVia with oFIB can also prevent micro-loops after sin-
gle topology changes. However, the path stretch takes longer time
before it drops to 1, suggesting that traffic stays longer on the sub-
optimal paths. This is because oFIB delays convergence to enforce
the loop-free order of routing updates.

5.2.6 Convergence Time
Finally, we measure the routing convergence time of each mech-

anism. Unlike oFIB and other existing work, a main design goal
of SafeGuard is not to increase the complexity of routing conver-
gence so that routers can independently update their routing tables
without any state dependency or centralized coordination.

Figure 9 shows the convergence time of different mechanisms
under the realistic OSPF settings for three topologies. Since Safe-
Guard does not change the convergence scheme, it converges as
fast as OSPF. From the figure, one can see that even for the largest
Sprint topology, the network can converge within one second, con-
sistent with previous studies [8, 15]. This fast convergence property
makes the network resilient and responsive to changes, and also re-
duces the time a packet follows a suboptimal path, e.g., reaching
a failure first before it is rerouted. NotVia with oFIB slightly in-
creases the convergence time by up to 15%, consistent with previ-
ous studies [14]. The delay is caused by some routers waiting for

309

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.5 1 1.5 2

P
at

h
S

tr
et

ch

Time (s)

IP+OSPF
NotVia+oFIB

SafeGuard+OSPF

(a) Abilene

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 0.5 1 1.5 2

P
at

h
S

tr
et

ch

Time (s)

IP+OSPF
NotVia+oFIB

SafeGuard+OSPF

(b) Sprint

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.5 1 1.5 2

P
at

h
S

tr
et

ch

Time (s)

IP+OSPF
NotVia+oFIB

SafeGuard+OSPF

(c) Random

Figure 8: The average path stretch after a link failure. X-axis is the time-line. The failure happens at time 0, and is detected after
200-250ms. Y-axis is the path stretch for all probing packets that previously pass the failure.

 0

 0.5

 1

 1.5

 2

link
down

link
up

node
down

node
up

2 links
down

C
on

ve
rg

en
ce

 T
im

e
(s

)

SafeGuard/IP+OSPF
NotVia+oFIB

(a) Abilene

 0

 0.5

 1

 1.5

 2

link
down

link
up

node
down

node
up

2 links
down

C
on

ve
rg

en
ce

 T
im

e
(s

)

SafeGuard/IP+OSPF
NotVia+oFIB

(b) Sprint

 0

 0.5

 1

 1.5

 2

link
down

link
up

node
down

node
up

2 links
down

C
on

ve
rg

en
ce

 T
im

e
(s

)

SafeGuard/IP+OSPF
NotVia+oFIB

(c) Random

Figure 9: The averaged convergence time after different network changes. The error bars show the standard deviations. SafeGuard
achieves the same convergence time as OSPF because it does not modify convergence. NotVia+oFIB has slightly longer convergence
time because routers must update their routing tables in a specific order rather than independently and in parallel.

others to complete updates before they can refresh their forwarding
tables. Although NotVia with oFIB does not significantly increase
the convergence time, it has altered the routing convergence pro-
cess by introducing a reliable signaling protocol for routers to up-
date routing tables in a specific order. This signaling protocol adds
complexity to the convergence process, and could be error prone,
e.g., one slow or failed router may stall the entire routing conver-
gence process.

6. RELATED WORK
In this section, we compare the SafeGuard design with related

work. Table 6 summarizes the major differences between Safe-
Guard and some other solutions addressing the same problem. As
we will show, SafeGuard is the only system that reduces periods of
disruption to the failure detection time without changing the rout-
ing convergence process.

Researchers have proposed to redesign the routing convergence
process to minimize periods of disruption [14, 17, 21, 25]. These
schemes generally require routers to synchronize or to impose a
strict order on their routing updates [14, 16, 17, 21]. Although
they can effectively reduce disruption periods to the failure detec-
tion time as SafeGuard, these schemes introduce state dependency
among routers, thereby increasing the complexity of the routing
convergence process and slowing down routing convergence [12].

Convergence-free routing [25] eliminates routing convergence
and uses a centralized coordinator to distribute static network maps
to routers,similar to the Routing Control Platform (RCP) [11]. Pack-
ets carry a list of failed components they encountered as a router’s
static network map does not have failure information; packets must

hit failures before they can be rerouted, and routers employ on-
demand computation when they first learn of the failures to forward
packets along a valid path. For non-concurrent failure or restora-
tion events, SafeGuard and convergence-free routing are both able
to reduce periods of forwarding disruption to the failure detection
time. For concurrent events that happen within a routing conver-
gence period, SafeGuard can still guarantee loop-free forwarding,
but may suffer temporary packet loss until routing converges, while
convergence-free routing does not. But we think the trade-off is fa-
vorable, because such concurrent events are rare, and SafeGuard
has a fixed header overhead, does not require on-demand compu-
tation, and forwards packets along the shortest failure-free paths
except during routing convergence periods.

Ordered FIB update (oFIB) [14] avoids micro-loops by enforc-
ing a strict order of routing update among routers. The order can
be computed based on the topology information. With oFIB, each
router waits for its upstream routers to finish their updates before it
can update its own, and later notifies its downstream routers after it
finishes updating. In contrast, SafeGuard allows all routers to up-
date independently, as it does not modify the convergence process.

Another loop-avoidance technique [16] performs multiple rounds
of routing convergence with incremental link weight changes. In
each round, independent router updates do not cause micro-loops,
because the link cost changes are specifically calculated to prevent
loops. This technique is suitable for planned failures because mul-
tiple convergence rounds must finish before a component can be
removed. In contrast, SafeGuard can minimize forwarding disrup-
tions for dynamic unplanned failures.

There is also much work in enabling routers to rapidly reroute
packets using backup paths after failure detection, including NotVia

310

Mechanism Fast Failure Preventing Does not Change Does not Delay
Recovery Micro-loops Convergence Convergence

Convergence-free Routing
√ √ × ×

Consensus Routing × √ × ×
Ordered FIB Update × √ × ×
Fast Rerouting (NotVia, FIR, MRC)

√ × √ √

SafeGuard
√ √ √ √

Table 6: Summary of the major differences between SafeGuard and several existing mechanisms designed to reduce disruptions
upon topology changes. Four critical aspects are listed, namely fast failure recovery (the ability to redirect traffic upon encountering
a failure), preventing micro-loops, whether the convergence scheme is changed, and whether the convergence is delayed. SafeGuard
is the only system that achieves both fast failure recovery and loop-free convergence without modifying or delaying convergence.

Addresses, Failure Insensitive Routing (FIR), Multiple Router Con-
figurations (MRC), MPLS Fast Rerouting, and R-BGP [23, 24, 31,
32, 37]. These proposals provide fast failure recovery, but they do
not prevent micro-loops during routing convergence. As a result,
those mechanisms can only prevent packet losses when the failure
is transient and the routing updates are suppressed throughout the
entire failure duration.

NotVia Addresses [37] is an IETF proposal to fast reroute pack-
ets upon encountering a failure. It requires routers to be assigned
with special protection addresses called the NotVia addresses. When
a router detects its next hop is unreachable due to a failure, it will
tunnel the packets to the NotVia address of its next hop or next next
hop (if a node failure occurs). Similar to SafeGuard other routers
pre-compute protection paths to a NotVia address by removing the
link or node protected by the address. NotVia enables fast rerout-
ing when packets encounter a failure, but it does not prevent micro-
loops during convergence. Packets can still be trapped in a loop
that is not adjacent to the failed component. In contrast, SafeGuard
can eliminate any micro-loop regardless of its location.

Failure Insensitive Routing (FIR) [31] achieves fast rerouting by
using interface-specific routing. An FIR-enabled router can dis-
tinguish a rerouted packet from a normal packet by observing its
abnormal incoming interface, and forward the packet to a backup
next hop instead of a normal one. Similar to NotVia Addresses,
FIR has no mechanism to avoid micro-loops during convergence,
and it is unknown how interface-specific routing would affect the
forwarding during convergence.

Exact Hop Count [35] is a proposal to prevent micro-loops in
bridge networks by strictly checking the hop count in each packet’s
header. Hop count can be used to detect path inconsistencies, but
unlike path cost, the hop count difference between two paths does
not tell which path is valid. This is because practical routing proto-
cols such as OSPF and IS-IS use fine-grained cost metrics to com-
pute paths: a forwarding path computed with a failed component
may have either a higher or lower hop count than a working path.
In contrast, such a path will always have a lower (or equal) cost
than a working path. Furthermore, exact hop count forwarding is
incompatible with equal cost multiple path forwarding, as equal
cost paths may have different hop counts.

In [41] the authors propose to detect forwarding loops through
interface-specific routing. Unlike SafeGuard, this mechanism does
not guarantee the detection of forwarding loops in asymmetric net-
works or during concurrent topology change events. Anomaly-
Cognizant Forwarding [13] is a recent proposal that aims to detect
and repair forwarding anomalies caused by BGP routing conver-
gence. An ACF packet carries the AS path it has visited. SafeGuard
focuses on intra-domain routing, and uses the remaining path cost
as a safeguard to detect path inconsistency. Carrying cost is more
efficient than carrying path as it does not require a variable-length

header, and is more effective than interface-specific routing as it
can detect loops in any circumstance and help routers to select the
valid alternative paths.

Multi-path routing is another approach to improve routing avail-
ability. Work in this area includes routing deflection [40], path
splicing [30], and MIRO [39]. Routers or end systems can choose
a different path if the default path does not work. SafeGuard aims
to enable routers to rapidly detect forwarding anomalies and repair
them during routing transitions. It works in both single- and multi-
path routing systems.

7. CONCLUSION
An important networking task is to improve network availabil-

ity to better support real-time and mission critical applications. In
this paper, we present the design and evaluation of SafeGuard, an
intra-domain routing system that can effectively reduce packet loss
and forwarding loops during network changes without increasing
the complexity of routing convergence. In the SafeGuard design,
a packet carries the remaining path cost to its destination. Routers
compare the packet cost with their locally computed costs to detect
inconsistent paths and select a working one among pre-computed
alternatives. Our NetFPGA implementation of SafeGuard shows
that SafeGuard is suitable for high-speed hardware implementation
and has low memory and computation overhead. Simulation re-
sults show that SafeGuard reduces periods of disruption to the fail-
ure detection time during anticipated network changes and greatly
reduces packet loss even for non-anticipated changes.

Acknowledgements
This work was funded by NSF Awards CNS-0627166 and CNS-
0925472. We thank Landon Cox, Srihari Nelakuditi, and the anony-
mous reviewers for their helpful feedback and suggestions.

References
[1] Abilene Observatory. http://abilene.internet2.

edu/observatory.
[2] BRITE Topology Generator. http://www.cs.bu.edu/

brite.
[3] OSPF Shortest Path First Throttling. http://cisco.

com/en/US/docs/ios/12_2s/feature/guide/
fs_spftrl.html.

[4] Quagga Routing Suite. http://www.quagga.net.
[5] Reducing Link Failure Detection Time with BFD. http://

www.networkworld.com/community/node/
23380.

[6] Scalable Simulation Framework. http://www.ssfnet.
org.

311

http://abilene.internet2.edu/observatory
http://abilene.internet2.edu/observatory
http://www.cs.bu.edu/brite
http://www.cs.bu.edu/brite
http://cisco.com/en/US/docs/ios/12_2s/feature/guide/fs_spftrl.html
http://cisco.com/en/US/docs/ios/12_2s/feature/guide/fs_spftrl.html
http://cisco.com/en/US/docs/ios/12_2s/feature/guide/fs_spftrl.html
http://www.quagga.net
http://www.networkworld.com/community/node/23380
http://www.networkworld.com/community/node/23380
http://www.networkworld.com/community/node/23380
http://www.ssfnet.org
http://www.ssfnet.org

[7] SPF Delay Timer. http://www.juniper.
net/techpubs/software/junos/junos74/
swconfig74-routing/html/isis-summary53.
html#1036104.

[8] C. Alaettinoglu, V. Jacobson, and H. Yu. Towards Milli-
Second IGP Convergence. Internet draft, draft-alaettinoglu-
isis-convergence-00.txt, Nov 2000.

[9] C. Boutremans, G. Iannaccone, and C. Diot. Impact of link
failures on VoIP performance. In NOSSDAV, 2002.

[10] S. Bryant, M. Shand, and S. Previdi. IP Fast Reroute Us-
ing Notvia Addresses. Internet draft, draft-ietf-rtgwg-ipfrr-
notvia-addresses-00.txt, Dec 2006.

[11] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh,
and J. Van der Merwe. Design and implementation of a
routing control platform. In NSDI’05: Proceedings of the
2nd conference on Symposium on Networked Systems Design
& Implementation, pages 15–28, Berkeley, CA, USA, 2005.
USENIX Association.

[12] B.-G. Chun, S. Ratnasamy, and E. Kohler. Netcomplex:
a complexity metric for networked system designs. In
NSDI’08: Proceedings of the 5th USENIX Symposium on Net-
worked Systems Design and Implementation, pages 393–406,
Berkeley, CA, USA, 2008. USENIX Association.

[13] A. Ermolinskiy and S. Shenker. Reducing Transient Dis-
connectivity using Anomaly-Cognizant Forwarding. In ACM
SIGCOMM HotNets VII, 2008.

[14] P. Francois and O. Bonaventure. Avoiding transient loops
during the convergence of link-state routing protocols.
IEEE/ACM Transactions on Networking, 15(6):1280–1932,
Dec 2007.

[15] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure. Achiev-
ing sub-second IGP convergence in large IP networks. SIG-
COMM Comput. Commun. Rev., 35(3):35–44, 2005.

[16] P. François, M. Shand, and O. Bonaventure. Disruption-free
topology reconfiguration in OSPF Networks. In IEEE INFO-
COM, Anchorage, USA, May 2007.

[17] J. J. Garcia-Luna-Aceves. Loop-free routing using diffusing
computations. IEEE/ACM Trans. Netw., 1(1):130–141, 1993.

[18] G. Gibb, J. Lockwood, J. Naous, P. Hartke, and N. McK-
eown. NetFPGA–An Open Platform for Teaching How to
Build Gigabit-Rate Network Switches and Routers. Educa-
tion, IEEE Transactions on, 51(3):364–369, Aug 2008.

[19] M. Goyal, G. Choudhury, A. Shaikh, K. Trivedi, and H. Hos-
seini. LSA correlation to schedule routing table calculations.
Internet draft, draft-goyal-ospf-lsacorr-00.txt, Oct 2008.

[20] G. Iannaccone, C. nee Chuah, R. Mortier, S. Bhattacharyya,
and C. Diot. Analysis of link failures in an IP backbone. In
IMW, 2002.

[21] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson,
and A. Venkataramani. Consensus routing: the internet as
a distributed system. In NSDI’08: Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Im-
plementation, pages 351–364, 2008.

[22] D. Katz and D. Ward. Bidirectional Forwarding Detection.
Internet draft, draft-ietf-bfd-base-07.txt, Jan 2008.

[23] N. Kushman, S. Kandula, D. Katabi, and B. M. Maggs. R-
BGP: Staying connected in a connected world. In NSDI, 2007.

[24] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and
O. Lysne. Fast IP Network Recovery using Multiple Rout-
ing Configurations. In INFOCOM, pages 23–29, 2006.

[25] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson,
S. Shenker, and I. Stoica. Achieving convergence-free rout-
ing using failure-carrying packets. In SIGCOMM, pages 241–
252, 2007.

[26] A. Li, X. Yang, and D. Wetherall. SafeGuard: Respon-
sive Routing with Consistent Forwarding. Technical Report
DUKE-CS-TR-2008-04, Duke, 2008.

[27] R. Mahajan, N. T. Spring, D. Wetherall, and T. E. Anderson.
Inferring link weights using end-to-end measurements. In In-
ternet Measurement Workshop, pages 231–236, 2002.

[28] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N.
Chuah, and C. Diot. Characterization of Failures in an IP
Backbone Network. In INFOCOM, 2004.

[29] A. P. Markopoulou, F. A. Tobagi, and M. J. Karam. Assess-
ment of VoIP Quality over Internet Backbones. In INFO-
COM, 2002.

[30] M. Motiwala, N. Feamster, and S. Vempala. Path Splicing:
Reliable Connectivity with Rapid Recovery. In ACM SIG-
COMM HotNets VI, 2007.

[31] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N.
Chuah. Fast local rerouting for handling transient link fail-
ures. IEEE/ACM Trans. Netw., 15(2):359–372, 2007.

[32] P. Pan, G. Swallow, and A. Atlas. Fast Reroute Extensions to
RSVP-TE for LSP Tunnels. RFC4090, May 2005.

[33] B. Rajagopalan, J. Luciani, and D. Awduche. IP over Optical
Networks: A Framework. RFC3717, Mar 2004.

[34] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label
switching architecture. RFC3031, Jan 2001.

[35] M. Seaman. Exact hop count. 802.1aq draft, aq-seaman-
exact-hop-count-1206-01.pdf, Dec. 2006.

[36] A. Shaikh and A. G. Greenberg. Experience in black-box
ospf measurement. In Internet Measurement Workshop, pages
113–125, 2001.

[37] M. Shand and S. Bryant. IP Fast Reroute Framework. Internet
draft, draft-ietf-rtgwg-ipfrr-framework-08.txt, Feb. 2008.

[38] N. T. Spring, R. Mahajan, D. Wetherall, and T. E. Anderson.
Measuring ISP topologies with rocketfuel. IEEE/ACM Trans.
Netw., 12(1):2–16, 2004.

[39] W. Xu and J. Rexford. Miro: multi-path interdomain routing.
In SIGCOMM ’06: Proceedings of the 2006 conference on
Applications, technologies, architectures, and protocols for
computer communications, pages 171–182, New York, NY,
USA, 2006. ACM.

[40] X. Yang and D. Wetherall. Source selectable path diversity
via routing deflections. In SIGCOMM, pages 159–170, 2006.

[41] Z. Zhong, R. Keralapura, S. Nelakuditi, Y. Yu, J. Wang, C.-
N. Chuah, and S. Lee. Avoiding transient loops through
interface-specific forwarding. In IWQoS, pages 219–232,
2005.

312

http://www.juniper.net/techpubs/software/junos/junos74/swconfig74-routing/html/isis-summary53.html#1036104
http://www.juniper.net/techpubs/software/junos/junos74/swconfig74-routing/html/isis-summary53.html#1036104
http://www.juniper.net/techpubs/software/junos/junos74/swconfig74-routing/html/isis-summary53.html#1036104
http://www.juniper.net/techpubs/software/junos/junos74/swconfig74-routing/html/isis-summary53.html#1036104

	Introduction
	Cost as a Safeguard
	Using Cost to Resolve Inconsistencies
	Distinguishing Equal-Cost Paths

	Design
	Enhanced Link and Path Costs
	Packets that Carry Costs
	Alternative Path Database
	Forwarding
	Forwarding Table Entries
	Packets in the Normal Mode
	Packets in the Escort Mode

	Cost Collision Analysis
	Practical Considerations

	Properties
	Evaluation
	Router Performance
	Network Performance
	Metrics
	Simulation Setup
	Avoiding Forwarding Loops
	Reducing Packet Loss
	Path Stretch
	Convergence Time

	Related Work
	Conclusion

