
The Age of Impatience:
Optimal Replication Schemes for Opportunistic Networks

Joshua Reich
Department of Computer Science, Columbia U.

reich@columbia.edu

Augustin Chaintreau
Thomson

augustin.chaintreau@thomson.net

ABSTRACT
Multimedia content dissemination in mobile settings requires
significant bandwidth. Centralized infrastructure is often ei-
ther inadequate or overly expensive to fill the demand. Here,
we study an alternative P2P content dissemination scheme
for mobile devices (e.g., smart-phones), which leverages lo-
cal dedicated caches on these devices to opportunistically
fulfill user requests. In our model, the allocation of content
in the global distributed cache comprising the union of all
local caches, determines the pattern of demand fulfillment.
By selectively replicating local content at node meetings, the
global cache can be driven towards a more efficient alloca-
tion. However, the allocation’s efficiency itself is determined
by a previously overlooked factor - the impatience of con-
tent requesters. By describing user impatience in the form
of any monotonically decreasing delay-utility functions, we
show that an optimal allocation can be efficient computed
or approximated. As users become increasingly impatient,
the optimal allocation varies steadily between uniform and
highly-skewed towards popular content.

Moreover, in opportunistic environments, the global cache
state may be difficult or impossible to obtain, requiring that
replication decisions be made using only local knowledge.
We develop a reactive distributed algorithm, Query Count-
ing Replication (QCR) that for any delay-utility function
drives the global cache towards the optimal allocation - with-
out use of any explicit estimators or control channel infor-
mation. We validate our techniques on real-world contact
traces, demonstrating the robustness of our analytic results
in the face of heterogeneous meeting rates and bursty con-
tacts. We find QCR compares favorably to a variety of
heuristic perfect control-channel competitors.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munications; C.4 [Performance of Systems]: Modeling
Techniques

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’09, December 1–4, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-636-6/09/12 ...$10.00.

General Terms
Algorithms, Performance

Keywords
Replication, Peer-to-peer network, Content Delivery, Delay
Tolerant Networks, Opportunistic Networks

1. INTRODUCTION
As smartphones capable of displaying, storing, and trans-

mitting media content continue to proliferate, the problem of
how to distribute content to these devices becomes ever more
timely. A naive approach to content dissemination would
leverage a centralized model in which content providers send
content directly to users through centralized infrastructure.
In fact, that is how practically all existing mobile content
dissemination systems operate today. However, as recent
events show the growth of demand for bandwidth may far
outpace growth of centralized infrastructure capacity 1. More-
over, even when centralized infrastructure is both present
and adequate to meet demand, third-party providers may
find use of this infrastructure too costly to serve as the pri-
mary means of fulfilling user demand.

To address this challenge, we examine an alternative op-
portunistic content dissemination schemes for mobile de-
vices. These schemes tap the potentially vast reservoir of ca-
pacity latent in currently unused communication opportuni-
ties between the short-range radios (e.g., Bluetooth, 802.11)
of smartphones. Leveraging short-range communication does
not come without cost or complication. Particularly, users
will need to tolerate both the energy drain from additional
short-range radio use and the fulfillment delay encountered
by nodes forced to wait until they meet peers who have the
content needed to fulfill their requests. For now we assume
that energy drain will be tolerable and focus on understand-
ing how content can be disseminated so as to minimize the
impact of fulfillment delay on overall user satisfaction. Once
this is better understood, future work may return to rigor-
ously address the issue of energy efficiency.

In order to understand the impact of delayed fulfillment on
user satisfaction, we develop a model predicting fulfillment
delay patterns and combine this with some monotonically
decreasing delay-utility function mapping delay to utility.
We then show how the aggregate expected utility can be
calculated. This enables us to investigate how this quan-
tity may be maximized (minimizing the impact of delay on

1see “Customers Angered as iPhones Overload AT&T”by J.
Wortham in New York Times, Sept. 3rd, 2009.

85

our users) by manipulating local cache content. Addition-
ally, one could utilize the aggregate expected utility to de-
termine whether opportunistic content dissemination even
makes sense in a given scenario, by assessing whether it is
above or below the system designer’s chosen “break-even”
point. Interestingly, our use of delay-utility functions en-
ables us to answer these questions over the full spectrum of
user impatience responses (e.g., as delay increases, the user’s
likelihood of continuing to wait for content, decreases).

In the aforementioned model, the allocation of content in
the global distributed cache comprising the union of all local
caches, directly determines the pattern of demand fulfillment
- and along with the delay utility function, the expected
aggregate utility. By selectively replicating local content as
node meetings provide the opportunity, the global cache can
be driven towards a more efficient allocation.

As a motivating example, consider that an imaginary start-
up VideoForU - having already noted that users are will-
ing to use systems that require them to donate resources
which provide them with delayed content at the right price
(e.g., Bittorrent) - decides to provide 15 minute video shows
with embedded commercial content from a catalog of 500
available episodes (this catalog changes every so often - per-
haps once a week). VideoForU manages to sign up 5000
users, who agree to dedicate a 3-episode cache on their local
device’s memory for use by VideoForU’s protocol. Video-
ForU can now seed one or two copies of each episode into
the global cache (by using cellular infrastructure, or base-
stations run by VideoForU). They then let their protocol,
running on the users devices, replicate content and fulfill
user requests as chance meetings between users provide op-
portunity to do so. Assuming that the users’s impatience is
known (i.e., the probability that a user, having waited time
t, will not watch the content that she requested), via previ-
ous survey or feedback, VideoForU can design their replica-
tion protocol so as to maximize the total number of videos
and embedded commercials, watched - the only question is
how.

Making the answer to this question even more difficult is
the fact that, for the same reasons as above (unpredictable
mobility and resultant sporadic contacts), it may be difficult
to gather global knowledge of the network’s state. Conse-
quently, we seek to develop distributed mechanisms capable
of producing optimal or approximately optimal allocations,
without needing to know the system’s global state.

In this paper, we make the following contributions:

• We demonstrate that user impatience plays a criti-
cal role in determining the optimal allocation for dis-
seminating content. We define the social welfare of a
mobile P2P caching system for any delay-utility and
global cache allocation (Section 3). Furthermore, we
demonstrate that the optimal allocation can be com-
puted efficiently in a centralized manner. Under the
simplified assumption of homogeneous meeting rates,
we show that the corresponding optimal cache allo-
cation is known in closed form for a general class of
delay-utility functions (Section 4). These results in-
dicate that, as the user population becomes increas-
ingly impatient, the optimal allocation changes radi-
cally: it varies steadily between a uniform allocation
dividing the global cache between all content items,
and a highly-skewed allocation in which popular items
receive a disproportionate share of the global cache.

• Inspired by these results, we develop a reactive dis-
tributed algorithm, Query Counting Replication (QCR)
that for any delay-utility function drives the global
cache towards the optimal allocation. Moreover QCR
does so without use of any explicit estimators or con-
trol channel information. Further, we show the im-
plementation of QCR in opportunistic environment’s
is non-trivial and demonstrate a novel technique Man-
date Routing to avoid potential pathologies that arise
in insufficiently fluid settings (Section 5).

• Finally, we validate our techniques on real-world con-
tact traces, demonstrating the robustness of our ana-
lytic results in the face of heterogeneous meeting rates
and bursty contacts. We find QCR compares favor-
ably to a variety of heuristic competitors, despite those
competitors having access to a perfect control-channel
and QCR relying solely on locally available informa-
tion (Section 6).

2. RELATED WORK
Networks that leverage local connection opportunities to

communicate in a delay tolerant manner can be classified
into two categories. The first category, featuring networks
such as DieselNet [1] or KioskNet [22], involves nodes with
scheduled or controlled routes, and routing protocols de-
signed to communicate with predictable latency. The sec-
ond category contains network featuring unpredictable mo-
bility [8, 4] that may be used in an opportunistic man-
ner. In this case, it is infeasible to provide strict guarantees
on message delivery time. However, opportunistic contacts
may greatly enhance the performance of many peer-to-peer
(P2P) applications: as proposed for website prefetching in
the 7DS architecture [20], and podcast dissemination (series
of content items on a channel), in the Podnet project [14]. It
is into this second category that the content dissemination
problem we investigate here falls. The performance of some
of these systems have been analyzed from a hit-rate or delay
standpoint [15, 11] for the case of a persistent demand.

Much previous work in the context of opportunistic net-
works has used utility functions as local states variables,
both for unicast routing and publish-subscribe applications.
The routing protocol PROPHET [16] uses past information
to predict delivery probability. The RAPID protocol gen-
eralizes this principle into an inference algorithm which ac-
counts for several metrics related to delay [1], while CAR [18]
proposes the use of Kalman filtering to improve the predic-
tion’s accuracy. The impact of using different utility func-
tions has been analyzed for single-copy routing schemes [24],
buffer management optimization [12], and the use of error-
correcting code [10]. In the context of pub-sub applications,
utility functions were introduced to either predict user future
demands [23], or leverage uneven distributions of demand
and user proximity [2, 6]. Other advanced cache manage-
ment protocols includes utilizing filters [7] and social rela-
tionships between mobile users in community [26].

In general, such use of utility functions helps a system to
distinguish on-the-fly which intermediate node is the most
likely to succeed (i.e., for unicast routing, moving a packet
closer to its destination, or, for pub-sub applications, fa-
cilitating dissemination to subscribing nodes). The perfor-
mance of all these schemes are in general difficult to analyze
both due to their complexity, and the interaction between lo-

86

cal decisions using estimated utility and the global effect on
network performance. Our work significantly departs from
this closely-related work in two ways. The first is that in-
stead of using (local) utility as an intermediate quantity used
to estimate one or several parameters informing protocols,
we take (global) utility as an end-measure for network ef-
ficiency (i.e., the system’s performance as it is perceived
by users in aggregate). At no time during the course of
the protocols is (local) utility estimated. Rather we study
the effect of using light-weight replication protocols on the
global utility of the network which the objective function we
aim to maximize. The second difference is that we account
for a general behavior of users with regard to delay, defining
the global utility (or social welfare) as a function of any in-
dividually experienced delay-utilities (previous work either
ignores user impatience or implicitly accounts for it using a
fixed step function). A similar approach had been used for
congestion control [13], and wireless scheduling [17], but not
so far for content dissemination in opportunistic networks.

Replication protocols were first introduced for unstruc-
tured P2P systems deployed on wired networks, as a way to
increase data availability and hence to limit search traffic [5,
25]. Assuming that nodes search for files in random peers, it
was shown [5] that for each fulfilled request, creating replicas
in the set of nodes used for the search (i.e., path-replication)
achieves a square root allocation: a file i requested with
probability pi has a number of replicas proportional to

√
pi

at equilibrium. This allocation was shown to lead to an
optimal number of messages overall exchanged in the sys-
tem. Assuming that nodes use an expanding ring search, an
allocation where each file is replicated in proportion of its
probability pi was shown to be optimal [25]. The meeting
between unpredictable mobile nodes can in some sense be
compared to a random search, and we extend the results
above for a P2P system deployed on top of opportunistic
contacts between mobile devices. The main novelty is that
the behavior of user with regard to delay greatly impacts
which algorithms to select for optimal performance.

Immediately before completing the final version of this
paper, we heard of an on-going effort to characterize a re-
lated channel selection problem [9]. The algorithm pro-
posed in this case uses an estimate of dissemination time
and a Metropolis-Hasting adaptive scheme. One difference
between the two approaches is that we show, because the
optimal allocation satisfies a simple balance condition, that
even simple algorithms which do no maintain any estimates
of dissemination time or current cache allocation are opti-
mal for a known delay-utility function. Another difference
is that we also prove that the submodularity property for
the cache allocation can be established even when contacts
and delay-utility functions are not homogeneous.

3. EFFICIENCY OF P2P CACHING
Some nodes store content which they use to fulfill requests

of the nodes they meet. In this section, we assume that the
allocation of content to these nodes is fixed. We show that
the global efficiency of such a system can be measured with
an objective function parameterized by a delay-utility func-
tion representing the average user’s impatience behavior.

3.1 Node Types, Content Cache
Each node in the P2P system may be a client, a server, or

both. The set of client nodes is denoted by C, we generally

denote its size by N . Each client demands and consumes
content as described in Section 3.3. The set of all server
nodes is denoted by S . Servers maintain a cache in order to
make it available to interested clients (when such clients are
met). This includes in particular the two following scenarios:

Dedicated nodes server and client populations are sepa-
rate (i.e., C ∩ S = ∅).

Pure P2P all nodes act as both server and client (i.e., C =
S).

The dedicated node case resembles a managed P2P sys-
tem, where delivery of content is assisted by special types
of nodes (e.g., buses or throwboxes [1], kiosks [22]). The
pure P2P case denotes a cooperative setting where all nodes
(e.g., users’s cell-phones [20, 14]) request content as well
as help deliver content to others. The motivating scenario,
mentioned in the introduction, of VideoForU is likely to re-
semble the Pure P2P scenario, especially if as little content
as possible is seeded with cellular infrastructure.

Caches in Server nodes.
The main variable of interest in the system is the cache

content across all server nodes. In this section we assume it
to be fixed; in practice the global cache dynamically evolves
through a replication protocol (see section 5).

For any item i and m in S , we define xi,m to be one if
server node m possesses a copy of item i, and zero otherwise.
The matrix x = (xi,m)i∈I,m∈S represents the state of the
global distributed cache. We denote the total number of
replicas of item i present in the system by xi =

P
m∈S xi,m.

In the rest of this paper, we assume that all servers have
the same cache size so that they can contain up to ρ content
items (all items are assumed to have the same size). This
is not a critical assumption and most of the following re-
sults can be extended to caches or content items of differing
sizes. It follows that a content allocation x in server nodes
is feasible if and only if:

∀m ∈ S ,
X
i∈I

xi,m ≤ ρ .

3.2 Representing Impatience as Delay-utility
In contrast with previous work in P2P networks, P2P con-

tent dissemination over an opportunistic mobile network in-
duces a non-negligible fulfillment delay between the time a
request is made by a client node and the time that it is ful-
filled. This delay depends on the current cache allocation, as
a request is fulfilled the next time the requesting node meets
another node possessing a copy of the desired content. The
term impatience refers to the phenomenon that users become
decreasingly satisfied (or increasingly dissatisfied) with the
delays they experience. A delay-utility function h(t) can be
used to characterize this phenomenon of user impatience in
analytic terms, where the value of this function is mono-
tonically decreasing with time (as increasing delay will not
translate into increasing satisfaction).

Since different types of content may be subject to differing
user expectations, we allow each content item i in the set
of all system-wide content items available I , its own delay-
utility function hi. The value hi(t) denotes the gain for the
network resulting from delayed fulfillment of a request for
item i when this occurs t time units after the request was
created. This value can be negative, which denotes that

87

this delayed fulfillment generates a disutility, or a cost for
the network. Note that t is related here to the user’s waiting
time, not to the time elapsed since the creation of the item.
Currently, we decided to use the same set of delay-utility
functions for all users. One can therefore interpret hi(t) as
the average among users of the gain produced when a request
is fulfilled after waiting for t time units. All the results
we present generalize to users following different functions,
but we choose to follow a simple average function to avoid
notational issues, and to keep the system design simple.

We now present several examples of delay-utility functions
corresponding to different perceptions of the performance of
a P2P caching system by the users.

Advertising Revenue.
Assuming content items are videos starting with embed-

ded advertisements, and that the network provider receives
a constant unit revenue each time a commercial is watched
by a user (a potential business plan for the scenario of Video-
ForU). In this case, the delay-utility function simply denotes
the probability that a user watches a given video when she
receives the content t time after it was requested. Two pos-
sible function families modeling this situation are:

Step function h(s)
τ : t �→ I{t≤τ}.

Exponential function h(e)
ν : t �→ exp (−νt).

The former models a case where all users stop being inter-
ested in seeing the item after waiting for the same amount
of time. In the second case, the population of users is more
mixed: at any time, a given fraction of users is susceptible
to losing interest in the content.

Time-Critical Information.
Assuming the content exchanged by nodes deals with an

emergency, or a classified advertisement for a highly de-
manded and rare product (i.e., a well located apartment).
In such cases, as opposed to the previous model the value
of receiving this piece can start from a high value but very
quickly diminish. It is possible to capture such a behavior
by a delay-utility presenting a large reward for a prompt
demand fulfillment.

Inverse power h(p)
α : t �→ t1−α

α− 1
. with α > 1

Note that the value of delivering an item immediately in
this case is arbitrarily large (h(0+) = ∞). Such immediate
delivery can occur when a node is both a server and a user,
as the local cache may already contain the item requested.
To exclude this case, we restrict the use of such delay-utility
functions to the Dedicated node case.

Waiting Cost.
In some situations, such as a patch needed to use or update

a particular application, users may request for an item and
insist on receiving it no matter how long it takes, becoming
with time increasing upset because of tardy fulfillment. As
an example, the time a user spent with an outdated version
of a software application may be related with the risk of
being infected by a new virus, and hence incurring a high
cost. One can consider to represent such cases a delay-utility
function that grows increasingly more negative with time,
corresponding to a cost for the user and the network.

Negative power h(p)
α as above with α < 1

Negative Logarithm h
(p)
1 : t �→ − ln(t).

The negative logarithm corresponds to the limit as α ap-
proaches 1. It features both a high value for fast fulfillment
of request and a negative cost becoming unbounded as wait-
ing time grows.

We plot on Figure 1 illustration of delay-utility functions
for the three motivating examples presented above.

To simplify the presentation below, we will assume in this
paper that h admits a finite limit at time t = 0, (i.e., h(0+) <
∞). This excludes the inverse power and the negative loga-
rithm delay-utility functions introduced above. These func-
tions can be considered in the dedicated node case where
the exact same results hold, as shown in [21].

3.3 Client Demand
Clients register their demand for content in the form of

requests. As in previous work, we assume that the process
of demand for different items follows different rates, reflect-
ing differing content popularity. We denote by di the total
rate of demand for item i. In the rest of this paper, we as-
sume any arbitrary values of di. As an example of demand
distribution, one may use

Pareto with parameter ω > 0: di ∝ i−ω for all i ∈ I .

In simulation we use a Pareto popularity distribution, gen-
erally considered as representative of content popularity.

We denote by πi,n the relative likeliness of a demand for
item i arising at node n, where

P
n∈C πi,n = 1. In other

words, node n creates a new request for item i with a rate
equal to diπi,n. One can generally assume that different pop-
ulations of nodes have different popularity profile, generally
captured in the values of πi,n. Otherwise, we can assume
that items, especially the ones with the highest demand, are
popular equally among all network nodes. This corresponds
to the case where πi,n = 1/|C|.
3.4 Node Mobility

As all nodes (whether client or server) move in a given
area, they occasionally meet other nodes - these meetings
provide the opportunity for replication of cache content and
fulfillment of outstanding requests. For simplicity and as a
way to compare different P2P caching schemes, we focus on a
case where contacts between clients and server nodes follow
independent and memory less processes. In other words, we
neglect the time dependence and correlation between meet-
ing times of different pairs which may arise due to complex
properties of mobility. In that case the process of contacts
between two nodesm and n is entirely characterized by their
contact intensity (the number of contacts between them per
unit of time), which we denote by μm,n.

Our model can be defined for any contact processes, this
is what we simulate in Section 6 for a comparison using real
traces. The memoryless assumption helps us to understand
what are optimal strategies in a simple case before evaluat-
ing them using real traces for a complete validation of these
trends. Two contact models can be considered:

Discrete time The system evolves in a synchronous man-
ner, in a sequence of time slots with duration δ. For
each time slot, we assume node contacts occur inde-
pendently with probability μm,n ·δ (for m ∈ S , n ∈ C).

88

h
(e)
ν , ν = 1

h
(e)
ν , ν = 0.1
h

(s)
τ , τ = 1

t

h
(t

)

543210

2

1

0

-1

-2

-3

(a) Advertising Revenue

h
(p)
α , α = −1
h

(p)
α , α = 0

h
(p)
α , α = 0.5

t

h
(t

)

543210

1

0

-1

-2

-3

-4

-5

(b) Time-Critical Information

h
(p)
α , α = 1

h
(p)
α , α = 1.5
h

(p)
α , α = 2

t

h
(t

)

543210

2

1

0

-1

-2

-3

(c) Waiting Cost

Figure 1: Delay-utility functions used for advertising revenue (left), time-critical information (middle) and
waiting cost (right).

Continuous time The system evolves in an asynchronous
manner, so that events may occur in continuous time.
We assume that node contacts occur according to a
Poisson Process with rate μm,n (for m ∈ S , n ∈ C).

Note that when δ is small compared to any other time in the
system, the discrete time model approaches the continuous
time model. In this paper, whenever space permits we write
results for both contact model, focusing on the continuous
case. Simulations results, which are based on discrete event
processes, confirm the good match between our continuous
time analysis and the discrete time dynamics of a real sys-
tem.

The system is said to follow homogeneous contacts if we
have μm,n = μ for all nodes m ∈ S and n ∈ C. This case
corresponds to a population of nodes with similar character-
istics where all meeting are equally likely, as for instance it
may be between the participants of a special event.

3.5 Content allocation objective
Demand arises in our P2P system according to content

popularity, and is served as a function of mobility and con-
tent availability, captured through variables x = (xi,m)i∈I,m∈S .

We define Ui,n(x) to be the expected gain generated by
a request for item i created by client node n. Following
our model of users’s impatience, this expected gain is equal
to E [hi(Y)] where Y denotes the time needed to fulfill this
request, which itself critically depends on the availability of
item i in servers’s caches.

The total utility perceived by all clients in the system,
also called social welfare, may then be written as:

U(x) =
X
i∈I

di

X
n∈C

πi,nUi,n(x) . (1)

A good allocation x of content across the global cache is one
that results in a high social welfare. Note that this objective
combines the effects of delay on the gains perceived by users,
the popularity of files, as well as the cache allocation.

In the remaining of this section, we derive an expression
for Ui,n(x), based on the differential delay-utility function,
which will be instrumental in deriving some of its properties.

Differential delay-utility function.
We denote this function by ci for the continuous time con-

tact model (resp. Δci for the discrete time contact model).

These functions are simply defined by

ci(t) = −dhi

dt
(t) , and Δci(kδ) = hi(kδ) − hi ((k + 1) δ) .

The values of ci(t) and Δci(kδ) are always positive as hi

is a non-increasing function. The value of ci (resp. Δci)
represents the additional loss of utility, which is incurred
per additional unit of time spent waiting (resp. the loss of
utility incurred for waiting an additional time slot).

We present in the second line of Table 1 the expression for
ci for all the delay-utility functions introduced above. Note
that when hi is not differentiable (like for the step function),
it may happen that ci is not defined as a function but as the
derivative measure in the sense of the distribution.

General expression for Ui,n(x).
Following a slight abuse of notation, we set by convention

xi,n = 0 when n is not a server node (i.e., n /∈ S). With
this notation, we find the following expressions for Ui,n.

Lemma 1. In the discrete time contact model, Ui,n(x) is

hi(δ) − (1 − xi,n)
X
k≥1

Y
m∈S

(1 − xi,mμm,nδ)
k ci(k · δ) ,

For the continuous time contact model, Ui,n(x) is

hi(0
+) − (1 − xi,n)

Z ∞

0

exp

−t
X
m∈S

xi,mμm,n

!
ci(t)dt .

The proof follows from the memory less property of contacts
and the expectation as obtained in integration by part:

E [h(Y)] = h(0+) +

Z ∞

0

(1 − FY (t))h′(t)dh .

The term (1−xi,n) deals with possible immediate fulfillment
(i.e., request created by a node that already contains this
item in its local cache). For more details, see [21].

Homogeneous contact case.
If we assume homogeneous contacts (i.e., μm,n = μ), the

general expressions above simplifies. In particular, the util-
ity depends on (xi,n)i∈I,n∈S only via the number of copies
present in the system for each item (xi)i∈I .

First, in the dedicated node case (i.e., S ∩ C = ∅), we
have, respectively for the discrete time contact model and

89

the continuous time contact model:

U(x) =
X
i∈I

di

0
@h(δ) −X

k≥1

(1 − μδ)xik ci(k · δ)
1
A . (2)

U(x) =
X
i∈I

di

„
h(0+) −

Z ∞

0

e−tμxici(t)dt

«
. (3)

Similarly, for the pure P2P case, if we further assume that all
N = |C| = |S| nodes follow the same item popularity profile
(i.e., πi,n = 1/N), we have for the two different models of
contact process:

U(x) =
X
i∈I

di

0
@h(δ) − “1 − xi

N

”X
k≥1

(1 − μδ)xik ci(k · δ)
1
A .

(4)

U(x) =
X
i∈I

di

„
h(0+) −

“
1 − xi

N

”Z ∞

0

e−tμxici(t)dt

«
.

(5)
All these expressions follows from a simple application of
Lemma 1 (see [21] for complete details).

4. OPTIMAL CACHE ALLOCATION
The social welfare defined above measures the efficiency

of cache allocation which captures users’s requests and im-
patience behavior. Finding the best cache allocation is then
equivalent to solving the following optimization problem:

max

(
U(x)

˛̨̨
˛̨ xi,n ∈ {0, 1} , ∀n ∈ S ,

X
i∈I

xi,n ≤ ρ

)
. (6)

4.1 Submodularity, Centralized computation
A function f that maps subset of S to a real number is said

to be sub-modular if it satisfies the following property: ∀A ⊆
B ⊆ S , ∀m ∈ S , f(A∪{m})− f(A) ≥ f(B∪{m})− f(B) .

This property generalizes to set functions the concavity
property defined for continuous variables. Colloquially this
is referred to as “diminishing returns” since the relative in-
crease obtained when including new elements diminishes as
the set grows.

The function Ui,n(x) can be interpreted as a function that
maps subset of S (i.e., the subset of servers that possess a
replica for item i) to a real number (the expected value of
a request for item i created in client n). Similarly, U may
be seen as a function that maps subset in S × I (subsets
denoting which servers possess which replica), to a real value
(the social welfare). We then have the following result.

Theorem 1. For any item i and node n, Ui,n is submod-
ular. As a consequence U is submodular.

This result can be interpreted intuitively. On the one hand,
in order to increase the value of Ui,n, creating a new copy
of item i (i.e., including a new element in the set of servers
containing a copy of i) always reduce delays and hence in-
creases utility. On the other hand the relative improvement
obtained when creating this copy depends on the number of
copies of i already present, and it diminishes as that item is
more frequently found. What is perhaps less obvious is that
this result holds for any mixed client/server population of

nodes, heterogeneous contact processes, and any arbitrary
popularity profile.

An interesting consequence is that one can deduce from
submodularity, under some additional conditions, that a
greedy procedure builds a (1 − 1/e)-approximation of the
maximum social welfare for given capacity constraints (see
[19]). A greedy algorithm is used in Section 6 to find a cache
allocation for heterogeneous contact traces.

The proof of this result uses the general expression for
Ui,n found in Lemma 1 and a few observations: First, that
the expression inside the integral multiplying the differen-
tial delay-utility function is a supermodular non-increasing
and non-negative function of the set of servers containing
i. Second, that since the differential delay-utility function
is positive, all these properties apply to the integral itself.
Finally, that the product with (1 − xi,n) preserves the su-
permodular non-increasing and non-negative properties. A
complete formal proof can be found in [21].

In the case of homogeneous contact rates, we can obtain
an even stronger result, as the social welfare only depends on
the number of replicas for each item, and not on the actual
subset of nodes that possess that item.

Theorem 2. In the homogeneous contact case, U(x) is a
concave function of { xi | i ∈ I }.

The optimal values of { xi ∈ {0, 1, · · · , |S|} | i ∈ I } are
found by a greedy algorithm using at most O(|I |+ρ|S| ln(|I |))
computation steps.

Moreover, the solution of the relaxed social welfare max-
imization (i.e., maximum value of U(x) when (xi)i∈I are
allowed to take real value) can be found by gradient descent
algorithm.

The concavity property is here not surprising, as it corre-
sponds to submodularity when the function is defined using
continuous variables rather than a set. Formally, the argu-
ments used to prove this result are quite similar to the previ-
ous proof: one leverages previous expressions which feature
the product with the differential delay-utility function, and
then use the fact that the family of convex non-negative
non-increasing functions is closed under product.

The greedy algorithm follows a simple operation repeated
once for each copy that can be cached (ρ|S| steps in total):
at each time step from the current cache allocation, it adds
a copy for the item that brings the most significant relative
increase in utility (assuming there does not exist already |S|
copies of this item). By doing so, the algorithm is likely to
select first popular items. As the popular items fill the cache
with copies, the relative improvement obtained for each ad-
ditional copy diminishes, and the greedy rule will choose to
create copies for other less popular items. The diminishing
return property ensures that this greedy algorithm selects
the optimal cache allocation. For the same reason, starting
from a cache allocation, a hill climbing algorithm with full
knowledge can reach the optimal cache allocation only from
local manipulation of cache between nodes that are currently
meeting. A formal proof of these results can be found in [21].

4.2 Characterizing the optimal allocation
In the homogeneous contact case, whenever xi only takes

integer values, it can be difficult to grasp a simple expres-
sion for the allocation maximizing social welfare, as it is
subject to boundary and rounding effect. However, when
the number of servers is large, xi may take larger values, in

90

particular for popular items. Hence, the difference between
the optimal allocation and the solution of the relaxed opti-
mization (where (xi)i∈I may take real values, as defined in
Theorem 2) tends to become small. The latter is then a good
approximation of the former. In addition, when the num-
ber of clients N becomes large, the difference between the
dedicated node case and the pure P2P case tends to become
negligible, as the correcting terms (1− xi

N
) in Eq.(4) and (5)

approaches 1.
We show in this section that the solution of the relaxed

optimization problem satisfies a simple equilibrium condi-
tions. Although we only derive this condition in the contin-
uous time contact model, a similar condition can be found
in the discrete case model.

Property 1. We consider the continuous time contact
and dedicated node case. Let x̃ be the solution of the relaxed
social welfare maximization (as defined in Theorem 2), then

∀i, j , x̃i = |S| or x̃j = |S| or di · ϕ(x̃i) = dj · ϕ(x̃j) .

where we define ϕ as ϕ : x �→
Z ∞

0

μte−μtxc(t)dt .

This property states that, at the optimal solution of the
relaxed cache allocation problem, the amount of copies cre-
ated for all items depends on their popularity exactly in the
same way: via a unique function ϕ defined independently of
i. This equality holds only when the number of copies is not
limited by the number of servers, otherwise it becomes an
inequality.

This property follows from a simple derivation of the social

welfare, as
∂U

∂xi
(x) = diϕ(xi) , which may be deduced from

Eq.(3). At the optimal solution of the relaxed allocation
problem, these derivatives should all be equal except for
the value of xi that are on the boundary of the domain
(i.e., when xi = |S|). If two points are in the interior and
the derivative above differ, it is possible to modify x̃ slightly
to remain under the capacity constraint and obtain an even
larger social welfare, which would be absurd.

The function ϕ can always be defined a transform of the
delay-utility function. For different choices of delay-utility,
it leads to simple expressions which can be found in Table 1.
As an example, when all items exhibit power delay-utility

(hi = h
(p)
α), ϕ is a power function as well. The property

implies then that, for all item i that are within the bound-
ary conditions (i.e., xi < |S|), the product (x̃i)

2−αdi is a
constant that does not depend on i. We deduce that the
optimal cache allocation for the relaxed problem resembles

the distribution where xi ∝ d
1/(2−α)
i , as shown in Figure 2.

x̃i ∝
√
di

x̃i ∝ di

x̃i ∝ d2
i

α

1
2−α

210-1-2

4

3

2

1

0

Figure 2: Coefficient of the optimal allocation for
power delay-utility functions, as a function of α.

Note that, as α approaches 1 (i.e., delay-utility is a neg-
ative logarithm), the social welfare is maximized when each
item receives a fraction of cache proportional to its demand.
For smaller values of α (i.e., waiting time cost) the optimal
cache allocation becomes more egalitarian, it tends to uni-
form as α becomes arbitrary small. For larger values of α
(i.e., time-critical information), the optimal allocation be-
comes more and more skewed towards popular items (which
are likely to give the best reward); as α approaches 2, the
most demanded items completely dominate the cache. Simi-
lar qualitative observations hold for the step-function utility,
the optimal allocation is more complex but again varies be-
tween these two extreme cases.

5. DISTRIBUTED OPTIMAL SCHEMES
The previous section establishes that the cache allocation

problem admits an optimal operating point, which may in
some cases be known in closed form, and can always be either
computed directly or approximated in a centralized manner.
When a highly available control channel is available, using
such a centralized approach is feasible. However, making
each local decisions based on global information maintained
using this control channel seems to reach the optimal allo-
cation only at a prohibitive cost.

In this section, we demonstrate that one does not need to
maintain global information, or know the demand of items
a priori, to approach the optimal cache allocation. This
results in a drastic reduction of overhead and makes such
caching service possible where no infrastructure is available.

We show that a simple reactive protocol, generalizing repli-
cation techniques introduced in the P2P literature, are able
to approach the optimal allocation using only local informa-
tion. In order to build a low-overhead reactive protocol for
the opportunistic setting, two particular challenges need be
overcome:

• We must understand how to construct a replication
strategy that reacts naturally to the demand for and
availability of content (Section 5.1), while also prop-
erly adapting our replication strategy to impatience of
users (Section 5.2). A successful strategy will allow
us to approach the optimal efficiency when the system
reaches equilibrium.

• We must ensure that the replication technique is im-
plemented in such a way that ensures the convergence
towards the equilibrium. This challenge proves to be
non-trivial in the opportunistic context for the strate-
gies we examine (Section 5.3).

5.1 Query Counting Replication
We propose a general class of distributed schemes, that

we call Query Counting Replication (QCR). QCR implicitly
adapts to the current allocation of data and collection of re-
quests, without storing or sharing explicit estimators. QCR
achieves this by keeping a query count for each new request
made by the node. Whenever a request is fulfilled for a par-
ticular item, the final value of the query counter is used to
regulate the number of new replicas made of that item. The
function ψ that maps the value of the query counter to the
amount of replicas produced is called the reaction function.
We describe in Section 5.2 precisely how it should be set,
given knowledge of user impatience.

91

As an example, consider a VideoForU client Amy who be-
gins requesting a copy of video i. Each time Amy (or more
precisely Amy’s phone) subsequently meets another Video-
ForU node, Amy’s phone queries the node met for a copy of
item i and increments the query counter associated with i.
If after nine meetings Amy’s finally meets a node possessing
a copy of item i and receives a copy of video i, according to
the above rule, Amy’s phone will create ψ(9) replicas of this
item and transmit them proactively to other nodes storing
VideoForU content when the opportunity arise. This prin-
ciple generalizes path replication [5] where ψ(y) was a linear
function of y.

Contacts between mobile nodes are unpredictable, hence,
as Amy’s phone distributes replicas, it may encounter nodes
that already contain this item. We then distinguish two
implementations: replication without rewriting where such
contact is simply ignored, or replication with rewriting where
such contacts decreases by one the number of replica to be
distributed, even though no new copy can be made.

5.2 Tuning replication for optimal allocation
We now describe how to choose the reaction function ψ

depending on users’s impatience. We first observe that the
expected value of the query counter for different item i is
proportional to |S|/xi, since whenever a node is met there
is roughly a probability xi/|S| that it contains item i in
its cache. Hence, we can assume as a first order approxi-
mation that approximately ψ(|S|/xi) replicas are made for
each request of that items. Inversely, as a consequence of
random replacement in cache, each new replicas being pro-
duced for any items erases a replica for item i with proba-
bility xi/(ρ|S|). When rewriting is allowed, one should ac-
count for all replicas created (including the one created for
the same item), we focus on this case for the analysis. Oth-
erwise one should consider all replicas created for all other
items. As a consequence, the number of copies for each item
follows the system of differential equations:

∀i ∈ I ,
dxi

dt
= di · ψ(

|S|
xi

) − xi

ρ|S| ·
X
j∈I

djψ(
|S|
xj

) . (7)

Assuming the system converges to a stable steady state,
the creation of copies should compensate exactly for their
deletion by replacement. In other words a stable solution of
this equation satisfies

∀i ∈ I , di
1

xi
· ψ(

|S|
xi

) =
1

ρ|S| ·
X
j∈I

djψ(
|S|
xj

) .

Note that the RHS is a constant that does not depend on i
anymore, so that this implies

∀i, j ∈ I , di
1

xi
· ψ(

|S|
xi

) = dj
1

xj
· ψ(

|S|
xj

) .

In other words, the steady state of this algorithm satisfies
the equilibrium condition of Property 1 if and only if we

have: ∀x > 0 , 1
x
ψ(|S|

x
) = ϕ(x) where ϕ is defined as in

Property 1. Equivalently, ∀y > 0 , ψ(y) = |S|
y
ϕ(|S|

y
) .

Property 2. The steady state of QCR satisfies the equi-
librium condition of Property 1 if and only if

ψ(y) ∝ |S|/y
Z ∞

0

μte−μ
t|S|

y c(t)dt .

The upshot of this result is that as long as the delay-utility
function representing user impatience is known, we can al-
ways determine the number of copies QCR must make to
drive the allocation towards its optimal. In particular, the
optimal reaction function can be derived in a simple expres-
sion for all the delay utilities previously introduced, as seen
in Table 1. This table was computed for the continuous time
and dedicated node case. A similar table can be derived for
the pure P2P case (see [21]). It is approximately equivalent
to this one whenever the number of client nodes N is large.

5.3 Mandate routing
Up to this point we have worked under the assumption

that copies can be made more or less immediately, as in
classical wired P2P networks. However, in an opportunistic
context this is far from true. Particularly:

• Copies can only be made when another node is met,
which happens only sporadically. Creating a replica
may also takes additional time. For example, when
rewriting is not allowed and the node met may already
have a replica of that item.

• Since cache slots are overwritten randomly, it could be
that, when a replica of the item needs to be produced,
this item is no longer in the possession of the node
desiring to replicate it.

Mandates & Pathologies.
Because replicas cannot be simply generated immediately,

QCR mechanism deployed in an opportunistic context must
inherently make (either implicitly or explicitly) a set of in-
structions for future replication of item i (i.e., instructions
to be used later, when the possibility for execution arises).
We call such an instruction a replication mandate or man-
date for short.

When a meeting occurs the mandate attempts to execute
itself, but as we have already discussed, the circumstances
may often not allow for its execution. This dependence of
mandate execution on the state of the distributed cache may
throw a monkey wrench in the dynamics outlined in Section
5.2 - for if the cache deviates to much from its expected
state, the rates at which a given replica population evolves
may be higher or lower than expected as well. As an exam-
ple, if there are many fewer than expected copies of item i
in the cache, and item i was erased by later random replace-
ment, item i may rarely be present again, so that mandates
may not be executed soon in the future. An item i that,
in contrast, is more frequently found, will execute its man-
date more quickly and hence continue to dominate. Conse-
quently, if mandates are simply left at their node of origin
the allocation produced by any given run of QCR can di-
verge significantly from the target allocation, resulting in a
loss of social welfare.

Our solution.
In order to address the above pathology, we need to en-

sure that the number of replication actions taken for each
message is proportionally the same as the number of man-
dates produced for that message. This could be done in
several ways, which all boil down to one of the following two
approaches: (1) Move replicas to nodes with mandates for
those replicas, or (2) Move mandates to nodes possessing
the replicas which those mandates need in order to execute.

92

Model Step function Exponential decay Inv. Power Neg. Power Neg. logarithm
(α < 1) (1 < α < 2) (α = 1)

Impatience h(t) I{t≤τ} exp (−νt) t1−α

α− 1
− ln(t).

Diff. Impat. c Dirac at t = τ density t �→ ν exp (−νt) density t �→ t−α

Gain U(x)
P

i di(1 − e−μτxi)
P

i di(1 − 1
1+ μ

ν
xi

)
P

i dix
α−1
i

μα−1Γ(2−α)
α−1

P
i di ln(xi) − cst

Cond. ϕ (Prop 1) di · μτe−μτxi di · μ
ν

`
1 + μ

ν
xi

´−2
di · xα−2

i μα−1Γ(2 − α)

Reaction ψ (Prop 2) (μτ |S|/y) e− μτ|S|
y

“
2 + ν

μ|S|y + μ|S|
ν

1
y

”−1

y1−α
`
μα−1|S|α−1Γ (2 − α)

´
Table 1: Several delay-utility functions with their associated equilibrium and reaction functions.

The former approach (e.g., protecting items with current
mandates from being erased by random replacement) vio-
lates the dynamics we are trying to protect and introduces
significant implementation-level complexity - as we must
now either replicate or protect against deletion particular
messages based on locally existing mandates. While in prac-
tice these effects may be more or less severe, the second op-
tion of moving mandates to nodes with replicas provides us
with a way of solving the problem that involves no addition
biasing of the overwrites, nor requires any adjustment to the
mechanism of cache adjustment. Additionally mandates are
by nature quite small pieces of data, so moving them intro-
duces little additional overhead in terms of communication
and storage.

The mandate routing scheme used for the experiments
shown in Section 6 is simple but can have significant im-
pact as will be seen later. We assume that when two nodes
meet, mandates are transfered with preference to the nodes
possessing copies of the messages to be replicated. This en-
sures that most of the mandates that cannot be executed are
soon transferred to appropriate nodes. Otherwise mandates
are simply spread around - split evenly between the nodes.
We demonstrate empirically that this simple modifications
avoids divergence of QCR and is sufficient to converge to-
wards an optimal point.

6. VALIDATION
We now conduct an empirical study of different replica-

tions algorithms in a homogeneous contact setting, as well
as several traces in various mobility scenarios. The goal of
this study is threefold. Firstly, to validate empirically that
the rationale behind our distributed scheme does actually
converge close to the optimal value we predict. Secondly, to
observe quantitatively its improvement over simple heuris-
tics. Thirdly, to test if the same scheme adapts well to
contact heterogeneity present in real-world mobility traces,
as well as complex time statistics and dependencies between
contacts present in these.

6.1 Simulation settings
We have built a custom discrete-event, discrete-time simu-

lator in C++ which given any input contact trace simulates
demand arrival and the interactions of node meetings.

Data plots present below are the average of 15 or more
trials with confidence interval corresponding to 5% and 95%
percentiles. As said in Section 3.3 items are requested fol-
lowing Pareto distribution, here with parameter ω = 1. By
default we assume ρ = 5. Other values of ω and ρ can be
found in [21]. We do not consider the additional complex-
ity of meeting durations. Instead we work on the premise

that meetings are sufficiently long for nodes to complete the
protocol exchange.

Implementation of QCR.
When two nodes meet they first exchange meta data. If

either nodes have outstanding requests for messages to be
found in the other’s cache, then each of those requests is
fulfilled. For each fulfillment a gain is recorded by the simu-
lator, based on the age of this request and the delay-utility
function. Nodes maintain query counters and makes a set
of new mandates for each message fulfilled (as specified in
Section 5.2). After fulfillment, the nodes then execute and
route all of their eligible mandates (by sharing it equally if
both nodes still possess a copy of the items, otherwise give
it to the only node with a copy of this item). Rewriting of
copy is not allowed, which means that contacts with a node
already containing a copy of this item are simply ignored.

Each item i has one sticky replica which cannot be erased.
This implementation detail has the effect of ensuring that we
do not enter an absorbing state in which certain messages
have been lost through discrete stochastic effects. We in-
clude them in mandate routing as preferred nodes (they will
receive 2/3 of all mandates for this particular item whenever
they meet a copy with this item, or all of them if the item
has been erased on this node). We believe it is a reasonable
assumption for a fielded system, given that the initial seeder
of a content item will likely keep that item permanently.

Competitor Algorithms.
We compare the performance of QCR against several heuris-

tics using perfect control-channel information and the abil-
ity to set the cache precisely and without restriction to their
desired allocation: OPT an approximation of the optimal
obtained by a greedy algorithm optimizing Pb.(6). It is ex-
actly optimal in the homogeneous case and approximately
so in the heterogenous ones; UNI: memory is evenly allo-
cated amongst all items; SQRT: memory allocation propor-
tionally to the square root of the demand; PROP: memory
allocation proportional to demand; DOM: all nodes contain
the ρ most popular items.

6.2 Homogeneous contacts
We simulate a network of 50 nodes with 50 content items

(I = 50), meeting according to a rate μ = 0.05 (the absolute
value of μ plays no role in the comparison between different
replication algorithm). As we wish to validate our analysis
is not a mere artifact of the constraints used to generate it,
we focus on the pure P2P case (|C| = |S| = N = 50), which
is the furthest from the analysis we conducted. We tune the
reaction function ψ according to Table 1.

93

QCR with and without mandate routing.
Figure 3 illustrates the need to implement mandate rout-

ing in query based replication. It was obtained for the power
function with α = 0. This result is representative of all com-
parison where mandate routing was turned on and off. As
the time of the simulation evolves we see that the utility (as
estimated in expectation on (a), and observed from real ful-
fillment in (b)) dramatically decreases with time when QCR
does not implement mandate routing. Further investigations
have shown that simultaneously the amount of mandate di-
verges for item less frequently requested. We see on (d),
where the number of replicas is shown for the five most re-
quested items, that QCR without mandate routing system-
atically overestimates their share and sometimes. In con-
trast, the number of replicas with mandate routing fluctu-
ates around the targeted value, and QCR quickly converges
and stay near optimal utility.

Comparison with fixed allocations.
Figure 4 presents the utility obtained with the both QCR

and the competitor algorithms described previously. For
each algorithm, we plot in the y-axis (U−Uopt)/|Uopt| where
U is the utility obtained on average during the simulation by
this algorithm and Uopt is the value obtained with the op-
timal allocation. Hence the plotted quantity is always neg-
ative (since as we expect no algorithm outperforms OPT).
Value y = −1 corresponds to a utility 1% smaller than the
optimal social welfare. Due to large variation of this quan-
tity over the space and algorithms investigated, we used
a logarithmic scale in the y-axis to present these results.
For each algorithm, we consider two models of delay-utility
(power and step function) with different parameters, varied
along the x-axis.

We observe that for both delay-utility functions, the ex-
treme strategies (i.e., UNI and DOM) fail to approach the
optimal in general. In particular it is the case for small value
of α, when users are sensitive to waiting delay and the de-
crease in social welfare can be high, and small value of τ
where quick response is essential. While demand aware of-
fline strategies (i.e., PROP and SQRT) perform similarly
to QCR, QCR does not require control-channel information
to achieve this performance. We even observe that QCR
outperforms PROP in many cases, sometimes very signifi-
cantly. Across all heuristic competitors, QCR does not incur
a loss of utility beyond 5% (for step function) and 60% in
the worst case of power function. One unexpected result is
that the square root allocation performs reasonably well in
most cases studied, however this is an ideal performance ob-
served when the allocation is fixed with a priori knowledge.
In contrast, proportional allocation leads to much worse per-
formance, in particular for power delay-utility function. Pro-
portional allocation resembles a passive demand based repli-
cation where a fixed number of replicas (e.g., one replica)
are created whenever a request is fulfilled (as found in [14]
and many other works). These results illustrate that such
passive replication simply gives too much weight to popular
items, and that compensating for this effect is both neces-
sary and achievable.

6.3 Real Contact Traces
We now abandon the homogenous mixing assumption needed

for our analysis and look at the performance of QCR on real-
world contact traces to see if the spirit that our analysis still

applies under more realistic mobility. As in the homogenous
experiments, we use I = 50 and N = 50 for evaluation of
our techniques on both heterogenous traces.

Conference scenario.
We use the Infocom ’06 data set which measures Bluetooth

sightings between 73 participants at the Infocom conference
(see [4] for more details) over the course of thee days. To
remove bias from poorly connected nodes, we selected the
contacts for the 50 participants (numbered from 21 to 71 in
the original data sets) with the longest measurement peri-
ods.

Figure 5 (a) presents the utility as seen over time (time av-
eraged over an hour) for the competitor set and QCR (with
mandate routing). We clearly observe the alternation of
daytime and nighttime during the trace. Here, unlike in the
homogenous scenario, DOM and PROP perform the best.
QCR performs very close to the latter, despite heterogene-
ity and complex time statistics. SQRT and UNI perform
poorly until tau becomes quite large - as the delay require-
ment is too stringent to allow significant improvement on
non-popular items that would offset the loss created by shift-
ing the focus off popular content.

Figure 5 (b) and (c) presents the relative loss of utility
for different algorithms (compared with OPT) as a func-
tion of τ . We separate the impact of heterogeneity per se
by presenting the actual traces and a synthetic trace where
contact rates of all pairs are identical but contacts are as-
sumed to follow memoryless time statistics. Heterogeneity
per se does not seem to greatly impact the performance of
QCR. Indeed it appears QCR may even perform better un-
der contact complexity, perhaps because its implicit reaction
to content availability adapts well to heterogeneous cases.
The most notable difference with the homogeneous case is
that SQRT is not a clear winner anymore and that PROP
and DOM seem relatively stronger. The results from actual
traces show that time statistics greatly impact the perfor-
mance of a fixed allocation. First, since OPT was computed
under the approximation of memory less contact, some com-
petitors actually perform slightly outperform OPT on occa-
sion. We also observe that the DOM greatly improves due to
bursty statistics. However, the performance of QCR remains
quite comparable, generally lying within 15% of OPT.

Vehicular networks.
We use contacts recorded between 50 taxicabs selected

from the Cabspotting project contact traces. The data sets
was extracted from a day of data and assumed that taxicabs
are in contacts whenever they are less than 200m apart (see
[3] for more details). Results, shown in terms of performance
relative to OPT, may be found in Figure 6 (a) (b) (c). Again,
we observe that OPT, which is based on a memoryless as-
sumption, can be outperformed by some allocation (as in
(b) for the step function case). Just as for the Infocom data
set, we see that SQRT tends to produce degraded perfor-
mance, while DOM improves as heterogeneity and complex
time statistics are included in the contact trace. The perfor-
mance of QCR, the only scheme based on local information,
appears less affected by this change.

94

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

U
til

ity

Time (min)

DOM
UNI

OPT
QCRWOM

QCR

(a) Expected Utility

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

U
til

ity

Time (min)

(b) Observed Util.

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R

ep
lic

as

Time

msg 1
msg 2
msg 3
msg 4
msg 5

(c) Cache: Mandate Routing

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R

ep
lic

as

Time

msg 1
msg 2
msg 3
msg 4
msg 5

(d) no Mandate Routing

Figure 3: Effect of Mandate Routing (homogenous contacts, power delay-utility function with α = 0).

0
-0.01

-0.1

-1

-5
-10

-50
-100
-200

-500
-1000

-2 -1.5 -1 -0.5 0 0.5 1

N
or

m
al

iz
ed

 L
os

s
of

 U
til

ity
 c

om
pa

re
d

to
 o

pt
im

al
 (

%
)

Parameter (α) for power impatience Function

QCR
SQRT
PROP

UNI
DOM

0
-0.1

-1

-5

-10

 1 10 100 1000

N
or

m
al

iz
ed

 L
os

s
of

 U
til

ity
 c

om
pa

re
d

to
 o

pt
im

al
 (

%
)

Parameter (τ) for step impatience Function

QCR
SQRT
PROP

UNI
DOM

Figure 4: Comparison between QCR and several fixed allocations (homogeneous contacts): for power delay-
utility function as a function of α (left), for step delay-utility function as a function of τ (right).

7. CONCLUSION
Our results focus on a specific feature which makes P2P

caching in opportunistic network unique: users’ impatience.
From a theoretical standpoint, we have shown that opti-
mality is affected by impatience but can be computed and
moreover satisfies an equilibrium condition. From a practi-
cal standpoint, we have seen that it directly affects which
replication algorithm should be used by a P2P cache. Pas-
sive replication, ending in proportional allocation, can some-
times perform very badly, but one can tune an adaptive
replication scheme to approach the performance of the op-
timal, based only on local information.

We believe these results may serve as a stepping stone to
address other unique specific characteristics of P2P caching
in opportunistic system, in particular they offer a reference
case from which one can study (1) the impact of hetero-
geneity and complex mobility property more systematically,
(2) clustered and evolving demands in peers, as distributed
mechanism like QCR naturally adapts to a dynamic de-
mand. Another important aspect that remains to be ad-
dressed is how to estimate the delay-utility function implic-
itly from user feedback, instead of assuming that it is known.

8. ACKNOWLEDGMENT
We would like to gratefully acknowledge Nikodin Ristanovic,

Stratis Ioannidis and Laurent Massoulié, for their insightful
comments and their help during the preparation of this work.

9. REFERENCES

[1] A. Balasubramanian, B. Levine, and
A. Venkataramani. DTN Routing as a Resource
Allocation Problem. In Proc. ACM SIGCOMM, 2007.

[2] C. Boldrini, M. Conti, and A. Passarella.
Contentplace: social-aware data dissemination in
opportunistic networks. In Proc. ACM MSWiM, 2008.

[3] A. Chaintreau, J.-Y. L. Boudec, and N. Ristanovic.
The age of gossip: spatial mean field regime. In Proc.
of ACM SIGMETRICS, 2009.

[4] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, J. Scott,
and R. Gass. Impact of human mobility on
opportunistic forwarding algorithms. IEEE Trans.
Mob. Comp., 6(6):606–620, 2007.

[5] E. Cohen and S. Shenker. Replication strategies in
unstructured peer-to-peer networks. SIGCOMM
Comput. Commun. Rev., 32(4):177–190, 2002.

[6] P. Costa, C. Mascolo, M. Musolesi, and G. Picco.
Socially-aware routing for publish-subscribe in
delay-tolerant mobile ad hoc networks. IEEE Jsac,
26(5):748–760, June 2008.

[7] J. Greifenberg and D. Kutscher. Efficient
publish/subscribe-based multicast for opportunistic
networking with self-organized resource utilization. In
Proc. AINAW, 2008.

[8] M. Grossglauser and D. Tse. Mobility increases the
capacity of ad hoc wireless networks. IEEE/ACM
Trans. on Net., 10(4):477–486, 2002.

95

(a) evolution with time (τ = 1)

0
2

5

-2
-5

-10

-50

 1 10 100 1000

N
or

m
al

iz
ed

 L
os

s
of

 U
til

ity
 c

om
pa

re
d

to
 o

pt
im

al
 (

%
)

Parameter (τ) for step impatience Function

QCR
SQRT
PROP

UNI
DOM

(b) vs. τ (actual trace)

0
-0.1

-1

-5

-10

 1 10 100 1000

N
or

m
al

iz
ed

 L
os

s
of

 U
til

ity
 c

om
pa

re
d

to
 o

pt
im

al
 (

%
)

Parameter (τ) for step impatience Function

QCR
SQRT
PROP

UNI
DOM

(c) vs. τ , (synthesized trace)

Figure 5: Utility for Infocom06 Dataset and Step Function Model of Impatience

-2

-5

-10

-50

-100

-200

-500
-2 -1.5 -1 -0.5 0 0.5 1

N
or

m
al

iz
ed

 L
os

s
of

 U
til

ity
 c

om
pa

re
d

to
 o

pt
im

al
 (

%
)

Parameter (τ) for step impatience Function

QCR
SQRT
PROP

UNI
DOM

(a) vs. α (Power fn)

0

2

5

-2
-5

-10

-50

 1 10 100 1000

N
or

m
al

iz
ed

 L
os

s
of

 U
til

ity
 c

om
pa

re
d

to
 o

pt
im

al
 (

%
)

Parameter (α) for power impatience Function

QCR
SQRT
PROP

UNI
DOM

(b) vs. τ (Step fn)

0

2

5

-2
-5

-10

-50

 0.0001 0.001 0.01 0.1 1 10 100 1000

N
or

m
al

iz
ed

 L
os

s
of

 U
til

ity
 c

om
pa

re
d

to
 o

pt
im

al
 (

%
)

Parameter (α) for power impatience Function

QCR
SQRT
PROP

UNI
DOM

(c) vs. ν (Exponential fn)

Figure 6: Comparison between QCR and several fixed allocations (Cabspotting dataset using actual traces):
for power delay-utility function as a function of α (left), for step delay-utility function as a function of τ
(middle), for exponential delay-utility function as a function of ν (right).

[9] L. Hu, J.-Y. L. Boudec, and M. Vojnovic. Optimal
channel choice for collaborative ad-hoc dissemination.
Technical Report MSR-TR-2009-26, MSR, 2009.

[10] S. Jain, M. Demmer, R. Patra, and K. Fall. Using
redundancy to cope with failures in a delay tolerant
network. ACM SIGCOMM Computer Communication
Review, 2005.

[11] G. Karlsson, V. Lenders, and M. May. Delay-tolerant
broadcasting. IEEE Transactions on Broadcasting,
53:369–381, 2007.

[12] A. Krifa, C. Barakat, and T. Spyropoulos. Optimal
buffer management policies for delay tolerant
networks. Proc. of IEEE SECON, 2008.

[13] S. Kunniyur and R. Srikant. End-to-end congestion
control schemes: utility functions, random losses and
ecn marks. IEEE/ACM Trans. Netw., 11(5), 2003.

[14] V. Lenders, M. May, and G. Karlsson. Wireless ad hoc
podcasting. In Proc. IEEE SECON, 2007.

[15] C. Lindemann and O. P. Waldhorst. Modeling
epidemic information dissemination on mobile devices
with finite buffers. In Proc. ACM Sigmetrics, 2005.

[16] A. Lindgren, A. Doria, and O. Schelen. Probabilistic
routing in intermittently connected networks.
SIGMOBILE Mobile Computing and Communication
Review, 7(3), 2003.

[17] P. Liu, R. Berry, and M. Honig. Delay-sensitive packet
scheduling in wireless networks. Proc. of WCNC 2003,
3, 2003.

[18] M. Musolesi and C. Mascolo. Car: Context-aware

adaptive routing for delay-tolerant mobile networks.
IEEE Transactions on Mobile Computing, 2009.

[19] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis
of the approximations for maximizing submodular set
functions. Mathematical Programming, 14, 1978.

[20] M. Papadopouli and H. Schulzrinne. Effects of power
conservation, wireless coverage and cooperation on
data dissemination among mobile devices. In Proc.
ACM MobiHoc, 2001.

[21] J. Reich and A. Chaintreau. The age of impatience:
optimal replication schemes for opportunistic
networks. Technical Report CR-PRL-2009-06-0001,
Thomson, 2009. available at:
www.thlab.net/̃ chaintre/pub/reich09age.TR.pdf.

[22] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and
S. Keshav. Low-cost communication for rural internet
kiosks using mechanical backhaul. In Proc. ACM
MobiCom, 2006.

[23] G. Sollazzo, M. Musolesi, and C. Mascolo. Taco-dtn: a
time-aware content-based dissemination system for
DTN. In Proc. ACM MobiOpp, 2007.

[24] T. Spyropoulos, K. Psounis, and C. Raghavendra.
Efficient routing in intermittently connected mobile
networks: the single-copy case. IEEE/ACM Trans. on
Netw., 16(1), Feb 2008.

[25] S. Tewari and L. Kleinrock. Proportional replication
in peer-to-peer networks. In Proc. INFOCOM, 2006.

[26] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft. A
socio-aware overlay for pub/sub communication in
DTN. In Proc. ACM MSWiM, 2007.

96

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

