Shared Versus Separate Networks

The Impact of Reprovisioning

Soumya Sen (ESE)
Roch Guerin (ESE)
Kartik Hosanagar (Wharton)

University of Pennsylvania

Acknowledgements
Kristin Yamauchi (U. Penn)
Andrew Odlyzko (U. Minn)
Zhi-Li Zhang (U. Minn)
Overview

• Introduction & Motivation
• Model
• Solution Methodology
• Results
• Conclusions
Introduction

• Innovation creates new network services

• How are these services to be deployed?

• Key Questions:
 (1) What is the correct choice of Infrastructure?
 – Combine services onto a single shared network?
 – Create dedicated networks for each service?

 (2) Which economic factors influence the choice and how?
Motivation Examples

• IT & Facilities Management services
 – e.g. Internet & HVAC systems

• Video and Data services
 – e.g. Internet & IPTV services

• Broadband over Powerlines
Solution Options

- **Shared Network Solution**
 Pros:
 - Possible economies of scope in fixed and variable cost components
 Cons:
 - Cost of ‘upgrading’ network features to accommodate services with disparate requirements
 - Increases operational and troubleshooting complexity

- **Separate Network Solution**
 Pros:
 - Easier operation saves costs
 Cons:
 - Higher costs of creating dedicated networks

- One option: Compare Infrastructure choices based on optimal profit

1st December’09, ReArch, CoNEXT
Technical Considerations

• New services have demand *uncertainty*
 – Over-provisioning is expensive (unused resources)
 – Under-provisioning is costly too, but
 • Dynamic resource “reprovisioning” is becoming feasible
 • But some penalty may be incurred
Model

• A Two-Service Model is developed
 • Service 1 (existing service) & Service 2 (new service with uncertain demand)

• Need to choose infrastructure that gives maximum profit, given the demand uncertainty

• Provider’s profit depends on:
 – Service Fees: \(p_1, p_2 \) (fixed & exogenous)
 – Realized Demand
 – Costs:
 • that are incurred irrespective of how many users join (provisioning, operational, fixed costs)
 • that depend on the actual number of users supported (access equipment, billing)
Model Parameters

• Service 2 revenue:
 – Revenue when $D_2 < K_2$:

$$R_2(D_2 < K_2) = (p_2 - v_2)D_2 - a_2K_2 - c_2$$

<table>
<thead>
<tr>
<th>Cost Component</th>
<th>Service 1 separate</th>
<th>Service 2 separate</th>
<th>Shared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Fees</td>
<td>p_1</td>
<td>p_2</td>
<td>p_1, p_2</td>
</tr>
<tr>
<td>Fixed Costs</td>
<td>c_1</td>
<td>c_2</td>
<td>c_s</td>
</tr>
<tr>
<td>Variable Costs (incurred for each unit of realized demand)</td>
<td>v_1</td>
<td>v_2</td>
<td>v_{s1}, v_{s2}</td>
</tr>
<tr>
<td>Variable Costs (incurred irrespective of realized demand)</td>
<td>a_1</td>
<td>a_2</td>
<td>a_{s1}, a_{s2}</td>
</tr>
</tbody>
</table>
Model: Separate Networks

- Service 2 Revenue when $D_2 > K_2$:
 - Reprovisioning Ability:
 - A fraction α of the excess demand can be accommodated
 \[R_2(D_2 > K_2) = (p_2 - v_2 - a_2)(K_2 + \alpha(D_2 - K_2)) - c_2 \]

- Expected Revenue, $\mathbb{E}(R_2|K_2)$, for a given provisioned level K_2:
 \[\mathbb{E}(R_2|K_2) = \int_0^{K_2} R_2(D_2 < K_2|K_2) f_{D_2}(D_2) \, d(D_2) \]
 \[+ \int_{K_2}^{D_2^{\text{max}}} R_2(D_2 > K_2|K_2) f_{D_2}(D_2) \, d(D_2) \]

- Optimal Provisioning Level (for demand distribution: $U[0, D_2^{\text{max}}]$)
 \[K_2^* = \frac{(1 - \alpha)(p_2 - v_2 - a_2)D_2^{\text{max}}}{(1 - \alpha)(p_2 - v_2) + \alpha a_2} \]
Solution Methodology

• Service 1 is an existing service
 – with a stable demand = \(D_1 \), provisioning level: \(K_1 = D_1 \)
 – Revenue: \(\Pi_1 = (p_1 - v_1 - a_1)D_1 - c_1 \)

• Total Revenue from Service 1 and Service 2 networks, \(\Pi_{sep} = \Pi_1 + \Pi_2 \):

\[
\Pi_{sep} = \left\{ \frac{(p_2 - v_2 - a_2)D_2^{max}}{2} \left(1 - \frac{(1 - \alpha)a_2}{(1 - \alpha)(p_2 - v_2) + \alpha a_2} \right) - c_2 \right\}

\[+ (p_1 - v_1 - a_1)D_1 - c_1 \]

Profit from Service 1

\(\Pi_{sep} \) captures the impact of reprovisioning

Profit from Service 2

• Similarly, Total Revenue in the Shared network option will be:

\[
\Pi_{shTR} = \frac{(p_2 - v_{s2} - a_{s2})D_2^{max}}{2} \left(1 - \frac{(1 - \alpha)a_{s2}}{(1 - \alpha)(p_2 - v_{s2}) + \alpha a_{s2}} \right)
\[+ (p_1 - v_{s1} - a_{s1})D_1 - c_s \]

1st December’09, ReArch, CoNEXT
Choice of Infrastructure

• Shared is preferred over separate when $\Pi_{shr} > \Pi_{sep}$

\[(a_2K_2^* - a_{s2}K_{s2}^*) > 2\gamma \]

• Impact of system parameters:

 – Varying cost parameters affect the choice of infrastructure
 • Shared to Separate (or Separate to Shared).

 – Surprisingly, ad-hoc “reprovisioning” ability also impacts in even more interesting ways!
Impact of Reprovisioning

shared-separate-shared

No reprovisioning possible (all excess demand is lost)

$p_2 - v_{s_2} a_{s_2} > p_2 v_2 - a_2$

separate-shared-separate

No need for prior provisioning

$p_2 - v_{s_2} a_{s_2} < p_2 v_2 - a_2$

1st December'09, ReArch, CoNEXT
Conclusions

• Generic model captures economies and diseconomies of scope that differentiate *shared* and *separate* networks

• Most interesting aspect is that reprovisioning can also affect the outcome
 – We understand why this happens in some cases but not all
 – We hope to soon be able to provide a complete analysis of when and why reprovisioning matters

Thank You!

1st December’09, ReArch, CoNEXT