Self-Propagating Worms in Wireless Sensor Networks
ACM CoNEXT - Student Workshop

Thanassis Giannetsos
Athens Information Tech.
19.5 km Markopoulo Ave.

Athens, Greece
agia@ait.edu.gr

ABSTRACT

Malicious code is defined as software designed to execute
attacks on software systems. This work demonstrates the
possibility of executing malware on wireless sensor nodes
that are based on the von Neumann architecture. This
is achieved by exploiting a buffer overflow vulnerability to
smash the call stack, intrude a remote node over the radio
channel and, eventually, completely take control of it. Then
we show how the malware can be crafted to become a self-
replicating worm that broadcasts itself and propagates over
the network hop-by-hop, infecting all the nodes.

Categories and Subject Descriptors
D.4.6 [Operating Systems]|: Security and Protection

General Terms

Experimentation, Performance, Security

Keywords

Von Neumann Architecture, Wireless Sensor Networks, Em-

bedded Devices, Arbitrary Code Size Injection Attacks, Multi-

Stage Buffer Overflow, Sensor Worm

1. INTRODUCTION

Recent advances in sensor networks research have shown
that an attacker can exploit different mechanisms of sensor
nodes and spread malicious code throughout the whole net-
work without physical contact. Such a method is to exploit
memory related vulnerabilities, like buffer overflows [2, 3],
to launch a worm attack. Since all sensor nodes execute the
same program image, finding such a vulnerability can lead to
the construction of self-propagating packets that inject ma-
licious code to their victims and transfer execution to that
code. If the malware is constructed such as it resends itself
to the neighbors of the node by repeating the same process,
the attacker can compromise the whole network rapidly and
take complete control of it [1, 4]. While this attack is ex-
tremely dangerous, there has been very little research in this
area.

Our work target sensor devices following the von Neu-
mann architecture. According to this architecture, both in-

Copyright is held by the author/owner(s).
CoNEXT Student Workshop’09, December 1, 2009, Rome, Italy.
ACM 978-1-60558-751-6/09/12.

Tassos Dimitriou
Athens Information Tech.
19.5 km Markopoulo Ave.

Athens, Greece
tdim@ait.edu.gr

31

Neeli R. Prasad
Department of
Communication, Aalborg Un.
Fr. Bajers Vej 7A5
DK-9220,Denmark
np@es.aau.dk

structions and data are stored in the same memory space,
allowing the attacker to transfer execution control where the
mal-packet is stored. This allows the injection and execu-
tion of arbitrary code that did not exist previously in the
mote’s memory.

2. CHALLENGES OF CODE INJECTION
ATTACKS ON SENSOR DEVICES

Buffer overflows are a leading type of security vulnera-
bility. They are the result of programming flaws and are
perfect for code injection attacks.

However, achieving that in sensor devices following the
von Neumann architecture has some interesting parameters.
First, since code injection attacks are based on changing the
flow of control in a program, this may lead the sensor to
restart itself or go into an unstable state, where further ex-
ecution of the attack code is canceled. Furthermore, sensor
nodes characteristics and constraints limit the capabilities
of an attacker, who may want to send large blocks of code
that exceed the allowed packet size. Thus, in order to send
a meaningful piece of code, one has to break it down and
send it through multiple packets. We should also stress that
the whole attack code must reside in a contiguous mem-
ory region so it can be executed. Therefore, the attacker
must perform a “multistage buffer-overflow attack”, where
she can manipulate an arbitrary address pointer and modify
the data it points to.

3. EXPLOITING BUFFER OVERFLOW FOR
CODE INJECTION ATTACKS

In order to send arbitrarily long blocks of code, we are
using the “multistage buffer-overflow attack”. Multistage
buffer-overflow is a type of attack that requires several steps
of buffer overflow. It allows the attacker to manipulate an
arbitrary address pointer and modify the data it points to.
So, by sending a number of specially crafted packets that
result in consecutive buffer overflows, the attacker has the
ability to copy malicious code from one memory location
(payload of received message) to another (region pointed by
the selected address pointer), and eventually have her attack
code stored in a contiguous memory region, starting from a
memory address of her choice. This type of attack will by-
pass the limitations of a single buffer overflow, in which the
length of the attack code cannot exceed the size of a message
payload.

Control Flow of Code Injection Attack

Figure 1 illustrates the execution flow upon reception of
the k-th mal-packet. As mentioned previously, a number
of packets need to be sent for the whole attack code to be
copied in the target region. Thus, each mal-packet needs to
alter control flow several times in order to allow further re-
ception of packets. Figure 1 also shows the specially-crafted
packet sent at the end of the attack for activating the in-
jected malware. Details of the operations that take place,
are provided below:

ReceiveMsg.receive()
{ =
Q
strepy (received _buff, pRP->data); @ ~
ADDR, cive—> return msg; @
}
0x4000h -
@ Stack ,‘
5
=
~
ADDR(zndTR ——————————————————————— el
* 0z
= 1=
.2 3
. n £
Target Pointer -———— >| malcode k| 2 4
malcode 3 g})
malcode 2 @ &
ADDR, rp LLLlll malcode 1 A | R
0x1900h .
Received Packet T
Buffer] =
Overflow MV malcode k BR| fﬁ
~
A
ADDR;tmack | @ ~€
Buffer 2
Overflow BR ADDRe,iprR | =
Q))
Figure 1: Control flow under multistage buffer-

overflow attack.

1. Vulnerable function strepy() is called from the recep-
tion routine.

2. A buffer overflow occurs resulting in the overwrite of
the return address (ADDRyeceive), stored in the stack

frame of the strepy(), with the starting address ADD Rgttack

of the attack code. ADDRgt1qck points to the MOV in-
structions contained in the packet’s payload.

3. When strepy() finishes its execution, control flow is
redirected to ADD Rgttqcr memory address.

4. MOV instructions are executed for copying malcode bytes
to consecutive memory addresses starting from where
the target pointer (TP) points at the time.

5. The BR instruction that occupies the last 4 bytes of
the mal-packet payload is executed in order to restore
program’s control flow.

6. Program execution continues normally. This is accom-
plished by setting the program counter to point to
ADDR;eceive memory address of the receive function.

32

7. Once the attack code is stored in the target region, the
last specially-crafted packet is sent for activating it. Its
payload contains a BR instruction that is executed for
setting the instruction pointer to the starting address
of the target region, ADDRstartrr (022574h in our
case).

4. PERFORMANCE EVALUATION

In order to evaluate the performance of the “sensor worm”,
we deployed several nodes in random topologies on the floor
of an office building.

What we can depict from Figure 2 is the time needed by
the worm to reach 100% of sensors in a particular neighbor-
hood. As we can see, the propagation delay is really low
and determined by the success or failure of the broadcast
transmissions.

160 T
—=— 28 bytes
| | =— 112 bytes
1407 | o 430 bytes I

= =
o N
=] o

Propagation time (seconds)
[es]
o

0
1 2 3 4 5 6 7 8 9

Network size (nodes)

Figure 2: Infection time for different sizes of ma-
licious code. The self-propagation code is also ac-
counted for.

5. ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (F'P7/2007 —2013), Call reference SEC —2007 —1,
under Grant agreement no: 217925.

6. REFERENCES

[1] A. Francillon and C. Castelluccia. Code injection
attacks on harvard-architecture devices. In 15th ACM
Conference on Computer and Communications Security
(CCS), Alexandria, VA, USA, 2008.

T. Goodspeed. Exploiting Wireless Sensor Networks
over 802.15.4. In Texas Instruments Developper
Conference, 2008.

T. Goodspeed. Exploiting Wireless Sensor Networks
over 802.15.4. In ToorCon 9, San Diego, 2007.

Q. Gu and R. Noorani. Towards self-propagate
mal-packets in sensor networks. In WiSec 08:
Proceedings of the first ACM conference on Wireless
network security, pages 172-182, Alexandria, VA, USA,
2008.

2]

