Cloud Computing for the Masses

Position Paper

Marc Fouquet
Technische Universitat
Minchen
fouquet@net.in.tum.de

ABSTRACT

Cloud Computing provides virtual server infrastructures for
companies. The intended benefit is that enterprises do not
have to buy their own hardware to provide services for their
customers. Therefore, end-users usually do not directly ac-
cess the raw cloud service (Infrastructure as a Service) as of
yet, they use derived services instead.

In this position paper we present a novel way of making
cloud-based infrastructure directly useful for end-users by
integrating it into peer-to-peer systems. We show one ex-
ample application which could make use of the cloud without
requiring a business relationship between the software ven-
dor and the cloud operator. This software could for example
be distributed as open source.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]:
Distributed Systems

General Terms

Design, Economics, Human Factors, Management

Keywords

Cloud Computing, Peer-to-Peer, Open Source, Video Stream-
ing

1. INTRODUCTION

Cloud computing has become increasingly popular recently.
Companies like Amazon, Google, IBM, Yahoo and Microsoft
offer cloud services, mainly for business customers. These
services run on virtualized servers in the cloud provider’s
data centers and are accessed over the Internet. Cloud ser-
vices are attractive for many companies, as they do not have
to buy and maintain their own server infrastructure.

The contracts and payment models of cloud services are
the major differences of cloud computing to the classic rented

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

U-NET’09, December 1, 2009, Rome, Italy.

Copyright 2009 ACM 978-1-60558-750-9/09/12 ...$10.00.

Heiko Niedermayer
Technische Universitat
. Minchen .
niedermayer@net.in.tum.de carle@net.in.tum.de

31

Georg Carle
Technische Universitat
Miinchen

servers. The user of cloud services usually pays depending
on used resources, i.e. CPU-hours, data volume or stor-
age. Resources are consumed dynamically according to the
current need. The use of virtualization abstracts from the
hardware and its problems, which is often considered an-
other goal of cloud computing, as its users do not have to
do maintenance of physical servers.

Cloud computing is not one single concept, it is an ab-
stract term. Different cloud providers provide different ser-
vices. To understand cloud computing, we have to differ-
entiate between three kinds of cloud services that currently
exist:

o Infrastructure as a Service (IaaS), provides low-level
services like virtual machines which can be booted with
a user-defined harddisk image, i.e. Amazon EC2 [1].
Virtual harddisks that can be accessed from different
virtual machines are another example of infrastructure
as a service.

e Platform as a Service (PaaS), means that the cloud op-
erator offers an API which can be used by an applica-
tion developer to develop "number-crunching” applica-
tions or web applications with friendly user-interfaces.
An example is Google’s App Engine [2].

e Software as a Service (SaaS), is the flavour which is
also useful for end-users. Examples are web-based of-
fice applications like Google Docs or Calendar, but also
the upcoming gaming service by Onlive. SaaS is usu-
ally build based on own or foreign IaaS and/or PaaS.

Cloud computing has been criticized ([7]) by open source
activist Richard Stallman for locking the users in with pro-
prietary software, forcing them to continue using the same
vendor’s products: “One reason you should not use web ap-
plications to do your computing is that you lose control.
[...] If you use a proprietary program or somebody else’s
web server, you're defenceless. You’re putty in the hands of
whoever developed that software.” This criticism is targeted
at Software as a Service.

In this paper we will explore alternative models of us-
ing cloud computing by making infrastructure cloud services
useful for end-customers.

In Section 2 we will discuss an example application using
our new paradigm. Further use-cases will be explored in
Section 3. We will discuss related work in Section 4 and
conclude the paper in Section 5.



2. PEER-TO-PEER VIDEO STREAMING
USING THE CLOUD

In this section we describe our example application, which
basically realizes application-layer multicast for video stream-
ing. The idea is to enable normal end-users to provide
streaming video on the Internet like having their own home
TV station. We assume the client software to be open source
as this makes it easier to show how the interaction between
cloud provider and customer works without a commercial
vendor of the software.

The bandwidth demand of video streaming is high and
peer-to-peer video streaming needs enough upstream band-
width on the peer’s Internet connections in order to succeed.
Video streaming can, however, adapt to bandwidth con-
straints. There are systems which divide the video stream
into substreams where a user does not need all substreams to
view the video [15]. Simply put, the more streams the user
receives, the better the video quality. Advanced approaches
build multiple distribution trees for the various streams or,
in case of mesh-based streaming[13], operate BitTorrent-like.

In this chapter, we focus on video streaming with one dis-
tribution tree, but subsequently show that the concept can
be extended to multiple trees and mesh-based approaches.

2.1 Basic Operation

Sender S offers a live video stream and multiple clients
want to view the video (see Figure 1). The application that
distributes the video is an open source P2P streaming sys-
tem. It is intended to be used with cloud services of one
or multiple cloud providers. It should, however, also work
without cloud infrastructure on a pure P2P basis. In par-
ticular, we think that it should run initially as pure P2P
system. We distinguish between clients A, B, C,... being
instances of the P2P application and users A, B, C,... who
are the actual persons running the clients.

The problem for the overall video transfer is that the up-
stream bandwidth of the clients is not sufficient for build-
ing a complete video distribution tree so that all clients can
view the video. Another problem might be the latency of the
links to and from the peers, though this mainly affects ap-
plications with stricter realtime requirements and not video
streaming which can be buffered in advance. Compared with
common DSL users, cloud servers should have a better con-
nection, i.e. no significant gap between upload and download
bandwidth as well as a lower latency.

Lets assume that building the distribution tree purely P2P
still works when clients A, B and C connect to the stream.
The sender has enough bandwidth to support two clients
and client C can get its data from client B. But as soon as
client D connects, the video distribution does not work any
more.

The peer-to-peer application signals this fact to the users
and asks if one user is willing to sponsor a relay server. User
B decides that he is willing to pay a small amount of money
(i.e. 1 US-$ per hour) to improve the video quality for all
viewers. This cost model is similar to games in a pub, e.g.
billiard or table soccer — one person pays for the table so a
whole group can play.

User B has an account at some cloud operator (i.e. Ama-
zon.com) and the services of this operator are supported by
the application. In terms of user interface, the payment-
related issues at Amazon Web Services are currently not
harder than buying books (the same account information is

32

used). However, when it comes to using the services, people
are confronted with issues like X.509 certificate generation
that are targeted at developers and are not suitable for the
average user. So the user interface of cloud operators would
have to be changed to make the envisioned system work.

User B enters information about his cloud account into
the P2P streaming application. The application does not
directly need to know payment information (i.e. credit card
information), but it needs to know the user’s credentials
(i.e. username and password) to obtain permission to spawn
virtual machines on behalf of the user. This surely is a
trust issue. Even though a malicious application could not
directly empty the user’s bank account, it could start botnet-
style activities like sending SPAM or launching DoS attacks
— and the user would be billed i.e. for the traffic. Therefore
he has to place a certain trust into the application developer.
As a partial solution to this problem, could operators might
also offer pre-paid services, so the customer would buy one
hour of server usage and get one-time credentials for this.

The next step is the instantiation of the virtual machine.
A suitable VM image could have been created by the ap-
plication developer and placed at the cloud provider (i.e.
Amazon EC2 supports public image files). The application
instantiates the VM using a web-service call while identify-
ing itself as user B by supplying the appropriate credentials.

After that the distribution tree has to be modified to in-
clude the new server. As it is common with the peer-to-peer
paradigm, we want to locate the application logic in the end
systems. The server itself is only a relatively stupid helper
entity which does not participate in the control network by
itself. Instead it receives commands from the application on
user B’s machine — as user B pays for this server, he has
direct control over it.

2.2 Building Distribution Trees

There are a number of issues to consider when building
the multicast tree. It makes sense to place the strong distri-
bution servers close to the root of the tree and rather have
clients as leaves. On the other hand one wants to consider
topology information when building up the tree, because
otherwise the data might cross intercontinental links unnec-
essarily often (compare [8]). In fact this aspect could in a
limited way be considered when spawning relay servers, i.e.
with Amazon EC2 the user can chose between locations in
Europe or USA.

Many peer to peer multicast applications, i.e. [14] and
[15] are based on multiple distribution trees. The rationale
behind this is that peers usually have limited and possibly
asymmetric bandwidth and therefore can not relay the full
video stream to multiple other peers. Therefore the stream
is split into several smaller streams that are distributed using
multiple multicast trees. Each individual node is an inner
node in only some of those trees and a leaf in the others.
When building an actual application from the idea presented
in this position paper, following such an approach appears
reasonable. The “strong” distribution servers might be inner
nodes in multiple trees, and as they are not clients they will
be leaves in no tree.

We will now consider some specific details on the distribu-
tion tree shown in Figure 2, for simplicity we do this based on
the assumption that there is only one distribution tree. Here
peers are shown as rectangles while relay servers are circles.
One can see that the inner nodes of the tree are mainly distri-



Client B

S E ..

Client A =
Client D

XL

Client E

—— streaming Video
Control Network
---=-» Server Control

Relay
A Server 2

Figure 1: Example application

bution servers, some strong peers also distribute the stream.
Peers who sponsor a relay directly receive the stream from
their server, so they are often closer to the source than reg-
ular peers. The actual leaves of the tree are the freeriders.

There are two situations in which the system might be-
come overloaded:

e Join of a peer
A new peer joins, but there is no more capacity avail-
able with the inner nodes of the distribution tree. In
this situation

1. The joining peer is asked if he wants to sponsor a
relay server to make the service possible for him-
self and others.

2. If this is not the case, all other leaf nodes are
asked to sponsor a relay server.

3. If nobody is willing to sponsor a new server, the
new peer will not get a slot anywhere and there-
fore is unable to watch the stream.

e Leave of an inner node / relay server
A strong peer or a relay server leaves the network.

1. If the leaving node is not on the lowest layer of
the distribution tree (directly above the leaves),
one of the lower relay nodes is selected to replace
it. This makes sure that the number of affected
viewers is minimized — and also that the stream
is available for all users who relay. Therefore we
may assume without loss of generality that the
leaving node was one of the lowest distribution
servers.

2. All of the peers who have lost their relay are asked
to sponsor a server.

3. If this is not sufficient, all other leaf nodes are
asked to sponsor a relay server.

33

4. If nobody is willing to sponsor a new server, the
users who lost their relay are unable to watch the
stream.

In practice the actual rules would of course be more com-
plicated. Nodes have different Internet connections with dif-
ferent upstream and downstream bandwidths. As a conse-
quence, we might want to select the relay with the highest
capacity as replacement for the leaving higher-layer relay.
Still, its capacity may be lower and also some of its peers
might have to be discarded.

Some video distributors might prefer a degraded service
for the freeriders over kicking some freeriders out if not
enough resources are available. In that case, the freerid-
ing peers may share the resources at their relay and get a
reduced rate and lower video quality instead.

As seen above, the consequences of a leaving relay server
might be severe. Therefore it would be advantageous if the
churn-rate of the servers was low. This aspect is considered
again in Chapter 3.

2.3 Multiple Trees and
Mesh-Based Streaming

Multiple trees can be seen as multiple single tree cases
in parallel. Thus, basically the concept can be transferred
to that case. For a better operation the rules presented
in the previous section have to be reconsidered. If relay
servers cannot operate in multiple trees, it might not always
be possible to guarantee that relaying nodes always get a
good service. However, one can see that the availability of
relay servers makes the problem of video distribution easier
compared to a pure peer-to-peer approach.

The concept can also be used with mesh-based stream-
ing. In mesh networks the nodes form a random graph
and each neighbour is either parent or child. The coordi-
nation of the download of chunks is similar to BitTorrent,
but with adaptations for realtime transfer. The advantage
of these approaches is that clients can adapt to available
bandwidth more fine-grained than by joining multiple distri-



Controlling Peer [

Y
HE B BB B RN
Freeriding Peers

Relay Server

Source

Strong Peer

Figure 2: Example distribution tree. Rectangles are peers while circles are relay servers.

bution trees. Each distribution server adds to the available
upstream bandwidth while it only consumes the download
bandwidth of one stream. Our concept will use the addi-
tional bandwidth, so the server increases the overall service
quality and number of users that can be served. Users who
pay for a server are a child of their server and get their
chunks with highest priority, other peers are served with
lower priority. For the servers it is beneficial to connect
to other servers (as parent or child) and, if still possible,
to the source (as child). The broader distribution close
to the source reduces latency and increases robustness as
new chunks become available at many nodes within a short
amount of time.

2.4 User Acceptance and Incentives

The application as described above uses a payment model
which is rather uncommon on today’s Internet: Some users
pay money and sponsor the service for the others. It is not
clear whether is model will be understood and supported by
the users.

Users who sponsor a cloud server could get certain ad-
vantages, like a good position in the distribution tree which
guarantees a good video quality. As the server serves them
with higher priority and will not discard their packets when
resources are out, there is a clear benefit. There are, how-
ever, some threats to this.

The advantage for a paying user may not be visible enough
to motivate the users to spend money. In our example appli-
cation the benefits are guaranteed access to the video stream
and a high position in the distribution tree which might re-
sult in a better video quality. Whether the sytstem works
will depend on the target audience and also the explana-
tion of the concept to this audience. There is a risk of too
selfish user behavior which might cause a “tragedy of the
commons”-situation and therefore a collapse of the system
due to the constrained bandwidth.

34

On the other hand, one could design the system to de-
liver only a minimal service (i.e. low-quality video) in the
beginning. The premium service would initialy be offered to
sponsoring users and possibly to a small group of freeriders
if the resource situation permits it.

Furthermore, attacks may undermine the concept. Due
to the distributed nature of the application, users have var-
ious opportunities to cheat for gaining unfair advantages —
like claiming that they sponsor a strong server when the
server is actually very weak or claiming to be a distribution
server themselves. Also a user could sponsor a server, but
allow access only to a limited audience and not to the public.
Users might sponsor a server to get a good position in the
distribution tree, but then pretend that the server is over-
loaded, so the system spawns other servers on the same level
which might reduce the traffic costs for the sponsoring user.
There might even be users who actively sabotage the video
distribution by inserting malicious relay servers. Such be-
haviour could severely degrade the service quality, so when
actually building such application these aspects should be
considered.

Security is out-of-scope for this paper. However, we do
think that there are means to mitigate the security prob-
lems mentioned above. Cryptographic keys or certificates
might protect the clients from accepting a fake VM as server
in the distribution network. Those techniques could assure
that each distribution server shows the behaviour that was
intended by the application developer. However such tech-
niques imply that the users do not have complete control
over the relay servers — i.e. they cannot modify the relay
software. The server image is created by the application de-
veloper and the users may only access it over a well-defined
interface. For completely open software projects, this is cer-
tainly an open issue.

Home videos as in the example may be a target of low
value and lack a business model for certain attacks. For



larger video distribution projects this assertion certainly does
not hold.

3. FURTHER USAGE SCENARIOS

It is not new for peer-to-peer networks to rely on a set
of more central components. Many peer-to-peer systems are
based on so-called "supernodes”, peers that can perform spe-
cial tasks because they have certain properties, like stronger
CPUs, more network bandwidth or persistent and direct
(non-NAT) Internet connections.

Cloud servers can be used to add such powerful nodes in
a controlled way if needed. The advantage is that the higher
fraction of strong nodes in the network enables applications
that would otherwise not be possible — like the distribution
of high-quality live video.

One issue that these nodes could address — possibly with
support of the cloud operators — is churn. Churn describes
the rate at which peers join and leave the network. A high
churn rates means that a lot of peers come and go. This is a
problem for almost any network, as churn degrades its per-
formance and requires appropriate maintenance overhead.

Currently, Amazon EC2 servers are paid per hour. If one
would modify the proposed system in a way that assures
that the cloud server will stay online for the rest of the al-
ready paid hour, even if the client disconnects, the remaining
online-time of these strong nodes would be predictable.

We think that a large number of applications — not all of
them peer-to-peer — could benefit from cloud servers that
are directly controlled by the users:

e Data distribution applications, i.e. filesharing or dis-
tributed file storage.

e Privacy enhancement applications, i.e.
that perform onion routing.

applications

o (ircumuention of censorshop in countries which block
free Internet access.

e (oS improvement by ”source routing” around congested
areas or network failures (cf. [9]).

e Clircumvention of Network Adress Translation, i.e. if
the NAT is not under the User’s direct control.

e Private Networks, i.e. building a VPN or tunneling

IPv6.

e FEaxternal Firewall, i.e. for filtering traffic before the
bottleneck (last mile) link in case of DoS attacks. This
could i.e. be useful against small botnet attacks that
recently occurred against players of online games on
Microsoft’s XBox Live Service.

e Building large-scale social peer-to-peer applications, i.e.
a serverless and non-commercial social network which
gives the users more control over their private data.

Today’s use-cases of Cloud Computing are all more or
less commercial in their nature. Our idea bridges the gap
between commercial and non-commercial use-cases with the
distributed voluntary payment model. As a consequence,
we think that this idea makes cloud computing applicable
in scenarios that have not been possible before.

35

e Open Source Software is almost impossible to provide
as SaaS as the philosophies of classical SaaS and free
software are fundamentally incompatible. With our
model open source software can use benefits of cloud
computing, i.e. running in a standardized environment
on virtualized hardware and having extremely fast in-
ternet connections.

o Any distributed application whith an increased need for
transparency and control by the user, i.e. privacy en-
hancing applications. This also applies to businessess
who would not want to store confidential documents
on network storage which is supplied by an external
provider.

Further the model allows to implement features like global
multicast that have been considered desirable for a long
time, but are not supported by ISPs because of security and
charging issues. Our model makes individual users account-
able for replicated traffic and therefore solves these issues.

Using cloud computing the way we propose does not only
open it to new use-cases. Additional business models seem
to be attractive as well. Peer-to-peer software developers or
video providers still lack means to get a revenue from their
service. In the motivational example they do not have the
means to accept and enforce payments. If they had business
relations (or simply accounts) with cloud providers, they
could share the revenue and determine appropriate prices.

4. RELATED WORK

Research on peer-to-peer video distribution has been go-
ing on for years ([15], [10],[13]). At Stanford University, a
system was designed which allows timeshift and is currently
being extended to support mobile devices [14]. Limited up-
stream bandwidth of peers generally is a problem with peer-
to-peer video distribution [12]. Therefore some approaches
try to combine peer-to-peer video distribution with server-
based content distribution networks, i.e. the authors of [11].
Such hybrid approaches are commercially exploited by com-
panies like Octoshape [5] and Joost [3].

The idea to use cloud services for peer-to-peer networks
is related to the concept of super peers [16] that has been
adopted by Skype [6] as well as in filesharing networks like
Gnutella2. While it is a challenging task to find appropri-
ate peers for being a super peer in usual peer-to-peer net-
works, in our concept the cloud servers as super peers can be
spawned as desired. In contrast to our example application’s
relay servers, traditional super peers have more functionality
and are usually responsible for the management and main-
tenance of the network.

Cloud computing services are available from a number of
companies, for example Google [2], Microsoft [4] and Ama-
zon [1]. Especially Amazon Web Services are a perfect can-
didate for realizing our system, all that would be required
are changes to the user-interface to make the Elastic Com-
pute Cloud (EC2) service usable for non-developers.

5. CONCLUSION

In this work we presented the idea of putting cloud com-
puting services under direct control of their users or appli-
cations on the users machines. Such an approach nicely
supplements existing peer-to-peer systems by supplying the
networks with urgently needed resources, i.e. for live video



streaming applications. This makes it possible for users to
cooperatively deliver services that would otherwise require
a large amount of infrastructure.

We have pointed out a number of usage scenarios for this
paradigm and discussed the video distribution example in
more detail. Technically the proposed systems are already
possible today (i.e. using Amazon EC2), only the user in-
terface of the cloud operators needs some improvements.

6. REFERENCES

[1] Amazon Web Services. http://aws.amazon.com/.

[2] Google App Engine.
http://code.google.com/intl/en/appengine/.

] Joost. http://www.joost.com/.

] Microsoft Azure. http://www.microsoft.com/azure/.

] Octoshape. http://www.octoshape.com/.

| Skype. http://www.skype.com.

] The Guardian: Cloud computing is a trap, warns
GNU founder Richard Stallman.
http://www.guardian.co.uk/technology /2008 /sep/29/
cloud.computing.richard.stallman.

[8] V. Aggarwal, A. Feldmann, and C. Scheideler. Can
ISPs and P2P systems co-operate for improved
performance? ACM SIGCOMM Computer
Communications Review (CCR), 37(3):29-40, July
2007.

[9] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek,

and R. Morris. Resilient overlay networks. Computer

Communication Review, 32(1):66, 2002.

M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandj,

A. Rowstron, and A. Singh. SplitStream:

High-bandwidth content distribution in cooperative

environments. In Proc. of IPTPS’03, Berkeley, CA,

2003.

[10]

36

[11] Y. Dong, E. Kusinierek, and Z. Duan. Exploiting
Limited Upstream Bandwidth in Peer-to-Peer
Streaming. In Multimedia and Expo, 2005. ICME
2005. IEEFE International Conference on, pages
12301233, July 2005.

W. Gao and L. Huo. Challenges on Peer-to-Peer Live
Media Streaming , pages 37—41. Number LNCS 4577.
Springer, 2007.

N. Magharei and R. Rejaie. PRIME: Peer-to-Peer
Receiver-drlven MEsh-Based Streaming. In
INFOCOM 2007. 26th IEEE International Conference
on Computer Communications. IEEE, pages
1415-1423, 2007.

J. Noh, P. Baccichet, F. Hartung, A. Mavlankar, and
B. Girod. Stanford Peer-to-Peer Multicast (SPPM) —
Overview and Recent Extensions. In Proc.
International Picture Coding Symposium, PCS 2009,
Chicago, IL (Invited Paper), 2009.

V. N. Padmanabhan, H. J. Wang, P. A. Chou, and
K. Sripanidkulchai. Distributing Streaming Media
Content Using Cooperative Networking. In Proc. of
ACM NOSSDAV, Miami Beach, FL, pages 177-186,
2002.

B. Yang and H. Garcia-Molina. Designing a
Super-Peer Network. International Conference on
Data Engineering, 0:49, 2003.

(12]

(13]

(14]

(15]

(16]



