
GridDL:
An HTTP Bandwidth Sharing Framework

Wolfgang Richter
University of Virginia

wor6c@virginia.edu

ABSTRACT
Peer-to-peer (P2P) applications have become a mainstream
technology for content distribution. Yet widely used P2P
applications, such as BitTorrent and Gnutella, suffer from
flaws that are currently open topics of research—from the
problem of freeriders to discrimination against peers with
asymmetric Internet connections.

This paper presents the design of GridDL—a software
framework for studying the new P2P paradigm that focuses
not on exchanging content, but on exchanging bandwidth.
GridDL provides researchers a tool to implement any algo-
rithm for bandwidth sharing or bandwidth trading, while
imposing as few limitations as possible on the researchers.
GridDL creates a P2P network that executes a given algo-
rithm for bandwidth sharing. GridDL also provides the first
P2P bandwidth sharing application that does not require a
pre-existing P2P network or infrastructure other than the
individual peers.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems;
C.2.0 [Computer Systems Organization]: Computer-
Communication Networks—Data communications

General Terms
Design, Experimentation, Measurement, Performance

Keywords
peer-to-peer, p2p, bandwidth, networking, protocol

1. INTRODUCTION
Bandwidth providers—Internet Service Providers, Univer-

sities, coffee shops—often impose artificial limits on the max-
imum amount of bandwidth any individual user may obtain
to ensure a minimum quality of service for all of their users.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
U-NET’09, December 1, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-750-9/09/12 ...$10.00.

Bandwidth limits have benefits; they prevent any single user
from using all of the bandwidth, and they ensure a mini-
mum amount of bandwidth for every user. However, band-
width limits waste a network’s physical capacity whenever
the users do not use all of their guaranteed bandwidth.

Users, up until a couple of years ago, did not have a real-
istic option for circumventing artificial bandwidth limits. A
new form of peer-to-peer (P2P) networking based on social
bandwidth exchange [11] provides a solution. New research
introduces the P2P paradigm of bandwidth exchange as op-
posed to content exchange. This P2P paradigm, if applied
properly, promises to obtain full network capacity for all
users with or without artificial limits. The ideal tool would
provide users with a means of controlling their bandwidth
and how it is allocated amongst them.

GridDL hopes to either become that tool, or motivate
research that leads to such a tool. The incentive in a Grid-
DL P2P network comes from social pressure—the promise
of one peer to another that bandwidth will be repaid at
some future date because the two peer owners know each
other and, presumably, live close to one another. Social
aspects of P2P networking have been explored before by the
TRIBLER [11] P2P network, and in P2P protocols such as
2Fast [7], Amortized Tit-for-Tat [6], Give-to-Get [9], and
Peer-Assisted Content Distribution with Prices [2].

Pouwelse et al. [11] identified five main research chal-
lenges for P2P networks: decentralization of functionality
across the peers, availability guarantees, enforcement of in-
tegrity and trust between peers, proper incentives, and net-
work transparency across NATs and firewalls. GridDL does
not attempt to solve all of these issues. Instead, GridDL,
and consequently this paper, focuses on decentralization and
network transparency in support of P2P research. Imple-
mentations built upon GridDL are free to focus on any of
the issues.

Of the current P2P networks, GridDL most resembles
Firecoral [12]. Both GridDL and Firecoral use HTTP layer
traffic to access web objects. Firecoral focuses on creating a
full content distribution network that considers security, pri-
vacy, and usability [12]. Firecoral allows researchers to de-
fine any algorithm for peer-selection and chunk-scheduling,
but it also requires extra infrastructure in the form of a
trusted signing service [12] in order to function. GridDL
has no such limitation and is a more general tool for re-
search work.

This paper is organized as follows. Section 2 provides
an overview of the design of the GridDL framework, and
describes in detail the algorithm abstraction. Section 3 de-

37

scribes two algorithms for bandwidth sharing, one of which
was chosen as the default algorithm included in GridDL. We
conclude with performance observations in Section 4 gath-
ered from both regular Internet traffic and contrived scenar-
ios.

2. FRAMEWORK ARCHITECTURE
GridDL provides researchers with a minimalistic frame-

work for implementing P2P networks using bandwidth shar-
ing and trading algorithms. The framework includes a de-
fault algorithm that serves as an example and is discussed
in §3. The GridDL framework has five main components:
an algorithm library, a file system library, a P2P library,
a UI library, and an HTTP library. Researchers only need
to examine the algorithm library which provides them with
an algorithm interface. GridDL uses implementations of the
algorithm interface as the engine driving P2P interactions.

The HTTP library and the file system library provide ab-
stractions to the rest of the framework for handling file I/O
and HTTP I/O operations. The UI library contains inter-
faces for both console input and graphical user interfaces.
The framework has been specifically designed to easily han-
dle both types of user interfaces, and the UI library provides
simple operations for using both types. The rest of this sec-
tion is devoted to the Algorithm library, the P2P library,
and the configurable parameters defined in the UI library.

2.1 Algorithm Library
The framework uses an engine to perform all operations

related to classical P2P networks. The engine wraps around
an algorithm interface which defines all of the operations of
the engine. Implementing a new P2P algorithm is equivalent
to implementing the algorithm interface and configuring the
engine to use the new implementation. All algorithm im-
plementations have access to a peer tracker data structure
which maintains a set of all known peers and provides oper-
ations to the algorithm to get lists of peers or pick peers at
random.

The algorithm library uses two abstractions defined within
the file system library: chunk and file. Chunks are associ-
ated with a file, and they represent an arbitrary portion of
their associated file (see §2.3). Files are associated with at
least one chunk, and may be associated with many chunks.
A file is considered downloaded once all of its associated
chunks have been downloaded and has operations allowing
the algorithm to obtain a list of chunks associated with it.
The algorithm implementation is responsible for assigning
chunks to known peers and is notified whenever a chunk
finishes downloading.

The default algorithm implementations, discussed in §3,
keep track of a current set of remote peers that they share
bandwidth with and the local peer running GridDL. The
current set could be equivalent to the set of all known peers,
depending on the implementation of the algorithm interface.

The interface defines several abstract functions:

1. download() - responsible for downloading a URL-
accessible object

2. setupPeerSet() - responsible for initializing the set
of peers1

1Used by the default algorithms. Implementors do not have
to define this.

3. retirePeer() - notifies the algorithm that a peer is
no longer accessible

4. newPeer() - notifies the algorithm that a new peer
has been discovered

5. finishChunk() - notifies the algorithm that a chunk
has finished being downloaded

6. downloadChunk() - notifies the algorithm that a re-
mote peer requests the downloading of a chunk

7. stopChunk() - notifies the algorithm that a remote
peer no longer wants a chunk

Of course, algorithm implementors are free to create their
own functions to support the required functionality of the
algorithm interface. The main parts of the algorithm are in-
voked with download() and downloadChunk() which are
the two operations that initiate downloads. Downloads ini-
tiated with download() come from the local peer’s user.
Downloads initiated with downloadChunk() come from re-
mote peers and may be rejected through the protocol mes-
sage REF, which is documented in Table 1 along with all
possible P2P messages in the GridDL protocol.

2.2 P2P Library
The P2P library provides an implementation of a P2P

network which operates automatically and provides the al-
gorithm implementor with a black box surrounding all of the
tasks required to create and maintain a P2P network. The
P2P library provides two main services, peer discovery and
peer communication, and two main abstractions, the peer
and the superpeer. The core of the P2P library implements
a symmetric, asynchronous, minimal protocol that peers use
to communicate. All messages in the protocol are defined by
their type and the data, or payload, that they carry. Thus,
messages may be represented by the tuple:

〈type, payload〉

All of the messages use TCP as the transport layer pro-
tocol, and IPv42 as the network layer protocol. UDP was
considered as a potential method of bypassing firewalls, but
UDP was deemed unnecessary with the introduction of a
superpeer. Peers can tunnel through a superpeer which en-
ables them to traverse both firewalls and NATs. Peers do not
maintain persistent connections which distinguishes Grid-
DL from popular P2P networks such as BitTorrent [3] and
Gnutella [14]. The extra RTTs introduced by this method
for TCP connection establishment and shutdown are consid-
ered negligible which allows the P2P library more freedom
to decide when it wants to communicate with other peers.
Short network outages may go unnoticed by peers because
there are no persistent connections to interrupt.

2.2.1 Peer Discovery
When a peer first begins executing, it initiates the peer

discovery phase contained in the P2P library. This phase
handles discovering peers on the local subnet3 and, if con-
figured by the user, discovering peers within other subnets
through an intermediary superpeer.

2Adding support for IPv6 will be trivial
3Defined as the 254 potential network hosts obtained with
a network mask of 255.255.255.0.

38

Table 1: P2P Protocol
Message Type Description

NOP Log the message data
HEL Peer discovery initiation
SHU Peer shutdown message
DOW Request download indicated
STO Stop download indicated
COM Peer completed download
ERR Peer error message
REF Peer refuses download request
ACK Acknowledgement to HEL

The first method of peer discovery uses the HEL and ACK
messages as shown in Table 1. The peer performing dis-
covery attempts to open a TCP socket to each IP on its
subnet. If a socket is opened, the peer immediately sends
an HEL message. Since the communication is asynchronous
and persistent connections are not maintained, the P2P li-
brary considers a peer valid only upon receipt of an ACK
message which must be initiated by the peer receiving an
HEL and sent over a new TCP socket.

The second method of peer discovery uses an intermedi-
ary: the superpeer. Superpeers are responsible for maintain-
ing a table of all peers that have contacted them through a
TCP socket. When a new peer contacts a superpeer, the
superpeer saves the new peer’s IP4 in its table and sends
the connecting peer a list of known peers. After sending the
list of known peers, the connection is immediately closed.

2.3 Configurable Parameters
The framework has two configurable parameters affecting

an algorithm’s implementation: chunk size, and maximum
connections. Algorithm implementors are given control over
how many peers to involve when sharing bandwidth. Chunk
size defines the size of a chunk which is used by the file ab-
straction within the file system library to determine how to
split a file into chunks. The maximum number of connec-
tions limits the number of outbound connections the algo-
rithm may make to web servers—no parameter controls the
number of inter-peer connections.

Increasing the maximum number of connections allows
the framework to download more chunks in parallel, which
can increase the rate at which a file downloads. Increasing
chunk size reduces the amount of chunks, which reduces the
amount of work that can be parallelized amongst the known
peers. For example, if there are 10 peers and 10 chunks,
then each peer may download 1 chunk in parallel, but if
there are 10 peers and 1 chunk, then only one peer may
download the file. Increasing the chunk size too much re-
sults in no distribution of the download. Of course, if chunk
size is decreased to a very small value, such as 1 byte, than
the overhead of TCP connections per chunk outweighs the
benefits of distributing the download.

Algorithm implementors may ignore these parameters. The
parameters were added to the framework to enable rapid
testing for research. The parameters also enable users to
have control over certain aspects of the framework. Modi-
fication of parameter values occurs through the UI library,

4Superpeers only save IPs that are not in the private use
class of IPv4 address space.

which can take input from a console or a graphical user in-
terface.

3. ALGORITHM DESIGN
The algorithms were designed with the goals of being sim-

ple, and minimizing the download time of a file. Two sep-
arate candidate algorithms were developed during the im-
plementation of the GridDL system. The first is a basic
Round-Robin algorithm, and the second is a more advanced
algorithm based on Estimated Average Bandwidth. The
second algorithm assigns more weight to peers that appear
to have higher bandwidth. This second algorithm is very
similar to algorithms in conventional P2P networks, such
as BitTorrent [3], and P2P networks designed around band-
width sharing or trading such as [2, 7, 11].

The Estimated Average Bandwidth algorithm was chosen
for inclusion in the final framework as both a default and
an example because it outperforms the Round-Robin algo-
rithm, potentially by orders of magnitude. The reasoning
behind this choice is developed by the rest of this section.
For analysis, we consider only one download in the system
at a time, and we ignore the effect of peers opening multi-
ple connections to a web server at once—this effect can be
captured through the algorithm by measuring overall band-
width coming from a peer.

3.1 Notation
In order to proceed with a rigorous understanding of these

algorithms, we shall define several quantities:

T the time to download a file in seconds

P the number of peers in the current set, see §2.1

S the size of the file in bytes from an initiated download

µ the chunk size in bytes (a configurable parameter, see
§2.3)

ψi the observed bandwidth of peer i in bytes per second

Ψ the observed total amount of bandwidth summed over
all peers in bytes per second

Thus, total bandwidth is formally defined as:

Ψ =

PX
i=0

ψi (1)

Naturally, this is a simplification because we do not con-
sider the bandwidth at the peer initiating the download that
comes from remote peers in the current set. Using this sim-
plification provides a good approximation and leads to sim-
pler mathematical expressions.

3.2 Round-Robin
The first algorithm represents a naive approach to the

problem of distributing the download of a web object across
multiple peers, but it is simple and easy to implement. When
a download is initiated through download() (see §2.1) this
algorithm assigns the chunks of the associated file to each
peer in its current set in order until no more chunks are
left to assign. This results in an equal number of requested
chunk downloads to each peer in the current set.

39

The time to download a file using this algorithm is:

T = max


S

µ× P × ψi

ff
for every peer i (2)

This algorithm is obviously inefficient, because it does not
consider any individual peer’s bandwidth ψi. As we can see,
not considering a given peer’s bandwidth can lead to slow
download times—orders of magnitude slower than what they
could be with optimal chunk assignment. In Equation 2,
S

µ×P , may be considered a constant because none of the
values in that expression vary with each peer i. Thus, the
only value affecting time is the bandwidth variable ψi. As
ψi decreases, the time T it takes to download a file of size S
increases. Depending on the peers, values for ψi may vary by
orders of magnitude which causes T to become large relative
to peers with large ψi values.

3.3 Estimated Average Bandwidth
As hinted in the discussion of Round-Robin, an obvious

improvement is to consider each peer’s bandwidth ψi. The
Estimated Average Bandwidth defines a new quantity:

ψi
Ψ

the fraction of overall bandwidth contributed by peer i,
called rank

Rank is used to determine how many chunks to assign
to each peer, which affects the download() operation. In
the default implementation rank is recalculated for all peers
after a file finishes downloading (after all chunks for that file
have been received).

Thus, the time to download a file has now become:

T = max


S

µ× P × ψi
×
„
ψi
Ψ

«ff
for every peer i (3)

which simplifies to:

T = max


S

µ× P ×Ψ

ff
for every peer i (4)

This represents the ideal situation of full bandwidth uti-
lization. As Equation 4 shows, the time it takes to download
a file no longer depends on the peer with the least amount
of bandwidth ψi; time now depends on the the total band-
width Ψ available to all of the peers—the optimal solution
for a P2P network.

4. EXPERIMENTAL ANALYSIS
Quantitative data was gathered through a custom test

setup on a LAN subnet varying the number of nodes from
1-3 and separate tests involving three different files accessed
over the Internet from different web servers. In addition,
a real-world test was carried out using two Verizon FiOS
connections within a neighborhood—although, the connec-
tions were on different subnets. All of the nodes in the LAN
testing accessed a lighttpd web server [8] which limited each
connection to 500 KiBps in download bandwidth. Each node
was further configured to only open one connection at a time.
This effectively limited each node’s bandwidth to 500 KiBps.

As shown in Fig. 1, we observed an increase in average
bandwidth per peer. This agrees with qualitative analysis of
the Estimated Bandwidth Average algorithm in §3.3. The

 400

 500

 600

 700

 800

 900

 1000

 1100

 1 2 3 4 5 6 7 8 9 10B
a
n

d
w

id
th

 (
K

ib
ib

y
te

s
 p

e
r

S
e

c
o
n

d
)

Download Iteration

GridDL Performance

One Peer
Two Peers

Three Peers

Figure 1: As the number of peers increased, average
bandwidth per peer increased in the system.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8 9 10B
a
n
d
w

id
th

 (
K

ib
ib

y
te

s
 p

e
r

S
e
c
o

n
d

)

Download Iteration

Verizon FiOS Test

Single Node
Two Nodes

Figure 2: When using two FiOS connections, no sig-
nificant increase in average bandwidth was observed.

test setup involved two peers using a shared wireless access
point, and one peer using Ethernet to connect to the wireless
access point. The file used for testing was [10].

Unless the wireless access point offers multiple clients high
bandwidth at the same time, it is not a good choice for
the control network. We conjecture that the wireless access
point used in gathering data does not allow concurrent high
bandwidth access, especially between wireless nodes. We
further conjecture that this is the reason why we did not see
as large an increase going from 2–3 nodes as we did from
1–2 nodes.

As shown in Fig. 2, we observed no significant increase in
average bandwidth per peer as we added a peer to the Grid-
DL network running on Verizon FiOS. This was expected,
because the two peers are on different subnets and their
routers are probably limiting their bandwidth as their com-
munication traverses router boundaries. We expect that the
average bandwidth per peer would increase if the peers are
on the same subnet, but we did not have time to test this
hypothesis on a real-world network.

Fig. 2 also shows the interesting effect of rank stabiliza-
tion. The first couple of iterations involving two peers were
significantly slower than the other iterations—essentially they
were outliers. This shows how rank effects the average band-
width of a peer as that peer observes the bandwidth contri-
butions of other peers. However, the observed peer did not
gain much from peer contributions. We conjecture that the
observed peer did not gain from peer contributions because
the network conditions were not ideal. The file used for
testing was [5].

40

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12 14B
a
n

d
w

id
th

 (
K

ib
ib

y
te

s
 p

e
r

S
e

c
o
n

d
)

Download Iteration

Small File

wget
Single Node

Figure 3: Single peer with multiple connections vs
wget on a small file [10], 12 MB.

 780

 800

 820

 840

 860

 880

 900

 920

 940

 960

 2 4 6 8 10 12 14B
a
n
d
w

id
th

 (
K

ib
ib

y
te

s
 p

e
r

S
e

c
o
n

d
)

Download Iteration

Medium File

wget
Single Node

Figure 4: Single peer with multiple connections vs
wget on a medium file [4], 50 MB.

The ideal setup for GridDL involves separate networks:
an Internet-connected network per peer, and a control net-
work shared by all peers. All of the GridDL peers would be
connected to both networks—they would each have a route
to the Internet and a high-speed control network through
which all P2P traffic could travel without affecting Internet
bandwidth. Of course, these two networks do not need to be
separated, each peer could be connected to a high-speed net-
work that limits their Internet bandwidth to a value much
lower than their local network bandwidth.

Figs. 3, 4, and 5 show how the GridDL application run-
ning on a single peer compares to a singe-connection oriented
application, wget, on the same peer when downloading files

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2 4 6 8 10 12 14B
a
n

d
w

id
th

 (
K

ib
ib

y
te

s
 p

e
r

S
e
c
o
n
d
)

Download Iteration

Large File

wget
Single Node

Figure 5: Single peer with multiple connections vs
wget on a large file [13], 700 MB.

from the Internet. GridDL was limited to 15 connections,
with a 1 megabyte chunk size, for all of the downloads, and
the results were surprising, although they did agree with
parallel TCP stream research [1]. The testing spanned sev-
eral days. Testing began at 3 AM on a Wednesday and ran
every 6 hours after that (3 AM, 9 AM, 3 PM, 9 PM). Grid-
DL was scheduled to run immediately following the wget
downloads, and each download ran sequentially after an-
other download. We did not expect to find a large increase
in average bandwidth for a single peer running GridDL. We
thought large bandwidth benefits would not become signifi-
cant until multiple peers joined the network. For the small
file, GridDL outperformed wget in every case; in at least one
instance GridDL was over 6 times faster. For the large and
medium files, both GridDL and wget performed comparably
and showed matching variations in bandwidth depending on
the time of day.

Quantitatively, our observations show that users of a band-
width sharing P2P network can expect an average increase
in bandwidth if certain criteria are met, such as having high
bandwidth connections between the peers. In addition, we
found that for at least one small file, GridDL consistently
outperformed wget with only one peer. We conjecture that
this is because GridDL was able to initiate a download of
the entire file at once broken up into 12 chunks. With 12
TCP connections, GridDL was able to obtain more band-
width than wget’s single TCP connection. On the medium
and larger files, GridDL did not have as much of an ad-
vantage because it had to continuously shutdown its TCP
connections with the web server and re-establish them due
to the limit of 15 concurrent web server connections.

5. CONCLUSION
This paper introduced a framework for P2P researchers

studying bandwidth sharing and bandwidth trading. Grid-
DL not only provides a framework for future research, but it
also provides the first instance of bandwidth sharing occur-
ring over HTTP connections. Previously, bandwidth trading
or sharing required a BitTorrent client as in [11], or extra
infrastructure through third-parties as in [12]. GridDL en-
ables bandwidth sharing and, depending on the algorithm,
bandwidth trading through normal HTTP traffic and it does
not require any third-parties or that the content already
be available in a pre-existing P2P network. The prototype
framework implementation is almost feature-complete, and
will be released on the web within the near future.

6. ACKNOWLEDGEMENTS
We would like to thank the Farrales family who generously

donated time and bandwidth by allowing us the use of their
Internet connection. Their aid helped confirm the viability
of the GridDL P2P network on a real-world ISP network.

Additional thanks must go to Jason Lawrence, without
whom this paper would not have come together in its present
form, and Kamin Whitehouse, who’s advice was very help-
ful.

7. REFERENCES
[1] E. Altman, D. Barman, B. Tuffin, and M. Vojnovic.

Parallel tcp sockets: simple model, throughput and
validation. In 25th IEEE INFOCOM Conference, 2006.

41

[2] C. Aperjis, M. J. Freedman, and R. Johari.
Peer-assisted content distribution with prices. In Proc.
ACM SIGCOMM Conference on emerging Networking
EXperiments and Technologies (CoNext ’08), 2008.

[3] B. Cohen. Incentives build robustness in bittorrent. In
Proc. P2P-ECON, June 2003.

[4] Damn Small Linux.
http://distro.ibiblio.org/pub/linux/-

distributions/damnsmall/current/dsl-4.4.10-

embedded.zip.

[5] Fedora.
http://fedora.mirrors.tds.net/pub/fedora-

/releases/11/Fedora/i386/iso/Fedora-11-i386-

disc6.iso.

[6] P. Garbacki, D. H. J. Epema, and M. Van Steen. An
amortized tit-for-tat protocol for exchanging
bandwidth instead of content in p2p networks. In
First International Conference on Self-Adaptive and
Self-Organizing Systems, SASO, 2007.

[7] P. Garbacki, A. Iosup, D. Epema, and M. van Steen.
2fast: collaborative downloads in p2p networks. In 6th
IEEE International Conference on Peer-to-Peer
Computing, 2006.

[8] lighttpd. http://www.lighttpd.net/.

[9] J. Mol, J. Pouwelse, M. Meulpolder, D. Epema, and
H. Sips. Give-to-get: Free-riding-resilient
video-on-demand in p2p systems. In Proc. of SPIE -
The International Society for Optical Engineering,
2008.

[10] PHP. http://us3.php.net/distributions/php-
5.2.8.tar.gz.

[11] J. Pouwelse, P. Garbacki, J. Wang, A. Bakker,
J. Yang, A. Iosup, D. Epema, M. Reinders, M. van
Steen, and H. Sips. Tribler: a social-based peer-to-peer
system. Concurrency and Computation Practice &
Experience, 20(2), 2008.

[12] J. Terrace, H. Laidlaw, H. E. Liu, S. Stern, and M. J.
Freedman. Bringing p2p to the web: Security and
privacy in the firecoral network. In Procs of the 6th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’09), 2009.

[13] Ubuntu.
http://mirrors.gigenet.com/ubuntu/intrepid/ubuntu-

8.10-server-i386.iso.

[14] Y. Wang, X. Yun, and Y. Li. Analyzing the
characteristics of gnutella overlays. In 4th
International Conference on Information Technology
New Generations, 2007.

42

