The Public Option: A non-regulatory alternative to Network Neutrality

Richard Ma
Advanced Digital Sciences Center, Illinois at Singapore
School of Computing, National University of Singapore

Joint work with Vishal Misra (Columbia University)

ACM CoNEXT 2011
The Internet Landscape

- Internet Service Providers (ISPs)
 - Comcast
 - Time Warner Cable
 - SingTel

- Internet Content Providers (CPs)
 - Google
 - BitTorrent
 - Netflix

- Regulatory Authorities
 - Federal Communications Commission (FCC)
 - InfoComm Development Authority of Singapore (IDA)

- Users/Consumers
Network Neutrality (NN)
Paid Prioritization (PP)

Happier?
Highlights

- A more realistic equilibrium model of content traffic, based on
 - User demand for content
 - System protocol/mechanism

- Game theoretic analysis on user utility under different ISP market structures:
 - Monopoly, Duopoly & Oligopoly

- Regulatory implications for all scenarios and the notion of a Public Option
Three-party model \((M, \mu, \mathcal{N})\)

- \(\mu\): capacity of a single access (eyeball) ISP
- \(M\): # of users of the ISP (# of active users)
- \(\mathcal{N}\): set of all content providers (CPs)
- \(\lambda_i\): throughput rate of CP \(i \in \mathcal{N}\)
User-side: 3 Demand Factors

- Unconstrained throughput $\hat{\theta}_i$
 - Upper-bound, achieved under unlimited capacity
 - E.g. 5Mbps for Netflix

- Popularity of the content α_i
 - Google has a larger user base than other CPs.

- Demand function of the content $d_i(\theta_i)$
 - Percentage of users still being active under the achievable throughput $\theta_i \leq \hat{\theta}_i$
Unconstrained Throughput $\hat{\lambda}_i$

(Max) Throughput $\hat{\theta}_i(= 7Kbps)$
User size $M (= 10)$

Content unconstrained throughput $\hat{\lambda}_i = \alpha_i M\hat{\theta}_i (= 42Kbps)$

Content popularity $\alpha_i (= 60\%)$
Demand Function $d_i(\theta_i)$

demanding # of users $\alpha_iM d_i(\theta_i)$
Assumption 1: $d_i(\theta_i)$ is continuous and non-decreasing in θ_i with $d_i(\hat{\theta}_i) = 1$.

More sensitive to throughput

Throughput of CP i:

$$\lambda_i(\theta_i) = \alpha_i M d_i(\theta_i) \theta_i$$

Demanding # of users $\alpha_i M d_i(\theta_i)$
System Side: Rate Allocation

- Axiom 1 (Throughput upper-bound)
 \[\theta_i \leq \hat{\theta}_i \]

- Axiom 2 (Work-conserving)
 \[\lambda_N = \sum_{i \in \mathcal{N}} \lambda_i = \min \left(\mu, \sum_{i \in \mathcal{N}} \hat{\lambda}_i \right) \]

- Axiom 3 (Monotonicity)
 \[\theta_i(M, \mu_2, \mathcal{N}) \geq \theta_i(M, \mu_1, \mathcal{N}) \forall \mu_2 \geq \mu_1 \]
Uniqueness of Rate Equilibrium

Theorem (Uniqueness): A system (M, μ, \mathcal{N}) has a unique equilibrium \(\{\theta_i : i \in \mathcal{N}\} \) (and therefore \(\{\lambda_i : i \in \mathcal{N}\} \)) under Assumption 1 and Axiom 1, 2 and 3.

User demand: \(\{\theta_i\} \rightarrow \{d_i\} \)
Rate allocation: \(\mu, \{d_i\} \rightarrow \{\theta_i\} \)

\(\rightarrow \) Rate equilibrium: \((\{\theta_i^*\}, \{d_i^*\}) \)
ISP Paid Prioritization

ISP Payoff: \(c \sum_{i \in \mathcal{P}} \lambda_i = c \lambda_p \)

<table>
<thead>
<tr>
<th>Class</th>
<th>Capacity</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium</td>
<td>(\kappa \mu)</td>
<td>($c/\text{unit traffic})</td>
</tr>
<tr>
<td>((M, \kappa \mu, \mathcal{P}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary</td>
<td>((1 - \kappa) \mu)</td>
<td>($0)</td>
</tr>
<tr>
<td>((M, (1 - \kappa) \mu, \mathcal{O}))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Monopolistic Analysis

- Players: monopoly ISP I and the set of CPs \mathcal{N}

- A Two-stage Game Model (M, μ, \mathcal{N}, I)
 - 1st stage, ISP chooses $s_I = (\kappa, c)$ announces s_I.
 - 2nd stage, CPs simultaneously choose service classes reach a joint decision $s_{\mathcal{N}} = (\mathcal{O}, \mathcal{P})$.

- Outcome (two subsystems):
 - $(M, \kappa \mu, \mathcal{P})$: set \mathcal{P} (of CPs) share capacity $\kappa \mu$
 - $(M, (1 - \kappa) \mu, \mathcal{O})$: set \mathcal{O} share capacity $(1 - \kappa) \mu$
Utilities (Surplus)

- **ISP Surplus:** \(IS = c \sum_{i \in P} \lambda_i = c \lambda_P \);

- **Consumer Surplus:** \(CS = \sum_{i \in N} \phi_i \lambda_i \)
 - \(\phi_i \): per unit traffic value to the users

- **Content Provider:**
 - \(v_i \): per unit traffic profit of CP \(i \)

 \[
 u_i(\lambda_i) = \begin{cases}
 v_i \lambda_i & \text{if } i \in \mathcal{O}, \\
 (v_i - c) \lambda_i & \text{if } i \in \mathcal{P}.
 \end{cases}
 \]
Type of Content

Profitability of CP v_i

Value to users ϕ_i
Monopolistic Analysis

- Players: monopoly ISP \(I \) and the set of CPs \(\mathcal{N} \)

- A Two-stage Game Model \((M, \mu, \mathcal{N}, I)\)
 - 1\(^{st}\) stage, ISP chooses \(s_I = (\kappa, c) \) announces \(s_I \).
 - 2\(^{nd}\) stage, CPs simultaneously choose service classes reach a joint decision \(s_{\mathcal{N}} = (\mathcal{O}, \mathcal{P}) \).

- Theorem: Given a fixed charge \(c \), strategy \(s_I = (\kappa, c) \) is dominated by \(s'_I = (1, c) \).

- The monopoly ISP has incentive to allocate all capacity for the premium service class.
Utility Comparison: Φ vs Ψ

- $\Phi = \frac{CS}{M}$
- $\Psi = \frac{IS}{M}$

Graphs show the comparison for different values of c and κ. The graphs are labeled with $\nu = \frac{\mu}{M}$, where ν is a variable representing μ. Each graph compares the utility for different values of κ. The graphs are structured with c values of 0.1, 0.3, 0.5, 0.7, and 0.9, with corresponding κ values for each.
Regulatory Implications

- Ordinary service can be made “damaged goods”, which hurts the user utility.

- Implication: ISP should not be allowed to use non-work-conserving policies (κ cannot be too large).

- Should we allow the ISP to charge an arbitrarily high price c?
High price c is good when

- Profitability of CP v_i
- Value to users ϕ_i
High price c is bad when

Profitability of CP v_i

Value to users ϕ_i
Oligopolistic Analysis

- **A Two-stage Game Model** \((M, \mu, \mathcal{N}, \mathcal{I})\)
 - 1\(^{st}\) stage: for each ISP \(I \in \mathcal{I}\) chooses \(s_I = (\kappa_I, c_I)\) simultaneously.
 - 2\(^{nd}\) stage: at each ISP \(I \in \mathcal{I}\), CPs choose service classes with \(s^I_{\mathcal{N}} = (O_I, P_I)\)

- **Difference with monopolistic scenarios:**
 - Users move among ISPs until the per user utility \(\Phi_I\) is the same, which determines the market share of the ISPs
 - ISPs try to maximize their market share.
Duopolistic Analysis

ISP I with $s_I = (\kappa, c)$

ISP J with $s_J = (0, 0)$
Duopolistic Analysis: Results

- Theorem: In the duopolistic game, where an ISP J is a Public Option, i.e. $s_J = (0, 0)$, if s_I maximizes the non-neutral ISP I’s market share, s_I also maximizes user utility.

- Regulatory implication for monopoly cases:
Oligopolistic Analysis: Results

- Theorem: Under any strategy profile s_{-I}, if s_I is a best-response to s_{-I} that maximizes market share, then s_I is an ϵ-best-response for the per user utility Φ.

- The Nash equilibrium of market share is an ϵ-Nash equilibrium of user utility.

- Oligopolistic scenarios:
Regulatory Preference

ISP market structure

- Oligopoly
- Monopoly

Public Option

User Utility
SENATOR, WHAT DO YOU THINK ABOUT THE PUBLIC OPTION?..