
Bridging UPnP and ZigBee with CoAP

Protocol and its Performance Evaluation

Jin Mitsugi
Auto-ID Laboratory Japan

Keio University
5322 Endo Fujisawa 252-0882, Japan

mitsugi@sfc.wide.ad.jp

Shigeru Yonemura
Auto-ID Laboratory Japan

Keio University
5322 Endo Fujisawa 252-0882, Japan

raccoony@sfc.wide.ad.jp
Hisakazu Hada

Auto-ID Laboratory Japan
Keio University

5322 Endo Fujisawa 252-0882, Japan
hada@sfc.wide.ad.jp

Tatsuya Inaba
Auto-ID Laboratory Japan

Kanagawa Institute of Technology
1030 Shimo-ogino Atsugi 243-0292, Japan

tinaba@ic.kanagawa-it.ac.jp

ABSTRACT
Incorporation of heterogeneous wireless sensor and actua-
tor networks (WS&AN) is an essential challenge of web
based Internet of Things (IoT) architectures. We propose
to use UPnP and end-to-end HTTP communication using
CoAP to bridge WS&AN and IoT system. UPnP enables
automatic discovery of sensor devices which directly con-
nect to a WS&AN via a gateway. Instead of translating
WS&AN and UPnP protocols at the gateway, we propose
to use CoAP in WS&AN. This provides flexible communi-
cations between sensor devices and applications. Drawback
of this end-to-end Web based IoT information system is vul-
nerability to excessive traffics from sensor devices or from
the applications because there is no authority to monitor and
control traffics in the architecture. We examined the per-
formance of our implementations to find that the transmit
performance of a single sensor device could be limited by
the serial communications of embedded transceiver. Exces-
sive data requests from applications might also result in the
packet loss and wasteful WS&AN congestion. If the traffic
is confined within the performance limits, the implemented
UPnP and ZigBee bridging using CoAP shows satisfactory
performance. We can subscribe up to 16 sensor devices data
with 500 msec using simple HTTP POST requests.
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1. INTRODUCTION
Internet of Things (IoT) enables us to monitor and

process physical objects and real-world incidents in in-
formation system. To bridge physical objects and in-
formation system, wireless sensors and actuator net-
work (WS&AN) is essential. Existing WS&AN stan-
dards define a set of protocol and data structure. A
typical WS&AN protocol, ZigBee[1] defines networking
and application profiles on top of IEEE 802.15.4 PHY
and MAC standard[2]. Since a WS&AN protocol termi-
nates its protocol at a sensor sink, the incorporation of
a WS&AN into an Web based IoT architectures, such
as SENSEI [3], Sensor Web Enablement (SWE) [4] and
IoT-A[5], requires additional mechanism to discover and
control of WS&AN devices from the IP network. We
also need to consider that a WS&AN usually comprises
a constrained network and constrained devices —- the
network entails long latency and a device has the min-
imum computational power and storage.
UPnP (Universal Plug and Play) [6] provides a mech-

anism to interconnect intelligent appliances, sensors and
PCs of all form factors. UPnP uses HTTP over Ether-
net to discover and control devices. A device is reg-
istered to a control point as a UPnP device with a
unique identifier (ID) called UUID. We can include a
WS&AN, such as ZigBee, to a UPnP network via a gate-
way. There have been a number of researches to trans-
parently connect UPnP and ZigBee by bi-directionaly
translating the UPnP profile and ZigBee profile at a



gateway[7, 8, 9]. Combination of UPnP with a con-
strained network provides a significant benefit in device
discovery such that the control point in UPnP auto-
matically collects devices’ information. In addition, au-
thors previously reported[10, 11] a small extension of
UPnP to include EPC (Electric Product Code), a glob-
ally unique identifier system in a form of URN, we can
further discover services related to the device by us-
ing established discovery service, ONS (Object Naming
Service)[12].
We have two design choices when we incorporate a

WS&AN in an IoT architecture which extensively uses
HTTP and Web technology, such as SENSEI, SWE and
IoT-A. One approach is to use a gateway as a protocol
translator as mentioned earlier. When we have a new
service or new device or an update of application pro-
tocol, however, we need to update the gateway to in-
corporate the change. Another approach is to establish
an end-to-end HTTP connection between applications
and WS&AN devices. This significantly simplifies the
requirements toward the gateway. Since a direct ap-
plication of HTTP over a WS&AN, which is usually a
constrained network and involves constrained devices,
should be impractical, we use CoAP (Constrained Ap-
plication Protocol)[13] being developing in IETF in our
system.
CoAP provides a mechanism to terminate the HTTP

communications from application and converted to a
compact form of HTTP for a constrained network. HTTP
header information such as method and content type
are represented by a binary data. CoAP originally pre-
sumes an end to end IP connection, typically UDP over
6LoWPAN, for its networking layer. Although imple-
mentations of CoAP over an IP network are available for
selected platform such as linux, Contiki and Tiny OS,
it is usually straightforward and practical to directly
use CoAP on top of ZigBee. This way, a sensor device
only needs to process CoAP as an application sublayer
data (APS). Otherwise, we need IP processing function
in the sensor device. In addition, since most of the off-
the-shelf ZigBee coordinator are designed to connect to
a PC with serial interface, we may also need to establish
a PPP link over the serial interface. The performance of
CoAP is reported in [14], only in the cases where CoAP
is used in a linux PC rather than constrained devices.
Incorporation with IoT architecture is also not covered.
Figure 1 shows how applications are connected to

WS&AN device through UPnP in our system. Ap-
plication, in this context, could be considered as an
end-user application or a sensor service such as sen-
sor observation service (SOS) in SWE. As shown in
the figure, bridging UPnP and ZigBee with CoAP en-
ables flexible communications between applications and
sensor devices. One application can subscribe many
sensor devices by sending identical HTTP messages to

each device whether or not the device is connected to a
constrained network. CoAP communications in a con-
strained network is invisible from subscribing applica-
tions. This, on the other hand, may result in overload
of a sensor device or congestion in ZigBee network be-
cause there is no authority to control the traffic toward
ZigBee devices. Many applications subscribe to a sin-
gle device as shown in Fig.1. Evaluation of permissible
subscribing and polling loadings to a single device and
the whole network are essential to prevent end-device
collapse and constrained network congestion.
In this paper, we introduce a protocol to bridge UPnP

and ZigBee by CoAP and report the outcome of perfor-
mance evaluation with up to 20 sensor devices. Section
2 introduces the protocol featuring the mechanism to
bridge UPnP and ZigBee, which our previous publica-
tions[10, 11] did not cover. Bridging UPnP and ZigBee
requires new functions to handle SSDP (Simple Ser-
vice Discover Protocol) of UPnP in CoAP. In Section 3,
throughput performances of a single constrained device
and of 20 devices are examined to clarify the perfor-
mance limit of a single device and the whole system.

2. COAP EXTENSION AND IMPLEMENTA-
TION

2.1 CoAP extension to bridge UPnP and Zig-
Bee

In this paper, a sensor device is supposed to be com-
posed of a sensor MCU and a ZigBee transceiver and
associated sensors and actuators. The sensor MCU is
connected to the ZigBee transceiver usually with a se-
rial interface such as UART or I2C. The MCU handles
CoAP processing in addition to the sensors and actu-
ators managements. There is a single chip transceiver
chip in the market that can handle the role of MCU too.
We treat such a single chip solution as a sensor device.
Figure 2 shows a sensor device association and UPnP

Join procedure. Underlined commands and responses
are of UPnP, which resides in APS (Application sub-
layer) of ZigBee. APS payload is described using CoAP
as shown in Fig. 3. Upon the completion of Zig-
Bee network association, the sensor MCU send a Join
to the gateway. A CoAP packet from a sensor device
to the coordinator is extracted from ZigBee APS by
the coordinator and is transferred to gateway. In ad-
dition to the CoAP defined Code (GET, POST, PUT,
DELETE), we extend CoAP Code to cover UPnP com-
mands and response as in Table 1. This way, the gate-
way only needs to check ”Code” field, which is a fixed
length from the beginning of a CoAP packet, to cre-
ate a virtual UPnP device for the ZigBee device. The
gateway, then, forwards the CoAP packet to the con-
trol point after converting it to HTTP. A traffic CoAP
packet, involves Code less than 5, is transferred to re-
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Figure 1: Our web based Internet of Things information system where we can monitor and control
sensor devices by sending HTTP request. Since the publishing control is fundamentally done in
end-to-end manner, a gateway connecting a constrained network only needs to transfer commands
and responses. This facilitate us to add new devices and new services.

POST http://gw00.home00.racow.net/urn:epc:id:sgtin:457122707.0100.1

<?xml version=""1.0"" encoding=""UTF-8""?>

<message>

<command>poll</command>

<requestID>12345</requestID>

<responseURI>http://saveenergy.navi.ranking.racow.net/response.php</responseURI>

<query target="sink"><![CDATA[{“set”:{“lighton”:1}}]]></query>

</message>

Figure 5: A message from an application comprises two blocks. A block is for the gateway, another
is to the destination ZigBee device.

Table 1: Extended CoAP Codes to incorporate
UPnP controls. Leave is issued by a sensor de-
vice when it leaves UPnP. Alive, Ping and Col-
lectAll are for management of UPnP.

Method Code Note
GET 1 native coap code
POST 2 native coap code
PUT 3 native coap code
DELETE 4 native coap code
Join 11 our extension
Leave 12 our extension
Alive 13 our extension
Ping 14 our extension
CollectAll 15 our extension

questing applications after converting the header to that
of normal HTTP. The gateway creates a virtual UPnP
device upon receiving the Join request and notify a con-
trol point according to UPnP protocol. Figure 4 shows
the sequence for an application to subscribe or to re-
quest a sensor data. The binding mechanism of a report
and its destination address is similar to the subscription
controls in EPCIS query interface [15] and in UPnP1.
An example subscription message from an application
is shown in Fig.5, which specifies request ID and re-
sponse URI. The request ID is bound to a transaction
ID in CoAP and recorded in a database by the gate-
way. When the gateway receives a report from a sensor
device, the gateway retrieves the corresponding request
ID and response URI from its database and send the
report to subscribing application.

2.2 Implementation
1In UPnP term, subscription and eventing
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Figure 2: After ZigBee network association, a
sensor device send a UPnP Join message to gate-
way through the coordinator. The message is
encoded in a CoAP format. The gateway can
immediately filter UPnP related packets from
traffic packets by checking CoAP Code.
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Figure 3: Coap header involves fixed length
header. UPnP packets can be selected just by
inspecting the fixed length 32-bit header

Figure 6 shows the hardware implementation of our
sensor device. We use connectport X4 as the ZigBee
coordinator with a custom software to use CoAP. The
gateway and control point functions of UPnP with the
CoAP extension are implemented in a board computer
Alix 2D13 (Fig.7) with Java. The gateway also has
HTTP server (lighttpd) to process subscription con-
trols. We implemented 49 sensor devices part of which
are used as environmental sensors and the rests are to
monitor and control consumer electronics (Fig.8) through
IPv6 network[10].

3. PERFORMANCE EVALUATIONS
As we state in Section 1, bridging UPnP and ZigBee

with CoAP may result in a sensor device collapse or a
constrained network congestion. We evaluated our sys-
tem performance subjected to subscription and polling
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Figure 4: Sensor data subscription and control
sequence

ZigBee Transceiver

MSP430 MCU

Connectors for sensor units

Figure 6: A hardware implementation of sensor
device. The MSP430 acquires data from and
controls sensor units and then transfers to Zig-
Bee transceiver.

traffics. In this paper, the subscription traffic originates
from an application to place a request to the destination
sensor device. After the registration, the traffic is gen-
erated by the sensor device whenever it experiences a
predefined time interval or an event (Fig.9). The polling
traffic also originates from an application by requesting
or sending command data to remote device. Upon re-
ceiving a polling traffic, a sensor device returns data
or an acknowledgement by request. Subscription traf-
fic may overload a sensor transmission performance or
results in constrained network congestion while polling
traffic may overload the gateway or CoAP processing of
sensor MCU.

3.1 Performance under Subscription traffic



Figure 7: We use connectport X4 as ZigBee co-
ordinator (right). Gateway and control point of
UPnP with CoAP extension are implemented in
Alix 2D13 with CentOS 5.0 (left).

3.2 Single sensor device transmission
We first examined APS round trip time of ZigBee

transceiver driven by sensor MCU. We formed two hop
network composed of an sensor device, a router and a
coordinator, in an environment where no ZigBee device
shares the frequency channel but there are interference
from background WiFi. The sensor device continuously
transmitted fixed length data to the coordinator with
APS acknowledgement (APS ACK). We observed the
transmission timings in the air with Daintree Sensor
Network Analyzer (SNA).
Figure 10 shows the result. The processing timings

in the router and the router to transfer and to acknowl-
edge are approximately 7 msec and 11 msec, respec-
tively. We measured actually transmitted time inter-
vals by changing the transmit interval time from 300
msec to 1000 msec of the sensor device. We sent 100
packets from the sensor device to the coordinator. The
measured time intervals in the air are collected using
SNA and computed average as in Fig.11. It is shown
in Fig.11 that a sensor device cannot transmit consecu-
tive two packets in less than 300 msec. When we forced
to send packets with less than the time interval, the
packets starts accumulating in the transmission queue
inside the transceiver. Close debugging of transmission
control firmware in MSP430 revealed that the minimum
interval 300 msec matches the whole processing time to
send an APS data with XBee through UART with 9600
bps in our implementation. The ideal shortest time du-
ration to send 100 byte data over the UART takes 104
msec (= 100 × 10/9600) including one stop and one
start bits. Since the UART communications is virtu-
ally flow controlled2 it is reasonable to take about 300

2Even though the communication does not explicitly

Sensor device

Pyro-electric human sensor

Sensor device

Front door PCB

Figure 8: Sensor devices monitor and control
commercial consumer electronics. Example sen-
sor data in the air conditioner implementation
(left), are sensed and designated room temper-
atures, wind strength and power consumption,
while in refrigerator implementation (right), we
monitor freezer and refrigerator temperatures
and door opening status.

msec for UART communications. Since we identify the
minimum time interval of consecutive two packets is 300
msec, we define the minimum transmission rate from a
single end node is 500 msec with a safety margin of 200
msec. It should be noted that this minimum time in-
terval between two consecutive APS packets dominates
the APS throughput of a single sensor device. Suppose
APS maximum payload is 100 Byte 3, the maximum
APS throughput from a single sensor device is 1.6 kbps
(100×8/0.5).
We also measured a transit traffic at a ZigBee router.

It takes 7 msec to route a packet meaning that the tran-
sit packets is transferred at 115 kbps (100 Byte × 8 bit/
7 msec) much faster than that of the originating data
(Fig.12).

3.3 Multiple sensor devices throughput per-
formance

We set the transmitting interval of each sensor de-
vice to be 500 msec not to overload the transceiver and
then increase the number of transmitting sensor device
one by one with 5 minutes interval until we observe
network congestion. A sensor device is either a sen-
sor device or a router depending on the route discovery
outcome. The subscription of each sensor device were
performed by an application by ”POST”ing a HTTP
message similar to Fig.5. Upon receiving the message
from an application, the sensor device reports its sensor

RTS/CTS flow controlled, the UART communication in
MCU checks if the transmitting register is cleared or not.
3ZigBee MAC payload is 127 Byte, subtracting NWK and
AUX layer headers yield about 100 Byte for APS
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Figure 13: We examined the performance of system in our office. Sensor device were collected from
consumer electronics in remote installations and are placed in the laboratory. We have average 3
hops from a sensor device to the coordinator.
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Figure 9: Two types of traffics, polling and sub-
scription traffics, are considered in the perfor-
mance evaluation.

data to the gateway in a form of CoAP. The gateway
translates the CoAP message to an HTTP message and
send it to the destination URL specified by the appli-
cation. In the experiment, all the report data is stored
in a data base (Postgres) with Apache front end. The
stored data is analyzed later to evaluate throughput,
packet loss and transmission delay. The experiment was
done in our office and laboratory. We located the coor-

APS data

APS data

MAC Ack

MAC Ack

APS Ack

7msec

11msec

7msec

APS Ack

MAC Ack

MAC Ack

APS data

300msec

Sensor device Router Coordinator

25msec

second packet

first packet

Figure 10: Timing chart of APS ACK enabled
two hops network. Compared to the round trip
APS time 25 msec, the consecutive APS data
transmission takes much longer time 300msec.

dinator in our office and all the sensor devices were in
laboratory and 4 routers in the middle to form a multi-
hop network (Fig.13) in a 612m2 = 34m× 18m work-
ing place with steel doors and thick walls. An APS
throughput of a sensor device for a specified network
loading is computed by counting the number of packet
received by Postgres data base within the specified time
duration. The aggregated APS throughput is computed
by summing all APS throughputs considering the num-
ber of hops. We can subscribe up to 20 sensor device
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Figure 11: When we send packets with short
time intervals, observed transmission rate in the
radio saturates at 300 msec. The limit stems
from the serial interface of transceiver.

with 55 aggregated hops achieving about 60 kbps ag-
gregated throughput. Up to 14 sensor devices, the ag-
gregated throughput is linear to the number of sensor
device, which means there is no traffic congestion in
ZigBee network. Since the maximum throughput of a
sensor device is 1600 bps, we compute the ideal aggre-
gated through by multiplying 1600 bps and the aggre-
gated number of hops and compared with the measured
throughput as shown in Fig.14 It is shown that our im-
plementation is quite close to the ideal throughput up
to 16 sensor devices. Since the ideal throughput is dic-
tated by the serial communications between the sensor
MCU and transceiver, it is shown that the end-to-end
communications are not impeded by UPnP and ZigBee
bridge using CoAP.

3.4 Performance under Polling traffic
Polling traffic is generated by a multithread Java pro-

gram and is transmitted to a sensor device via a gate-
way. We change the polling time interval from 100 msec
to 1000 msec and generated 100 polling requests in each
time interval. The performance is measured by count-
ing the number of successfully responded requests, the
number of requests rejected by sensor device and the
number of request rejected by the gateway. The result
is shown in Fig.15. When the polling interval is less
than 400 msec, polling requests could be rejected by the
gateway. A gateway rejection was counted by observing
the response against a polling request. Less than 800
msec time-interval polling requests may be rejected by
a sensor device depending on its working load. ZigBee
network reveals no problem against this polling traffic
because the traffic (1.1 kbps = 100byte × 8 bit/0.7 sec)
is far lighter than the maximum aggregated bandwidth

serial IF

PHY

MAC

NWK

APS

originating packets

transit packets

1.6kbps

144kbps

Figure 12: Transit packets pass a router faster
than that of the originating packets. Bottleneck
of sensor data publishing depends on the work-
load of the sensor device which originates sensor
data

(60 kbps).

4. CONCLUSIONS
An Internet of Things architecture needs to incor-

porate heterogeneous constrained networks and devices
to capture physical objects and real-world incidents.
End-to-end web information system is a good solution
to leverage the recent development of web technology.
HTTP, however, may incur excessive traffics to con-
strained network and device. CoAP being developed
in IETF could be a good solution to establish end-to-
end HTTP communications. Since UPnP provides an
efficient protocol to discover newly associated devices
even if the device is directly associated to a constrained
network such as ZigBee, we propose to extend CoAP
to include UPnP related commands as methods. This
provides flexible communications between applications
and sensor devices and relaxes the performance require-
ments on the gateway. This may, on the hand, overload
the gateway and sensor devices. We examined the per-
formance of our implementation to find that the serial
interface between sensor MCU and sensor transceiver
could be a bottleneck for sensor device to application
traffic. On the other hand, too many subscription from
applications may result in overload in the gateway and
sensor devices. Once we clarify the traffic limitations
and confine the traffic within the limits, our web based
Internet of Things shows satisfactory performance. We
can subscribe up to 16 sensor device with 500 msec in-
terval by submitting simple HTTP POST data to sensor
devices.
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