
Identifying and Verifying
Clock Synchronization Protocol Parameters

Sho Fujita
Yokogawa Electric Corporation
Shou.Fujita@jp.yokogawa.com

Kenji Ooishi
Yokogawa Electric Corporation
Kenji.Ooishi@jp.yokogawa.com

Yosuke Ishii
Yokogawa Electric Corporation
Yosuke.Ishii@jp.yokogawa.com

Masato Yamaji
Yokogawa Electric Corporation
Masato.Yamaji@jp.yokogawa.com

ABSTRACT
The Internet of Things(IoT) is a novel paradigm, where things
are in the majority position of producers and consumers of
traffic. IoT is expected to have a strong impact on our ev-
eryday life, i.e., the physical space around us. In the phys-
ical space, the notion of time is so universal that the infor-
mation there is often combined with timestamps. To make
them consistent among IoT nodes, applications need a clock
synchronization mechanism, which has been an important
topic in the research community. Whereas earlier studies
focused mainly on improving synchronization accuracy, we
focus on improving efficiency to achieve a given synchro-
nization accuracy in a given environment. This viewpoint
is important because applications do not always require the
best synchronization accuracy and only limited resources are
available for IoT nodes. We propose methods to identify
and verify appropriate parameters for clock synchronization
protocols. Because our methods are not limited to a spe-
cific protocol, we introduce a clock synchronization proto-
col model that generalizes a class of clock synchronization
protocols and discuss our methods based on it. Our methods
are demonstrated on a trace of time information collected in
our testbed.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Commu-
nication Networks—Network Protocols

General Terms
Performance, Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM IoTSP 2011, December 6, 2011, Tokyo, Japan.
Workshop on Internet of Things and Service Platforms ’11, Tokyo Japan
Copyright 2011 ACM 978-1-4503-1043-7/11/0012 ...$10.00.

1. INTRODUCTION
The Internet of Things(IoT) is a novel paradigm,

which is getting popularity in both academic and in-
dustrial communities. In contrast to the current Inter-
net where humans are in the majority position as pro-
ducers and consumers of traffic, IoT envisions that the
position will be taken over by things that interact with
each other without human intervention[1]. The things
can be either a smart object, which is equipped with
processing and networking capabilities, or just an ob-
ject that is externally observed by other smart objects.
In latter case, the objects are often discussed in the con-
text of wireless sensor networks(WSNs), which become
feasible as radios and sensors decrease their cost. Any-
way, IoT is expected to have a strong impact on our
everyday life, i.e., the physical space around us.
In the physical space, the notion of time is so uni-

versal that information gathered by IoT nodes is of-
ten combined with timestamps. To make them con-
sistent among the IoT nodes, applications in IoT need
a clock synchronization mechanism. It is also needed
by mechanisms coordinating among IoT nodes, such as
MAC protocols. Thus, the clock synchronization has
been an important topic in the research community. A
lot of clock synchronization protocols have been pro-
posed so far[2][3][4]. Their main focus was improving
synchronization accuracy. For example, Flooding Time
Synchronization Protocol(FTSP) has achieved the best
per-hop synchronization accuracy of the 1 microsecond
range.
However, the best synchronization accuracy is not al-

ways needed.
First, requirements for synchronization accuracy de-

pend on objects or phenomena monitored by IoT. The
countersniper system proposed by Simon et al. de-
tects muzzle blasts and acoustic shockwaves to locate
shooters[5]. It records the timestamps when the muz-
zle blasts and acoustic shockwaves arrive and calculates
the shooter location estimates from them. Although the
speed of sound is relatively high, the synchronization

accuracy of 1 millisecond is sufficient to get location es-
timate with an error of 1 foot. The wireless network
diagnosis mechanisms need more accurate clock syn-
chronization. To infer interfering links, they need to de-
tect simultaneous transmissions among the nodes[6][7].
According to Cheng et al., the clock synchronization
accuracy of 20 microseconds is sufficient, which is the
slot size of IEEE 802.11bg specifications[6]. Second, the
more accurate clock synchronization is, the more it con-
sumes energy, which is a critical resource in IoT nodes.
The situation is complex because synchronization accu-
racy sometimes contributes to energy saving. For exam-
ple, synchronized MAC protocols exploit synchronized
clocks to reduce energy consumption. They share com-
munication schedule among nodes in advance and make
the nodes turning off its radio until they actually trans-
mit or receive frames. To receive the frame even in the
case that nodes communication schedule is not shared
accurately due to their clock drift, the nodes need to
stay in the listen state for an appropriate time. S-MAC
protocol[8], which is the popular implementation of the
synchronized MAC protocol, stays in the listen state for
0.5 seconds, which is 105 longer than typical drift rate.
It is important to appropriately set parameters, such

as communication and synchronization intervals, to ef-
ficiently meet given application requirements in a given
environment. Because the protocol parameters depend
on the environment where the applications are deployed,
we cannot predefine them in the factory. In this paper,
we propose methods to identify and verify the param-
eters of clock synchronization protocols. Because our
methods are not limited to specific protocols, we discuss
the methods using a protocol model that generalizes a
class of clock synchronization protocols. The protocol
model represents the predominant clock synchroniza-
tion protocols[2][3][4]. The first method takes a trace of
two clocks’ timestamps and statistically identifies ap-
propriate parameters. The second method verifies that
the identified protocol parameters meets application re-
quirements in a given environment.
The organization of this paper is as follows. In Sec-

tion 2, we introduce a protocol model that general-
ize clock synchronization protocols. Then, we discuss
the statistical method to identify appropriate parame-
ters, i.e., communication and synchronization intervals
in Section 3. In Section 4, we discuss the verification
method that ensure the parameters identified by the
statistical method meet synchronization requirements
using data on clock rate stability. Then, we consider
the future direction of our methods in Section 5, and
we conclude this paper in Section 6.

2. PROTOCOL MODEL
We first introduce a protocol model that generalize

a class of clock synchronization protocols. In the fol-

lowing sections, our discussion will be based it. We
take this approach because ideas to identify and verify
protocol parameters, such as communication and syn-
chronization interval, are not limited to specific clock
synchronization protocols. The protocol model keeps
our discussion general enough to apply to a broad range
of clock synchronization protocols.

2.1 Overview
Our protocol model deals with local synchronization

between two neighboring nodes: a server and a client.
The server has a reference clock or the true clock, and
the client tries to synchronize its clock to the server’s.
Although local synchronization does not meet all appli-
cation requirements, it is a building block to understand
global synchronization of a whole network[9]. We will
study the global synchronization in our future works.
We model the underlying clocks before the clock syn-

chronization protocol. Let t be the true clock, which
runs at the ideal rate of 1 second per second, and has
origin t = 0 at some arbitrary instant. In practice,
nodes are equipped with imperfect clocks; their rate is
different from the ideal one and not even time-varying.
On the other hand, their rate is stable enough to be
treated as constant for a short time period[10]. Hence,
the time scales of the server and client can be expressed
as linear functions of the true clock t :

Cs(t) = rst+ Cs0 (1)

Cc(t) = rct+ Cc0 (2)

where rs and rc are a constant clock rate of the server
and client, respectively. We set Cs0 = Cs(0) and Cc0 =
Cc(0). Because t is not directly observable, we eliminate
t from the above equations.

Cs(t) = rs(
Cc(t)− Cc0

rc
) + Cs0

= (rs/rc)Cc(t) + (Cs0 − Cc0(rs/rc))

= r′sCc(t) + C ′
s0 (3)

Now that Cs(t) can be expressed as a linear function of
Cc(t). We call the coefficients r′s and C ′

s0 in Equation
(3) a clock relation. Please note that Equation (3) also
holds well only for the short time period, which we will
identify in the next section.
In this paper, we regard clock synchronization as main-

taining the clock relation; if we know it, the server’s
timestamp Cs(t0) can be calculated from the client’s
timestamp Cc(t0) measured at the instant t0. This
viewpoint is different but consistent with that of ex-
isting studies, which manipulates the clock settings of
the client. Because the relation holds for limited pe-
riods, our protocol model periodically updates the pa-
rameters. The process of our protocol model consists
of two phases: reference point creation and clock rela-
tion inference. In the reference point creation phase,

Client's Clock

S
e

rv
e

r'
s
 C

lo
c
k

Interval 1 Interval 2

Figure 1: Each point represents a reference
point. A clock relation is inferred in each syn-
chronization interval and used in the next syn-
chronization interval.

the server and client exchange their timestamps and
create reference points. A reference point is a pair of
timestamps measured by both the server and client at
the same instant. For example, the reference points
measured at instants t0 and t1 are (Cs(t0), Cc(t0)) and
(Cs(t1), Cc(t1)), respectively. In the clock relation infer-
ence phase, the clock relation is calculated using linear
regression on the reference points.
The inferred clock relations are used as shown in Fig-

ure 1. The client and server create reference points at an
interval called communication interval. The reference
points are divided by another interval called synchro-
nization interval. A clock relation is calculated from
the reference points within a synchronization interval.
In Figure 1, each point corresponds to a reference point,
whose x and y coordinates are timestamps of the client
and server, respectively. The dashed line is created from
the reference points in Interval 1 and then used to esti-
mate the server’s timestamps in Interval 2.
In the following part of this section, we will explain

each of the phases in more detail. And, to prove that
our protocol model is general enough, we explain how
the existing clock synchronization protocols fit into our
protocol model.

2.2 Reference Point Creation
To create a reference point, the client needs to know

server’s timestamp; the server needs to transmit it to
the client through a wireless channel. In general, wire-
less transmission suffers from delays, which cause errors
in reference points. Maróti et al. pointed out the seven
sources of delays in wireless transmission[4]:

1. Propagation

2. Transmission/Reception

3. Encoding/Decoding

4. Byte Alignment

Server

Client

Other Node

Figure 2: Creation of a reference point in RBS.
A reference broadcast triggers the server and
client to record timestamps at the same time,
and the server’s timestamp is delivered to the
client later.

5. Send/Receive

6. Access

7. Interrupt Handling

The propagation delay is highly deterministic and de-
pends only on the distance. Although we do not always
know the distance between the server and client, the
propagation delay is often negligible in practical deploy-
ment of wireless sensor networks. For example, it is less
than 1 microsecond if the distance is less than 300 me-
ters. The transmission/reception, encoding/decoding,
and byte alignment delays are deterministic and cal-
culated from information included in a frame; We can
normalize the client’s timestamp by subtracting them.
The send/receive, access, and interrupt handling delays
are nondeterministic and major causes of errors in refer-
ence point creation. The existing protocols implement
mechanisms to reduce the effect of these nondetermin-
istic delays.

2.2.1 Reference Broadcast Synchronization
Reference Broadcast Synchronization(RBS) creates ref-

erence points only from reception timestamps[2]. Thus,
RBS is often categorized into receiver-to-receiver syn-
chronization[11]. To let the server and client receive
a frame and record the timestamps of the reception,
the third nodes periodically transmit reference broad-
cast frames. The reference broadcast frames do not
include any time information; they simply trigger the
server and client to record the timestamps of their re-
ception at the same time. The server’s timestamp need
to be delivered to the client in another frame, as shown
in Figure 2.
In RBS, the send and access delays are eliminated

from reference point creation because its timestamps
are taken for the single frame. Although the original
paper does not indicate it, RBS can also eliminate the
receive delay by leveraging MAC-level timestamping.

Server

Client

t1

t2 t3

t4

Figure 3: Creation of a reference point in TPSN.

Server

Client

Figure 4: Creation of a reference point in FTSP.

Therefore, the interruption handling delay is the only
cause of errors in reference point creation of RBS.

2.2.2 Timing-sync Protocol for Sensor Networks
Timing-sync Protocol for Sensor Networks(TPSN) cre-

ates a reference point from a 2-way message exchange
between the server and client[3]. This is because it is
categorized into sender-to-receiver synchronization[11].
As shown in Figure 3, the client node transmits a mes-
sage with the timestamp t1 at the transmission. The
server node replies to the message with a message in-
cluding the reception timestamp of the last message t2
and transmission timestamp of this message t3. From
the four timestamps, the client creates a reference point(t1+
t4, t2 + t3).
TPSN increases the synchronization accuracy exploit-

ing the software architecture specific to WSN nodes.
In general, WSN nodes can control their radio trans-
mission and reception procedures step by step. They
can include the timestamp just before transmitting the
bytes that will contain it and record the timestamp
just before receiving the bytes. Therefore, it can elimi-
nate the send/receive and access delays. Moreover, be-
cause of its 2-way message exchange, TPSN can mea-
sure propagation time and eliminate its affect, and reduct
timestamp errors exploiting an average of two times-
tamps. such as t1 and t4; t2 and t3.

2.2.3 Flooding Time Synchronization Protocol
FTSP exploits MAC level timestamping and elimi-

nates nondeterministic delay from its synchronization
transaction[4]. FTSP is different from TPSN because

it adopts 1-way message exchange; only the server node
transmits the frames.
FTSP eliminates its timestamp errors to 1.4 microsec-

ond in average, 4.2 micro second at maximum by com-
pensating bit alignment time and exploiting multiple
measurement to create a timestamp.

2.3 Clock Relation Inference
In the clock relation inference phase, the client node

infers the clock relation between itself and the server.
Because Equation (3) captures a relation that holds
temporally, the client updates the clock relation peri-
odically. Although each model expressed by Equation
(3) is too naive to capture clock drifts, the continuously
generated models as a whole can capture the clock drift.
Our protocol model applies linear regression on the ref-
erence points to get the clock relation.

2.3.1 TPSN
On the clock relation inference, TPSN poses a limita-

tion on the underlying clock model; it does not consider
the relative rate r′s but only the offset Cs. As stated in
the last subsection, TPSN creates a reference points
from the average of two timestamps, and thus reduces
the time stamp errors included in the reference points.
However, it exploits only 1 reference point to synchro-
nize the clocks once and thus it cannot infer the skew. If
clock’s inherent accuracy is 40ppm, which is picked up
from [3], the clock error may increase by 40 microsec-
onds per second at maximum. When applications have
stringent requirements on the synchronization accuracy,
TPSN must adopt very short communication and syn-
chronization intervals.

2.3.2 RBS and FTSP
Both RBS and FTSP fit our protocol model well; they

apply linear regression to multiple reference points to
calculate both r′s and C ′

1. Compared to TPSN, RBS
and FTSP can eliminate timestamp errors from mul-
tiple reference points and thus provide more accurate
synchronization.

3. PARAMETER IDENTIFICATION
In this section, we propose a method to identify pro-

tocol parameters, i.e., communication intervals, which
is denoted by Ic and synchronization intervals, which
is denoted by Is. In each of synchronization intervals,
there are (Is/Ic) reference points on average. To iden-
tify the protocol parameters, we need to consider not
only the application requirements but also the environ-
ment where the application is deployed. This is be-
cause clock synchronization protocols depend on their
underlying clocks, which are affected by environmental
factors, such as temperature and atmosphere pressure.

3.1 Error Analysis

We first formalize synchronization errors. A clock
relation, which is expressed by Equation 3, is inferred
from reference points in a synchronization interval. The
clock relation is used to calculate timestamps on the
server’s time scale until the next clock relation is in-
ferred. In Figure 1, the dashed and solid lines illus-
trate the clock relation calculated from the reference
points in Interval 1 and Interval 2, respectively. The
synchronization error Es in Inteval2 is the difference in
y-coordinate between the dashed line and each of refer-
ence points because the timestamps on the server’s time
scale are estimated using the clock relation calculated
in Interval 1.
The synchronization error Es can be divided into the

reference point error Erp and the clock relation error
Ecl, which correspond to the phases of the protocol
model we explained in Section 2.

Es = Erp + Ecl (4)

The reference point error Erp is a error in the reference
point creation phase. In Figure 1, it is the difference
in y-coordinate between each of the lines and the ref-
erence points from which the line is calculated. The
clock relation error Ecl is a error in the clock relation
inference phase. In Figure 1, it is the difference in slope
between the dashed and solid lines. By separating the
synchronization error into the errors corresponding to
the protocol model phases, we can understand the error
causes more deeply as we will see shortly.

3.2 Trace Analysis
To evaluate the proposed identification method, we

apply the method to an eight day long trace of time
information in a testbed. The testbed is composed of
three nodes in an air-conditioned room. The nodes have
a AMD LX800 processor running at 500 MHz with 256
MB DDR memory. They are embedded with an IEEE
802.11 network card with Atheros AR5414 run by ath5k
device driver. One of the nodes is configured to be an
access point, and transmits a beacon frame once per
100 milliseconds. The other nodes are configured to be
monitoring nodes instead to be stations associating to
the access point. This is because we need to disable the
native clock synchronization mechanism of IEEE 802.11
(TSF). The two monitoring nodes receive the beacon
frames and record the timestamps of their reception.
Then, they exchange the timestamps and create refer-
ence points from them in a way like RBS 1.

1Actually, we needed a pre-process that filters reference
points that included errors that are larger than 20000 mi-
croseconds. We believe the errors are caused by the oper-
ating system that records timestamps in software interrup-
tions but not hardware interruptions. This problem should
be eliminated if we reimplement the part of the operating
system.

100 101 102 103 104 105

Is [sec]

100

101

S
td

 o
f

R
e
fe

re
n
ce

 P
o
in

t
E
rr

o
r

[µ
se
c]

Ic=0.1[s]

Ic= 1 [s]

Ic= 5 [s]

Ic=10 [s]

Ic=50 [s]

Figure 5: Errors in reference point creation.

3.2.1 Reference Point Error
The standard deviation of the reference point errors

calculated from the trace are shown in Figure 5. With
relatively small Is for each of communication intervals
Ic, the reference point errors are quite small or often
equal to 0. If the number of reference points (Is/Ic) is
small the inferred linear function suffers from the refer-
ence point errors; the true and inferred clock relations
deviate. Especially if (Is/Ic) is equal to 2, the function
always runs exactly on the two reference points; the
reference point errors are 0. As (Is/Ic) increases, the
inferred clock relation should get closer to the true one.
With synchronization intervals up to around 100[s], ref-
erence point errors get close to and stay around 2.6[µs].
This errors should be caused by nondeterministic inter-
rupt handling delays. With synchronization intervals
larger than 100[s], reference point errors drastically in-
crease. This is because Equation (3) does not hold well
in that large synchronization intervals.

3.2.2 Clock Relation Error
In Figure 6(a), differences in clock rates between suc-

cessive synchronization intervals are shown. The curve
in Figure 6(a) is similar to allan deviation presented
in [10]. The allan deviation expresses a stability char-
acteristics of one clock whereas our graph expresses a
stability characteristics of a pair of clocks communicat-
ing through a nondeterministic channel. Moreover, only
the two timestamps at edges of intervals are used to cal-
culate clock rates in allan deviation whereas our model
exploits as many reference points as possible. In Figure
6(a), the differences in clock rates drop sharply with a
slope of less than -1 because the number of reference
points (Is/Ic) refines statistical inference of clock rates.
This coincides with the reason why the reference point
errors are small in Figure 6(a). With synchronization
interval Is around 100[s], the differences climb steadily

100 101 102 103 104 105

Is [sec]

10-3

10-2

10-1

100

101

D
if
fe

re
n
ce

 i
n
 R

e
la

ti
v
e
 C

lo
ck

 R
a
te

 [
p
p
m

]

Ic=0.1[s]

Ic= 1 [s]

Ic= 5 [s]

Ic=10 [s]

Ic=50 [s]

(a) Standard deviation of rate difference between suc-
cessive synchronization interval.

100 101 102 103 104 105

Is [sec]

10-1

100

101

102

103

S
td

 o
f

C
lo

ck
 R

e
la

ti
o
n
 E

rr
o
r

[µ
se
c]

Ic=0.1[s]

Ic= 1 [s]

Ic= 5 [s]

Ic=10 [s]

Ic=50 [s]

(b) Errors in clock relation inference, which is multipli-
cation of rate difference by synchronization interval.

Figure 6:

100 101 102 103 104 105

Is [sec]

100

101

102

103

S
td

 o
f

S
y
n
ch

ro
n
iz

a
ti

o
n
 E

rr
o
r

[µ
se
c]

Ic=0.1[s]

Ic= 1 [s]

Ic= 5 [s]

Ic=10 [s]

Ic=50 [s]

Figure 7: Synchronization stability, which is ad-
dition of errors in reference point creation and
clock relation inference.

for the same reason as the reference point errors.
The clock relation error Ecl is calculated by multi-

plying the difference in clock rates between successive
synchronization intervals by synchronization interval Is.
The clock relation errors are shown in Figure 6(b).

3.2.3 Synchronization Error
Finally, the protocol parameter Is and Ic can be iden-

tified from the synchronization errors, which are calcu-
lated by adding the reference point errors and clock
relation errors and shown in Figure 7. The synchro-
nization errors express the statistical stability of clock
synchronization in the testbed environment. For a given
synchronization accuracy, we can identify both Is and
Ic. For each of Ic, Is that achieves the most accurate
synchronization is identified and we call it Is∗. Because

larger Is provides more efficient clock synchronization,
it is useless to pick up Is that is smaller than Is∗. There-
fore, we first select Ic that sufficiently achieves the re-
quired accuracy and then Is between Is∗ and the upper
bound that meets the requirement.

4. PARAMETER VERIFICATION
In the last section, we identify protocol parameters Is

and Ic for a trace collected in an environment. The pro-
tocol parameters are proved to statistically work well for
the environment, but not to work in any environments.
In this section, we verify that the protocol parameters
meet the synchronization requirement in a bottom-up
approach.
To verify the protocol parameters, we clearly define

not only application requirements but also the environ-
ment where the application is deployed. For the ap-
plication requirements, we consider only the clock syn-
chronization accuracy As. We verify that the equation

Es < As (5)

holds for the environment. For the environment, there
are some environmental factors that cause the under-
lying clocks to drift, such as temperature, atmosphere
pressure, voltage and so on. In this paper, we consider
only the temperature because it is the dominant factor
of clock drifts.
To be concrete, we explain the verification method

using some practical application requirement and envi-
ronment.
The application requires some synchronization accu-

racy, say, As = 50[µs] and we pick up a synchronization
interval Is = 200[s] using the proposed identification
method. Assuming that the clock relation error is dom-
inant for Is ≈ 200[s], we must keep the difference in
relative clock rate between successive synchronization

Table 1: Clock rate deviation from the true
clock.

temp. clock 0 clock 1 clock 2 clock 3 clock 4
[◦C] [ppm] [ppm] [ppm] [ppm] [ppm]

85 2.19 -4.80 -4.01 -8.60 -2.80
80 0.11 -6.20 -6.01 -9.21 -4.92
75 -1.74 -7.20 -7.63 -10.36 -6.65
70 -2.31 -8.93 -9.03 -11.45 -7.23
65 -2.91 -10.08 -10.42 -11.64 -7.64
60 -2.79 -9.82 -11.34 -11.50 -7.71
55 -2.68 -9.42 -11.42 -10.99 -7.20
50 -2.30 -9.05 -10.95 -10.32 -6.37
45 -1.75 -7.98 -10.01 -9.48 -5.15
40 -1.12 -6.64 -9.22 -8.18 -3.92
35 -0.42 -5.48 -8.11 -7.13 -2.98
30 0.56 -4.25 -6.62 -5.84 -1.61
25 1.66 -2.82 -4.73 -4.35 0.07
20 2.64 -1.86 -3.01 -3.01 1.34
15 3.98 -0.61 -1.61 -1.68 2.72
10 4.43 0.55 -0.37 -0.43 3.88
5 4.93 1.68 0.54 0.61 4.57
0 5.43 2.23 1.40 1.10 4.88
-5 5.74 2.39 1.60 1.14 4.92
-10 5.98 2.21 1.66 1.33 5.03

intervals below

As/Is = 50[µs]/200[s] = 0.25[ppm]. (6)

Therefore, required synchronization accuracy can be
achieved, if differences in relative clock rate per minute
are below

0.25[ppm]/(200/60)[min] = 0.075[ppm/min]. (7)

We next define the environment that affects the rates
of the underlying clocks. In Table 1, rate deviation for
five different clocks are shown, which is provided by
the IEEE 802.11 network vendor. The absolute values
of the rate deviation are large, up to 12 ppm, which
cause an error up to 12 microseconds per second. How-
ever, our protocol model does not use the naive rate but
the relative rate, and thus can tolerate this large devia-
tions. To estimate the worst-case changes, we consider
the severest environment in practice, where tempera-
ture cycles between the upper and lower bound of the
guaranteed operating range of the clocks, that is 85 and
-10 [◦C], respectively. In the left side of Table 2, the
clock rate differences between successive temperature
measurement points are shown. The light and dark gray
cells indicate the fastest and slowest changes at each of
the temperature ranges. In the environment, the time
take for temperature to moves from a temperature mea-
surement point to another is (60[min]×12[hour])/19 =
37.89[min]. In the right side of Table 2, the maximum
rate difference is calculated by subtracting the values
in the light gray cells by those in the dark gray. Then,
they are divided by 37.89[min] and we get the maxi-
mum rate differences per minute, which are all below
0.075[ppm]; the protocol parameters meet the applica-

Table 2: Differences in relative clock rate be-
tween successive measurement points of temper-
ature.

temp range clock 0 clock 1 clock 2 clock 3 clock 4 max diff per min
[◦C] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm]

85 to 80 2.08 1.40 2.00 0.61 2.12 1.51 0.040
80 to 75 1.85 1.00 1.62 1.15 1.73 0.85 0.022
75 to 70 0.57 1.73 1.40 1.09 0.58 1.16 0.031
70 to 65 0.60 1.15 1.39 0.19 0.41 1.20 0.032
-65 to 60 -0.12 -0.26 0.92 -0.14 0.07 1.18 0.031
-60 to 55 -0.11 -0.40 0.08 -0.51 -0.51 0.59 0.016
-55 to 50 -0.38 -0.37 -0.47 -0.67 -0.83 0.46 0.012
-50 to 45 -0.55 -1.07 -0.94 -0.84 -1.22 0.67 0.018
-45 to 40 -0.63 -1.34 -0.79 -1.30 -1.23 0.71 0.019
-40 to 35 -0.70 -1.16 -1.11 -1.05 -0.94 0.46 0.012
-35 to 30 -0.98 -1.23 -1.49 -1.29 -1.37 0.51 0.013
-30 to 25 -1.10 -1.43 -1.89 -1.49 -1.68 0.79 0.021
-25 to 20 -0.98 -0.96 -1.72 -1.34 -1.27 0.76 0.020
-20 to 15 -1.34 -1.25 -1.40 -1.33 -1.38 0.15 0.004
-15 to 10 -0.45 -1.16 -1.24 -1.25 -1.16 0.80 0.021
-10 to 5 -0.50 -1.13 -0.91 -1.04 -0.69 0.63 0.017
-5 to 0 -0.50 -0.55 -0.86 -0.49 -0.31 0.55 0.015
-0 to -5 -0.31 -0.16 -0.20 -0.04 -0.04 0.27 0.007
-5 to -10 -0.24 0.18 -0.06 -0.19 -0.11 0.42 0.011

tion requirement.

5. DISCUSSION
In this paper, we verify the protocol parameters iden-

tified by the statistical method using the data on the
clock rate deviation as shown in Table 1. We fortu-
nately got the data from an IEEE 802.11 network ven-
dor, but it is not the case; the rate(frequency) stability
of the clocks is not usually described on their specifica-
tions. A typical specification of a clock describes only
the upper bound of the clock rate deviation, which only
ensures it does not go apart from the true clock faster
than the given clock rate. It is useful for protocols, such
as TPSN, because they rely directly on the clock rates.
However, when we consider protocols that use relative
clock rate, which is r′s in a clock relation, it is not so im-
portant because the deviation of the two clock rates can
be compensated. As the more protocols adopt the rel-
ative clock rate, the specification of clock rate stability
will be more helpful. The stability on other conditions,
such as atmosphere pressure and voltage, will be also
helpful to extend the verification method.

6. CONCLUSION
In this paper, we propose methods that identify and

verify appropriate parameters of clock synchronization
protocols for given synchronization accuracy and envi-
ronment. Our methods help implementors of IoT sys-
tems meet synchronization accuracy required by appli-
cations as efficiently as possible. It also verifies the pa-
rameters assuming some clock characteristics and envi-
ronment where the applications are deployed. Although
the applicability of the verification is currently limited,

we believe we can improve it as environments are de-
fined clearly and more detailed rate characteristics is
included in the clock specifications.

7. ADDITIONAL AUTHORS

8. REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito. The internet

of things: A survey. Computer Networks: The
International Journal of Computer and
Telecommunications Networking,
54(15):2787–2805, October 2010.

[2] J. Elson, L. Girod, and D. Estrin. Fine-grained
network time synchronization using reference
broadcasts. In The 5th Symposium on Operating
Systems Design and Implementation, pages
147–163, December 2002.

[3] S. Ganeriwal, R. Kumar, and M. B. Srivastava.
Timing-sync protocol for sensor networks. In The
First ACM Conference on Embedded Networked
Sensor Systems(SenSys), pages 138–149,
November 2003.

[4] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi.
The flooding time synchronization protocol. In
The 2nd International Conference on Embedded
Networked Sensor Systems(SenSys), pages 39–49,
November 2004.

[5] G. Simon, M. Maróti, A. Lédeczi, G. Balogh,
B. Kusy, A. Nádas, G. Pap, J. Sallai, and
D. Frampton. Sensor network-based countersniper
system. In The 2nd International Conference on
Embedded Networked Sensor Systems(SenSys),
pages 1–12, November 2004.

[6] Y.-C. Cheng, J. Bellardo, and P. Bënko. Jigsaw:
Solving the puzzle of enterprise 802.11 analysis. In
the 2006 conference on Applications, technologies,
architectures, and protocols for computer
communications(SIGCOMM), pages 39–50,
October 2006.

[7] N. Ahmed, U. Ismail, and K. Papagiannaki.
Online estimation of rf interference. In the 2008
ACM CoNEXT Conference, December 2008.

[8] W. Ye, J. Heidemann, and D. Estrin. An
energy-efficient mac protocol for wireless sensor
networks. In The Conference on Computer
Communications(INFOCOM), pages 1567–1576,
June 2002.

[9] C. Lenzen, P. Sommer, and R. Wattenhofer.
Optimal clock synchronization in networks. In
The 7th International Conference on Embedded
Networked Sensor Systems(SenSys), pages
225–238, Novemnber 2009.

[10] D. Veitch, S. Babu, and A. Pàsztor. Robust
synchronization of software clocks across the
internet. In the 4th ACM SIGCOMM conference

on Internet measurement(IMC), pages 219–232,
October 2004.

[11] B. Sundararaman, U. Buy, and A. D.
Kshemkalyani. Clock synchronization for wireless
sensor networks: A survey. Ad Hoc Networks,
3(3):281–323, May 2005.

