
Great East Japan Earthquake
Viewed from a URL Shortener

Takeru Inoue
JST ERATO Minato Discrete

Structure Manipulation
System Project

North 14 West 9, Sapporo
060–0814 Japan

takeru.inoue@ieee.org

Fujio Toriumi
Nagoya University

Furo-cho, Chikusa-ku, Nagoya
464–8601, Japan

tori@is.nagoya-u.ac.jp

Yasuyuki Shirai
JST ERATO Minato Discrete
Structure Manipulation

System Project
North 14 West 9, Sapporo

060–0814 Japan
shirai@erato.ist.hokudai.ac.jp

Shin-ichi Minato
Hokkaido University

North 14 West 9, Sapporo
060–0814 Japan

minato@ist.hokudai.ac.jp

ABSTRACT
On March 11th 2011, a great earthquake and tsunami hit
eastern Japan. After that, several web sites, especially those
providing helpful disaster-related information, were over-
loaded due to flash crowds caused by Twitter users. In order
to mitigate the flash crowds, we develop a new URL short-
ener that redirects Twitter users to a CDN instead of original
sites, since Twitter users rely on URL shorteners like bit.ly
to shorten long URLs. In this paper, we describe our expe-
rience of developing and operating the URL shortener in the
aftermath of the giant earthquake. Since the flash crowds
were a serious problem in an emergency, we had to develop
it as quickly as possible with a spirit of so-called agile soft-
ware development. We then explain our HTTP request log
collected at the URL shortener (it is now available online).
To investigate the cause of flash crowds, the log is examined
with tweets (Twitter messages) provided by another research
project; this collaboration is realized by the encouragement
of the workshop committee. We hope our experience will be
helpful in tackling future disasters.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: Gen-
eral; H.3.5 [Information Storage and Retrieval]:
Online Information Services, Web Based Services

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SWID 2011, December 6, 2011, Tokyo, Japan.
Copyright 2011 ACM 978-1-4503-1044-4/11/0012 ...$10.00.

General Terms
Experimentation, Measurement

Keywords
flash crowd, URL shortener, Twitter, CDN, disaster,
Great East Japan Earthquake

1. INTRODUCTION
After the Great East Japan Earthquake, several web

sites providing disaster-related information failed re-
peatedly, due to flash crowds caused by Twitter users.
Though some sites increased their capacity with cloud
technologies or distributed their loads among CDNs, it
is difficult for most sites to react quickly in the after-
math of an earthquake (some site administrators might
be stuck in shelters themselves). For flash crowd miti-
gation, we drop a tweet that suggested to replace URLs
in a tweet with those of CoralCDN, a free content distri-
bution network [16]. In the chaos following a disaster,
however, it could not be expected that people would
stay cool enough to replace URLs before posting mes-
sages.

In order to mitigate the Twitter flash crowds, we
gave attention to URL shorteners, which are often used
among Twitter users to offset the strict limit on mes-
sage length. Our basic idea is that URL shorteners
have a potential to divert flash crowds to CoralCDN
from the original site. Moreover, the use of URL short-
eners is transparent to the Twitter user, and so manual
replacement of URLs is not needed.

We began to develop a new URL shortener on March
13th, just two days after the earthquake, with a couple
of energetic collaborators (shown in the acknowledge-

Tokyo

Epicenter

Fukushima Daiichi
nuke plant

Figure 1: Map of Japan showing the epicenter of
the earthquake and the Fukushima Daiichi nu-
clear power plant.

ment). Since the URL shortener should be launched as
early as possible, we implemented its features in an in-
cremental manner. Our incremental approach in the de-
velopment worked very well, and we could deploy a pro-
totype in the next day. Our URL shortener was named
d.x0.to in the prototype, and was renamed rcdn.info in
the stable version. In this paper, we describe our devel-
opment history in detail.

This rapid development also allowed us to collect the
HTTP request log in the emergency at the URL short-
ener; it is now publicly available online [7]. The dataset
is not that large, but we believe that its information
is extremely valuable in capturing user behavior in an
emergency. In this paper, we see the dataset from some
aspects, and examine it with tweets in terms of flash
crowds1.

The rest of this paper is organized as follows. Section
2 reviews the Great East Japan Earthquake, URL short-
eners, and CoralCDN. Section 3 overviews our URL
shortener. Section 4 describes our development history,
and Section 5 explains the public dataset. In Section
6, we examine the dataset with tweets and discuss flash
crowds. Finally, Section 7 concludes this paper.

Along the spirit of the workshop, we would like to
focus on sharing our experience including development
history as well as interesting dataset, and details of the
system design and log analysis will be discussed at some
other place.

2. BACKGROUND

2.1 Great East Japan Earthquake
A great earthquake of magnitude 9.0 occurred off the

eastern coast of Japan (Fig. 1), at 14:46 JST on March
1The tweets were collected by another research project [18],
but we have a chance of collaboration with the project
thanks to the programming committee of this workshop.

11th 2011. It was the most powerful known earthquake
to have hit Japan, and one of the five most powerful
earthquakes in the world since modern record-keeping
began in 1900. The earthquake triggered extremely
destructive tsunami waves along the eastern coast of
Japan. In addition to the significant loss of life and
destruction of the infrastructure, the tsunami caused
a number of nuclear accidents at the Fukushima Dai-
ichi nuclear power plant; several hydrogen explosions
at the reactors scattered low level radioactive materi-
als around the local area. The nuclear incidents greatly
disturbed people living in a wide area that included
Tokyo. They rushed onto the web searching for helpful
information and this public action formed flash crowds.

2.2 URL Shorteners
The first URL shortener, “Make A Shorter Link”, was

launched in 2001 to eliminate the frustration of copy-
ing very long URLs [10]. Currently, URL shorteners
are mainly used by short messaging services like Twit-
ter, which severely limit the number of characters in a
message. A URL shortener, which usually has a short
domain name, generates a unique alphanumeric key for
each URL. The domain name and unique key form a
short URL like http://bit.ly/v1Anp, which redirects
visitors to the original URL. A substantial amount of
web traffic currently goes through URL shorteners. One
report indicated that short URLs on bit.ly, the largest
URL shortener, were accessed 2.1 billion times in Novem-
ber 2009 [3].

Figure 2 shows an example of URL shorteners, which
includes shortening a long (original) URL and expand-
ing a short URL.

1. Shortening original URL. A client (a smart
phone in the left-hand side in the figure) makes
an HTTP request for shortening a long URL (e.g.,
http://example.com/path). Upon receiving the
request, the URL shortener generates a unique key
(e.g., v1Anp) for the URL, and stores the key with
the original URL in its database. The URL short-
ener, then, responds with the short URL (e.g.,
http://bit.ly/v1Anp).

2. Spreading URL. The short URL is spread among
Twitter users by retweeting.

3. Expanding short URL. Clicking this short URL,
a client makes an HTTP request for the short
URL. After receiving the request, the URL short-
ener retrieves the associated URL from its database.
The shortener, then, returns a response with the
original URL.

4. Causing a flash crowd. Finally, the client is
redirected to the original URL. Since retweeting
allows users to quickly spread their favorite tweets,

URL shortener
(e.g., bit.ly)

2. Spread by Twitter (retweets)

4. Flash crowd!

3. Expansion: redirected
 to the original URL 1. Shortening: short URL published

http://bit.ly/v1Anp

http://example.com/path

http://bit.ly/v1Anp

http://bit.ly/v1Anp

http://example.com/path

v1Anp http://example.com/path

Database

Figure 2: An example of shortening an original URL and expanding a short URL at a URL shortener.

many users jump on the site in a short period
of time; this is a mechanism that causes a flash
crowd.

The use of URL shorteners is transparent to Twit-
ter users, because Twitter clients retrieve a short URL
via APIs in the background and the original URL is
automatically replaced with the short one. URL short-
eners are usually open service; users are allowed to use
them without prior registration and authorization. This
openness can trigger malicious use.

2.3 CoralCDN
CoralCDN is a research network developed by Michael

Freedman in 2004 [16]. It was designed to mitigate flash
crowds; for example, CoralCDN distributed large quan-
tities of amateur videos of the Indian Ocean tsunami in
2004. CoralCDN is fully open and requires no prior reg-
istration or authorization. It can be used just by adding
.nyud.net to the domain name in the original URL,
e.g., http://example.com/path → http://example.
com.nyud.net/path. URLs including .nyud.net are
called “Coralized URLs”. CoralCDN can be used eas-
ily, but its use is not transparent to users since the
replacement of URLs must be done manually.

CoralCDN is deployed on PlanetLab [13] and typi-
cally runs on 300–400 servers, spread over 100–200 sites
worldwide [15]. It has sufficient capacity to handle 40–
50 million requests per day. CoralCDN consists of DNS
name servers and proxy servers; DNS servers maintain
“A” records for .nyud.net and the proxy servers keep
replicas of the original pages. Each replica is mapped to
several proxy servers by Sloppy DHT technology [14],
but the replica can be duplicated on other proxies de-
pending on popularity. Replicas are updated after the

expiry time, which is specified by the response header
given in retrieving the original page. They are kept
for at least five minutes, even if No-Cache directives are
set in the response, and are removed within twenty-four
hours at most.

3. SYSTEM OVERVIEW
This section overviews our URL shortener. We first

show the usage in Section 3.1. Section 3.2 describes
procedures of shortening and expanding.

3.1 Usage
We briefly describe the usage of our URL shortener

here. The APIs shown in Table 1 are designed following
bit.ly APIs [2].

Shortening original URL. We provide three ways to
shorten a long URL.

• API. A Twitter client sends a URL to the “shorten
API” in Table 1, and our URL shortener returns
a short URL in a specified format. For example, is-
suing a request like /api/shorten?longUrl=http:
//example.com/path&format=text, and you will
get a response of single line body like http://rcdn.
info/EXnXN5.

• HTML form. A user submits a URL by the form
on the top page (Fig. 3) 2, and the URL shortener
then returns with a short URL.

• Bookmarklet. A user clicks the bookmarklet of
2We offer only Japanese pages, because very few people
speak other languages in Japan and they are unlikely to
cause flash crowds.

Table 1: APIs
Operation URL
Shorten /api/shorten?longUrl={originalURL}&format={json|xml|text}
Expand /api/expand?shortUrl={shortURL}&format={json|xml|text}

Figure 3: The top page of our URL shortener;
the title says “short URLs and CDN offer ef-
fective information sharing”, the button says
“(make) a short URL to CDN”, and a short de-
scription accompanies the figure.

our URL shortener installed on the browser, which
pops up a short URL of the current page.

Twitter clients that accept any URL shortener, such
as TweetDeck [9] or YoruFukurou [12], provide trans-
parency to users through the APIs, by setting our URL
shortener as a default. The HTML form and the book-
marklet are offered to users of other clients.

Expanding short URL. We provide two ways to ex-
pand a short URL.

• Redirection. A user clicks a short URL, and our
URL shortener then redirects her to CoralCDN.

• API. A Twitter client sends a short URL to the
“expand API” in Table 1, and the URL shortener
returns a Coralized URL without redirection.

3.2 Procedures of Shortening and Expansion
Figure 4 is an example of URL shortening and expan-

sion at our URL shortener.

1. Shortening original URL. Upon receiving a re-
quest for shortening, the URL shortener then searches
its database for the requested URL. If the URL

is not found, the shortener generates a unique key
for the URL by using the SHA1 hash function (the
hash value is incremented if conflicted with exist-
ing keys), and stores a tuple of the unique key,
the original URL, and the Coralized URL, into
the database. Finally, the server returns the short
URL that consists of the domain name and the
unique key.

2. Spreading URL. Ditto.

3. Expanding short URL. Upon receiving a re-
quest for expansion, the URL shortener extracts
the unique key from the short URL, and retrieves
the corresponding tuple from the database. Our
URL shortener then returns the Coralized URL to
mitigate flash crowds.

4. DEVELOPMENT
This section describes our development story. In Sec-

tion 4.1, we begin with what made us develop a new
URL shortener though there are many existing short-
eners. We describe development process of prototype
and stable version of our URL shortener in Sections 4.2
and 4.3, respectively. Section 4.4 discusses our develop-
ment strategy that worked well in the emergency.

4.1 Beginning
In March 2011, one of the authors, Takeru Inoue,

lived in the Tokyo metropolitan area. He experienced
the great quake there, but he was fortunately not in the
terrible disaster area. On March 13th, he saw several
tweets that said some web sites failed repeatedly, and
then he suggested on Twitter to replace URLs with cor-
responding Coralized URLs. However, in the chaos fol-
lowing a disaster, we could not imagine that people will
stay cool enough to replace URLs before posting mes-
sages. A mutual follower of his, Mr. Yuichi Yoshida or
@sonson twit, dropped an interesting tweet, “shouldn’t
URL shorteners translate original URLs into Coralized
ones?” This tweet drove us to realize such a “Coralizing
URL shortener”. To realize the idea quickly, our first
choice was not to develop it ourselves, but to ask ex-
isting URL shorteners, bit.ly and t.co, to rewrite URLs
with some probability. We had no response unfortu-
nately, maybe because it was weekend or they had no
economic incentive. We also asked Akamai to provide
a new URL shortener coupled with its great CDN, but
no response again.

Our URL shortener
(d.x0.to or rcdn.info)

2. Spread by Twitter (retweets)

3. Expansion: redirected
 to CoralCDN 1. Shortening: short URL published

http://rcdn.info/EXnXN5

http://example.com/path

http://rcdn.info/EXnXN5

http://rcdn.info/EXnXN5

http://example.com.nyud.net/path

CoralCDN

EXnXN5 http://example.com/path http://
example.com.nyud.net/path

Database

Figure 4: An example of shortening an original URL and expanding a short URL in our URL
shortener.

4.2 http://d.x0.to
Finally, we decided to develop a new URL short-

ener. We implemented it on LAMP (Linux, Apache,
MySQL, Perl) stack [17]. LAMP is a software bundle
of free and open-source software. It comprises principal
components to build a general-purpose web application
server. Since common operations are built in the stack,
developers are allowed to easily implement their own
application servers.

We began the development around 13:00 on March
13th, and launched a prototype around 12:00 on March
14th3. The prototype required 541 lines of Perl script
with some HTML pages. The top page was at http://d.
x0.to/top.html (it is now pointing to http://rcdn.
info). The prototype showed that it works pretty well
to divert flash crowds. However, it had a performance
issue; since we had no root privilege on a machine on
which the shortener ran, the prototype was executed
as a CGI program which had to be invoked for every
request.

4.3 http://rcdn.info
In response to our call for a machine with the root

privilege, some hosting companies gave us an offer. We
chose Amazon Web Services (AWS) [1] because of the
kind support. Our URL shortener is now running as a
part of Apache server by mod perl without heavy re-
invocation. Despite lack of experience with AWS, we
could install our system on the machine without major
trouble; Linux ran on an “EC2” virtual machine (mi-
3March 14th was a day off due to the disorder of public
transportation.

cro instance) in Tokyo region, and the domain name was
maintained by a “Route 53” name server. Next, we con-
sidered a cool domain name for our URL shortener; the
name should be short and be reminiscent of “redirect-
ing to CDN”. We named it “rcdn.info” and registered
it with an ICANN accredited registrar [6].

We launched rcdn.info early on March 15th and added
redirecting setting on d.x0.to. The launch was announced
on Twitter around 10:00 on March 15th, “we’ve launched
a new URL shortener, rcdn.info, for mitigating flash
crowds against useful disaster pages”. Our URL short-
ener appeared on several major online media like Yahoo!
Japan [11] and livedoor [5]4 along with other disaster
services supported by AWS; in the article, rcdn.info cov-
ered a large part with a figure.

4.4 Development Strategy
We implemented the URL shortener in an incremen-

tal manner. We first implemented just a few basic fea-
tures, i.e., shortening and expansion. Following user
requests, we also implemented APIs, bookmarklet, and
several techniques to improve the latency; especially,
APIs is a key feature to allow URL shorteners to be
accessed transparently by Twitter client software. Our
incremental approach worked very well, and so we could
deploy it in a short time.

In spite of the rush job, we cared software quality so
as not to confuse our users in an emergency. Moreover,
the incremental development strategy helped us main-
4Yahoo! Japan has been the most popular site in Japan for
more than ten years, and livedoor occupied the 8th Alexa
ranking in Japan as of July, 2011.

tain the quality, since the features could be checked one
by one. During the operation, just a single bug, which
related to URL validation, was reported. It is worth
noting that we implemented common security measures
like SQL injection protection at the beginning.

We did not give priority to detecting malicious URLs,
because CoralCDN maintains a global blacklist of spec-
ified domain names [15]. To improve security level, we
are thinking of introducing Google Safe Browsing [4],
which provides a list of suspected phishing and malware
pages.

5. DATASET
This section describes the HTTP request log, which

will be callsed our dataset hereafter, collected at our
URL shortener. Section 5.1 overviews the dataset. Sec-
tions 5.2 and 5.3 examine the dataset and show users
and topics of the shortener.

5.1 Overview
There were 24,959 HTTP requests at our URL short-

ener from March 15th 2:00 JST to 18th 22:23 JST5.
Each log entry includes date and time, request method,
path name, source IP address (and corresponding do-
main name), user agent, referring page, and so on.

To make the log publicly available, we cleansed the
dataset to help analyses and carefully anonymized it
for privacy preservation as follows. We removed re-
quests other than expansion, e.g., requests for shorten-
ing, the top page, images, style sheets, and so on. We
also removed requests from automated agents, whose
user agent name includes “bot”, “crawler”, “slurp”, or
“AppEngine-Google”, or whose domain name ends with
“amazonaws.com”. Source addresses are replaced with
random integers. No referrer nor no user agent is in-
cluded in the public dataset. Requests for only popular
pages are included (a “popular page” means a page that
had 5 or more expansion requests at our URL short-
ener). After all, the public dataset includes 3,791 re-
quests; it is now publicly available online [7].

The launch announcement was made on the Twitter
account of the author, Takeru Inoue or @takemaru jp,
who had 365 followers at that time. His followers mainly
lived in the Tokyo metropolitan area, but the use of the
URL shortener was not limited to the Tokyo area thanks
to the major online media, as mentioned in Section 4.3.
We confirmed that it was accessed from all prefectures
in Japan.

In the following subsections, we see the public dataset
(with some excluded attributes) from some aspects.

5.2 Users
5The log after March 18th was unfortunately lost due to
mis-configuration.

Table 2: Referring pages
Referer header Counts
No referrer 2,072
twitter.com 943
Twitter clients 149
SNS (e.g., facebook.com) 184
Others 443

0% 20% 40% 60% 80% 100%

(b) Expansion requests

(a) Original URLs

Nuke accidents
Earthquakes
Utility & transportation
Shelters
Disasters in general
Others
Unknown

D
is

as
te

r-
re

la
te

d
pa

ge
s

Figure 5: Topics of top 50 popular URLs at our
URL shortener, and those of expansion requests
for these popular URLs.

We analyze the Referer header, which is excluded
from the public dataset, to identify our users. Ta-
ble 2 shows the referring pages of the expansion re-
quests. More than half of the requests have no refer-
ring page. We regard these “Referer-less” requests as
issued by Twitter clients, since Twitter clients usually
set no Referer header in the request. That is, 83.4 %
of expansion requests were made by Twitter users. So-
cial networking services (SNSs) accounted for a small
part of the requests, because their users do not need to
shorten long URLs. We can say that our URL shortener
was mostly used by Twitter users.

5.3 Topics
During the logging period, 299 unique URLs were

shortened. We manually categorize the top 50 popular
URLs (pages) based on their topics in Fig. 5 (a). We
also categorize the 3,582 expansion requests that were
made for these top 50 URLs in Fig. 5 (b). Since these
requests cover 94.4 % (3,582/3,791) of the dataset, we
can understand user intents by examining just them.

We first discuss Fig. 5 (a). Our purpose in devel-
oping the URL shortener was to mitigate flash crowds
for disaster information, but it was used in a variety
of ways that differed from our original purpose. While
31 pages in the top 50 included disaster information,
17 pages were related to other topics. We could not
retrieve valid content from the two URLs in the “un-
known” category.

As shown in Fig. 5 (b), 85.1 % of requests that were
made for the top 50 were issued for disaster-related
pages. As expected, “nuclear accidents” garnered a high
level of interest, more than half of the requests. This

1

10

100

1 10 100 1000 Tw
ee

ts
 in

cl
ud

in
g

sh
or

t U
R

Ls

Clicks (expansion requests) for
short URLs

Figure 6: Correlation between tweets including
rcdn.info URLs and clicks measured at the URL
shortener.

0 500 1000

5

4

3

2

1

Requests in peak 10 min.
Total requests U

R
Ls

 b
y

to
ta

l r
eq

ue
st

s

Requests per URL

Figure 7: Total and peak requests for the five
popular URLs.

chart shows that our URL shortener was mainly used
to share disaster information.

6. ANALYSIS WITH TWEETS
This section examines our public dataset with tweets

collected in the same period; the tweets were provided
by another research project, as noted in Section 1. The
tweets were collected as follows. We first created a list of
experienced Twitter users who had 200 or more tweets
on March 5th 2011, and then received their tweets from
Twitter streaming API [8]. We had roughly 100 M
tweets during the logging period (we have no means
to estimate the sampling rate). We found 123 tweets
that included short URLs published by rcdn.info.

Figure 6 shows the number of tweets that included
rcdn.info URLs versus the number of clicks (expansion
requests) for the URL. The figure shows a weak but
positive correlation; the number of tweets is propor-
tional to the number of requests raised to the power
of 0.484, with the correlation coefficient of 0.691. We
cannot determine the number of clicks per tweet, since
the sampling rate is unknown. This positive correla-
tion, however, implies that the click counts depends on
tweets; more tweets yield more clicks.

In order to investigate flash crowds, we examine which
tweets increased click counts sharply (Fig. 7). For the

most popular URL, 22.1 % of clicks occurred within ten
minutes after a “big” user tweeted (the user is @DrTomabechi
who had 20 K followers). Similarly, for the second popu-
lar URL, 33.3 % of clicks were made within ten minutes
of a tweet issued by another big user (@kiwipon who
had 100 K followers). We also found such a big user for
the fourth popular URL.

While the number of total clicks depends on the num-
ber of tweets (Fig. 6), click rates, especially flash crowd
phenomenon, is strongly affected by big users (Fig. 7);
big users have a key role in flash crowd mitigation.

7. CONCLUSIONS
This paper describes our experience with a new URL

shortener coupled with CoralCDN in the aftermath of
the Great East Japan Earthquake. The URL short-
ener redirects users to replicas on CoralCDN instead of
original pages, in order to mitigate flash crowds. We be-
gan to develop it in response to frequent server failure
and launched it just a few days after the earthquake.
The interesting dataset was collected during the opera-
tion, and it was examined with tweets. Our dataset is
now publicly available online for further collaboration
to tackle future disasters.

Acknowledgement
We would like to thank Prof. Michael Freedman for de-
veloping an excellent content distribution network. We
also wish to acknowledge energetic support in software
development by Dr. Norihito Yasuda and Mr. Masaaki
Nishino. We would like to thank Dr. Tatsuya Mori for
his valuable advice in the log analysis. We would like
to thank Mr. Yuichi Yoshida for designing the pages
of the shortener. We wish to acknowledge kind support
about Amazon Web Services by Dr. Yasuhiro Araki,
Mrs. Miki Takata, and Mr. Keiichi Okabe. We would
like to thank Mr. Genta Kaneyama for collecting mas-
sive tweets.

8. REFERENCES
[1] Amazon Web Services. http://aws.amazon.com/.
[2] bitly-api. http://code.google.com/p/bitly-api.
[3] Goo.gl challenges bit.ly as king of the short -

NYTimes.com.
http://bits.blogs.nytimes.com/2009/12/14/googl-
challenges-bitly-as-king-of-the-short/.

[4] Google safe browsing API.
http://code.google.com/intl/en/apis/safebrowsing/.

[5] livedoor news.
http://news.livedoor.com/article/detail/
5417888/ (in Japanese).

[6] Onamae.com. http://www.onamae.com/ (in
Japanese).

[7] rcdn.info: Public dataset.
http://rcdn.info/data.html.

[8] Streaming api — twitter developers.
http://dev.twitter.com/docs/streaming-api.

[9] Tweetdeck. http://www.tweetdeck.com/.
[10] We want ’em shorter. — MetaFilter.

http://www.metafilter.com/8916/.
[11] Yahoo! news.

http://headlines.yahoo.co.jp/hl?a=20110316-
00000003-rbb-sci (in
Japanese).

[12] Yorufukurou.
http://sites.google.com/site/yorufukurou/home-
en.

[13] B. Chun, D. Culler, T. Roscoe, A. Bavier,
L. Peterson, M. Wawrzoniak, and M. Bowman.
PlanetLab: an overlay testbed for broad-coverage
services. SIGCOMM Comput. Commun. Rev.,
33:3–12, 2003.

[14] M. Freedman and D. Mazières. Sloppy hashing
and self-organizing clusters. In Peer-to-Peer
Systems II, LNCS, volume 2735, pages 45–55.
Springer, 2003.

[15] M. J. Freedman. Experiences with CoralCDN: a
five-year operational view. In USENIX NSDI,
2010.

[16] M. J. Freedman, E. Freudenthal, and D. Mazières.
Democratizing content publication with coral. In
USENIX NSDI, 2004.

[17] J. Lee and B. Ware. Open source Web
development with LAMP: using Linux, Apache,
MySQL, Perl, and PHP. Addison-Wesley, Dec.
2002.

[18] T. Sakaki, F. Toriumi, and Y. Matsuo.
Correlativity of network traffic and social media
for a massive earthquake. In ACM CoNext Special
Workshop on the Internet and Disasters, 2011.

