
Architecting for Edge Diversity:
Supporting Rich Services Over an Unbundled Transport

Fahad R. Dogar
Microsoft Research, Cambridge

Peter Steenkiste
Carnegie Mellon University

ABSTRACT
The end-to-end nature of today’s transport protocols is in-
creasingly being questioned by the growing heterogeneity of
networks and devices, and the need to support in-network
services. To address these challenges, we present Tapa, a
transport architecture that systematically combines two con-
cepts. First, it unbundles today’s transport such that network
specific functions (e.g., congestion control) are implemented
on a per-segment basis, where a segment spans a part of the
end-to-end path that is homogeneous (e.g., wired Internet
or an access network) while functions that relate to appli-
cation semantics (e.g., data ordering) are still implemented
end-to-end. Second, it has an explicit notion of in-network
services (e.g., caching, opportunistic content retrieval, etc)
that can be supported while maintaining precise end-to-end
application semantics. In this paper, we present the basic
design, implementation and evaluation of Tapa. We also
present diverse case studies that show how Tapa can eas-
ily support opportunistic content retrieval in online social
networks, various mobile and wireless optimizations, and an
in-network energy saving service that improves battery life
of mobile devices.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

Keywords
architecture, transport, services, middleboxes

1. INTRODUCTION
Today’s Internet is much different from the original In-

ternet of the 1970s. Many of these changes have occurred
at the network edge, in the form of diverse Internet access
technologies (e.g., blue-tooth, ultra-wide-band), edge devices
(e.g., cell-phone, PDAs, sensors), applications (e.g., content
sharing, gaming, sensing apps), services supported by the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10–13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

network (e.g., caching, mobile users), and the nature of
network deployments (e.g., unmanaged residential wireless
networks [5], data center networks [6]). Supporting this di-
versity often requires help from the network, which is hard
given the “intelligent end-points, dumb network” principle
underlying the Internet architecture. As a result, ad-hoc
solutions, such as transparent proxies/middleboxes [9, 11],
or CDNs are used; these solutions are complex to manage,
fragile, and often violate one or more architectural principles
of the Internet [24, 15].

As diversity at the edges is only going to increase in the
future, it is critical that we develop architectural mechanisms
– rather than point solutions – to accommodate it in the
Internet architecture. To this end, we introduce Tapa, a
transport architecture that systematically supports rich in-
network services on top of an unbundled transport.

The unbundling process moves several functions out of
today’s end-to-end transport into segments. Segments span
a portion of the end-to-end path that can be considered
homogeneous. Some possible segments include: the “wired
Internet”, a private network owned by an enterprise, or a
wireless mesh network. Each segment provides best effort
data delivery service to the upper layer – functions that
may be required to provide this service (e.g., routing, error
control, congestion control, etc) are internal to the segment
and hidden from higher layers.

On top of segments is the transfer layer, which supports
end-to-end data transfers overs multiple segments, similar
to how IP supports connectivity in today’s Internet. The
transfer service runs on both the end-points and network
elements, called Transfer Access Points (TAPs), that inter-
connect segments. In Tapa, the transfer and higher layers
work at the granularity of ADUs [13] rather than byte streams
or packets. The use of ADUs simplifies the deployment of
in-network services, making it easy to leverage advances in
technology (e.g., cheap in-network storage).

Finally, the session layer implements specific end-to-end
application semantics over the transfer layer. The presence
of the segment layer makes the session layer lightweight, iso-
lating it from the details of specific network technologies thus
making it easier to support heterogeneity in the system. The
introduction of segments, combined with the use of ADUs,
means that it is easier to implement end-to-end protocols
with diverse semantics required by different types of applica-
tions (e.g., fully reliable, streaming applications, etc.) It also
becomes easier to insert services into the end-to-end path,
while maintaining specific semantics between the end-points
and the (possibly third party) network service.

13

Like most architectural proposals, several building blocks
used in Tapa are inspired by prior work, including DTNs [23],
middleboxes [38], proxies for wireless and mobile users [9],
and data/content oriented networking [37] to name a few
(See §6 for a detailed discussion on related work). Our core
contribution lies in reusing their well understood benefits,
modifying them to match our needs, and most importantly,
synthesizing them in a new architecture.

Another important contribution of this paper is to demon-
strate the flexibility of Tapa using three case studies (§4).
In Vigilante, we show how Tapa can be used to efficiently
disseminate content in online social networks, resulting in
improved performance for end users and lower cost for the
provider. In Swift, we leverage Tapa to provide various opti-
mizations for mobile and wireless users, such as multiplexing
multiple interfaces or optimizing data transfer in a mobile
scenario. Finally, Catnap is an in-network traffic shaping ser-
vice that leverages Tapa to provide significant energy savings
to mobile devices.

Finally, as Tapa makes in-network services visible to end-
points, legacy applications need to be rewritten if they want
to make full use of Tapa functionality. While this may prove
to be a stumbling block towards the adoption of Tapa, we
show that this modification effort is manageable. Moreover,
our experiences also show that new segments and services can
easily be deployed inside Tapa. We discuss these experiences
in §5.

2. REQUIREMENTS AND CONCEPTS
We first discuss two key requirements that are important

for a new transport architecture.
1. Accommodating Diverse Networks and Devices

The original ARPANET was designed to inter-connect hetero-
geneous networks and hosts. However, by today’s standards,
they were in fact fairly homogeneous. For example, it was
assumed that links would provide “reasonable” reliability (<
1% loss rate) [12] and that all end-hosts would be powerful
enough to support the full TCP/IP stack. The networks that
make up the Internet now are very diverse, ranging from very
high speed optical backbones, to low speed, unreliable wire-
less networks that have very different properties from wired
links (e.g., higher error rates, variable bandwidth and delay),
causing problems for end-to-end protocols such as TCP [9,
22]. Similarly, devices, such as sensors and mobile nodes,
are highly resource constrained, compared with traditional
endpoints. Dealing with the heterogeneity of devices and
networks affects how we distribute functions across devices.
For example, when applying the end-to-end argument [35],
we can no longer view the communication subsystem as a
single homogeneous module.

2. Accommodating network services Most applica-
tions in today’s Internet benefit from diverse network services,
e.g., web caching, video transcoding, various services pro-
vided by load-balancers inside data center networks, services
for mobile and wireless users, etc [21, 34]. Unfortunately,
inserting services in an end-to-end path is hard in today’s
Internet for two reasons. First, the data plane of existing
protocols (IP and TCP) works with packets and byte streams,
requiring tight coordination between applications and ser-
vices on how to interpret the data (e.g., object size, naming).
Second, and more importantly, TCP’s end-to-end semantics
are very rigid – they do not allow a role for an intermediary
or accommodate different delivery semantics.

Limitations of existing solutions. Today, the above
two requirements are addressed in an ad-hoc manner, bring-
ing more complexity and rigidity into the architecture. For
example, a common way to deal with network heterogeneity
is to use the transparent split proxy approach, with differ-
ent transport regimes/protocols on either side of the proxy
(e.g., I-TCP [9], PEP [11]). Similarly, network services are
typically hidden from the end-points (e.g., transparent web
proxies) or deployed as overlays. This is not ideal, since
there can be poor interactions with other services, like fire-
walls, and sharing services between applications, users and
providers is hard. These hidden, stateful middleboxes also
create new failure modes and make it difficult to support
mobility (e.g., migrating VMs in a data center or clients in a
mobile environment).

On the other hand, a clean solution that accommodates
diverse networks and devices, in addition to supporting in-
network services, can potentially provide substantial benefits
to users, application providers, and network service providers.
As we show in this paper, end users and application providers
can get improved performance with robust communication
semantics. Having visible in-network services can simplify
the job of the ISPs, making it easier to deploy new services,
including having an explicit role as an advertiser. Moreover,
they can also reduce their costs with the use of content centric
features supported by Tapa.

2.1 Key Concepts
We now present the two key concepts that form the basis

of the Tapa architecture and help in meeting the above
requirements.

We unbundle today’s transport to better accommodate
the needs of heterogeneous networks and in-network services.
The unbundling process has both vertical (across layers) and
horizontal (across the network topology) dimensions. As a
first step, we propose decoupling network regions with very
different properties, such that the properties of one region
do not affect the other. For example, adequate in-network
buffering can hide the losses that may be experienced in one
region from the other region. Decoupling facilitates the de-
ployment of customized solutions for each region as solutions
designed for one region need not worry about the properties
of other regions. Decoupling affects modularity of the sys-
tem in the horizontal direction as it requires the network to
support some functions (e.g., buffering). Moreover, nodes
that implement decoupling can be used to insert additional
functions (e.g., data oriented and higher level services) inside
the network.

As a second step, we propose to raise the level of abstrac-
tion that the network provides to the end-to-end layer that
implements specific application semantics (e.g., TCP) as this
may make it easier to “hide” diversity at the lower layers. So
other than the functions that must be implemented with the
help of end-points [35] (i.e., specific application semantics)
all other functions are pushed down, affecting modularity
of the system in the vertical direction. This allows separa-
tion of concerns: the lower half of transport can focus on
network specific challenges (with the help of the network)
while the upper half of transport can focus on the semantics
of applications and higher level services.

The first concept, specifically the notion of decoupling,
leads to our second concept: rich, visible in-network services.
We propose that these services operate at the granularity of

14

App	
Session	

Xfer	

App	
Session	

Xfer	

Internet	
Xfer	

Session	
put/get	 	

Seg.	 Seg.	 Seg.	 Seg.	

Wireless	 Segment	 Wired	 Segment	

TAP	
Possible	 Wireless	 Segments	
Bluetooth	 HOP	

IP	
DCCP*	
IP	

Possible	 Wired	 Segments	
TCP*	
XIA	

TCP*	
IP	 a)	

b)	 a)	 b)	 c)	

Figure 1: Tapa Overview.

ADUs, which can be defined by applications to meet their
needs. For example, an ADU can correspond to a file (e.g.,
Catnap[20]), a chunk within a file (e.g., DOT[37]), or an
MPEG frame in a video transfer. ADUs can be identified
using self-certifying labels i.e., the ADU identifier is a hash
of the content [37]. This enables several data-oriented opti-
mizations, such as opportunistically fetching content from
arbitrary sources. In addition to the identifier, we also as-
sociate hints with an ADU, such as possible sources from
which the ADU can be retrieved etc. As our case studies
show, ADU based services play a central role in enabling ap-
plications to benefit from content centric functionality inside
the network.

3. TAPA
We introduce Tapa, or TAP-based Architecture, which

synthesizes the above two concepts into a coherent archi-
tecture. As a result of unbundling, most of the traditional
transport functions are put inside the segment abstraction.
As segments provide a best effort service to the higher layers
(i.e., they deliver data with high probability, but delivery is
not guaranteed), they appear as Internet-style “links” to the
higher layers.

Figure 1 illustrates a typical end-to-end data transfer in
Tapa consisting of two segments (wired and wireless). Similar
to how IP supports connectivity in today’s Internet, Tapa’s
transfer layer supports end-to-end transfer of application
data units (ADUs) [13] over multiple segments. It supports
two modes of ADU transfers: a push mode, which is useful
for interactive applications (e.g., gaming, video conferenc-
ing, etc) and a pull mode, which is useful for data oriented
applications as it allows an ADU to be retrieved from po-
tentially any source based on the ADU identifier. Finally,
a light weight session layer implements specific application
semantics related to four functions: reliability, data ordering,
confidentiality, and data integrity. It can support traditional
semantics (e.g., end-to-end reliability, data ordering, etc) or
richer semantics involving intermediate services (e.g., delega-
tion).

Figure 2 shows how the transport functions that are cur-
rently bundled in TCP are distributed across the Tapa lay-
ers. The end-to-end application semantics and connection
management function are placed in the session layer. Some
connection management is also needed as part of the segment
layer. The flow, error, and congestion control functions are
distributed over the segment and the session layers. In the
session layer, these functions are lightweight because they
only have to operate over a limited number of segments/hops.

App

App sem
Conn Mgt

Cong. Ctl
Flow Ctl
Err Ctl

Fwd
Routing

Link

App

ADU Mgt
Cong. Ctl
Flow Ctl
Err Ctl
Fwd

Routing

Link

App sem
Conn Mgt
Cc, ec, fc

Fwd
Service Ins.

End-to-end

Per segment

Pa
ck

et
s

Pa
ck

et
s

AD
U

s

Segment

Transfer

Session

TCP/IP Stack Tapa Stack

IP

TCP

Figure 2: Comparison of protocol stacks.

	 Session	

TAP	

Decoupling

Segment	 Segment	 Segment	 Segment	

	 Xfer	

App	

Traffic
Shaping

Opportunistic
Caching

Delegation
Controlled

Transparency

Transcoding

API	 (Control	 over	
session	 +	 xfer	
seman:cs)	

API	 (Control	 over	
xfer	 seman:cs)	

	 Session	

	 Xfer	

App	

Src	 Dst	

Xfer

Session

Figure 3: Different types of services in Tapa.

In the segment layer, the functions can be very lightweight
(e.g., a point-point wireless link), or complex (i.e. an Internet
segment). For Internet segments, this means that we can
view Tapa as an overlay, as the segment layer can be broken
up into an ADU management layer on top of a TCP (or
TCP-like) and IP layers, as suggested by the dashed lines.
For single-link segments, Tapa can be viewed as running
native, as IP or transport functions are not required.

We now elaborate on the role of services, followed by a
discussion on routing and addressing. Finally we describe
each of the three layers of Tapa in detail. To illustrate the
key functionality, we make use of a running example where
a mobile and wireless user, Alice, uses Tapa to communicate
with a fixed host over the Internet (similar to Figure 1).

3.1 Services
As shown in Figure 3, Tapa can support various types

of services at the transfer and higher levels of the system.
Transfer services enhance the data transfer function without
affecting the typical end-to-end application semantics. The
most basic example is a decoupling service that isolates one
segment from the other by providing adequate buffering at
the TAP. We can also deploy various data oriented services
such as application independent caching at TAPs, which can
help mask disruptions for mobile users (Swift, §4.2) or by
acting as a storage service for content distribution (Vigilante,
§4.1). Similarly, we can also have a traffic shaping service
that can allow end-devices to sleep by temporarily buffering
data (Catnap, §4.3).

15

Session-level services support end-to-end communication
semantics that may be requested by the application. Ex-
amples include helping with error recovery for reliable data
transfer semantics (i.e., delegation), or an in-network service
inspecting encrypted data for performance or policy reasons
(i.e., a form of controlled transparency [14]). We provide
examples of several such services in §3.5. Finally, application-
level services can provide application specific functionality,
such as transcoding.

3.2 Routing and Addressing
Today’s transport protocols (e.g., TCP) use IP addresses

to identify communicating end-points and it is the respon-
sibility of the underlying network layer (i.e., IP) to provide
reachability to these identifiers. As IP identifiers are tied to
a specific location/address, their use as identifiers makes it
difficult for transport protocols to deal with mobility.

For Tapa, mobility is a common use-case, so instead of
relying on ad-hoc solutions, the architecture should handle
mobility in a graceful fasion. Consequently, similar to many
other achitectural proposals [36, 38], Tapa requires that
identifiers should be separate from locators, so even if an
end-point moves, its identifier remains the same.

Similar to several recent proposals [8, 26], Tapa uses self-
certifying flat labels as identifiers, although other options
that also distinguish between locators and identifers can also
be considered [27]. A self-certifying label corresponding to a
host corresponds to the hash of the public key of the host.
We can also have similar certifying labels to identify services
and content [26]. The use of self-certifying identifers provides
several desirable security properties, such as host/service
authentication and data integrity verification [8, 26].

Host/Content identifiers are provided by the application
and passed down to the segment protocol which is responsible
for routing on these identifers. While routing on flat-labels is
still a challenging problem, we rely on prior and ongoing work
that aims to provide practical solutions to this problem [8,
26]. For example, XIA adds a topological identifier (i.e.,
identifer of the autonomous domain) to the host identifier to
form the host address.

A related question is the role of TAPs in routing. We
note that TAPs are not required for end-to-end reachability
– even without TAPs, applications can still communicate
directly by establishing a direct segment between end-points.
However, we still need a TAP discovery mechanism if we
want to make use of TAPs and the services they offer. While
we leave the design of a generic TAP and service discovery
protocol for future work, we do discuss some point solutions
that we have built as part of the case-studies, and also point
out relevant solutions from prior work. This includes TAP
discovery that uses help from lower layers (e.g., similar to
AP discovery in WiFi) as is the case in Swift (§4.2), making
use of social network information (Vigilante - §4.1), via
service discovery protocols [3], resolution services [38], or
the application providing this information (e.g., as part of
the end-point address, similar to a DAG-based address in
XIA [26]).

3.3 Segment Layer
The segment layer is responsible for transferring ADUs

across a segment, e.g., client - TAP or TAP - server. Seg-
ments can choose the data granularity they use internally
(e.g., frames, bytes, etc.) allowing them to optimize commu-

nication as appropriate. Segment endpoints do not move,
so they can use network-specific locators as addresses. For
example, in the wired Internet IP addresses based on CIDR
may provide the necessary scalability, while MAC addresses
may be more appropriate in wireless networks.

The segment layer must be able to translate the identifiers
corresponding to the TAPs and end-points into “locators”
that can be used to establish the segments; locators may
only have meaning locally within a network, i.e. they do
not have to be globally unique. Higher layers of Tapa use
identifiers and it is the responsibility of the segment layer to
resolve them internally to locators. This can be done using
either a name service (e.g., DNS for wired Internet segments),
or a locally maintained mapping (e.g., MAC addresses for a
bluetooth based segment).

3.3.1 Basic Operations and API
As shown in Table 1, the segment API allows higher lay-

ers to transfer ADUs across a segment. Similar to today’s
Internet, the segment layer supports a push model. Senders
use a send call while receivers register a callback to receive
incoming ADUs.

Recall that the basic motivation behind segments is to
decouple different types of networks in an end-to-end path
and to make them fairly homogeneous, so that higher layers
need not worry about network specific functions. To achieve
this, segments must implement error, flow, and congestion
control as needed. Tapa’s transfer service expects segments
to be reasonably reliable, but segments can use very different
ways for achieving that, e.g. TCP style retransmissions
and ACKs over wired segments versus in-network coding
or opportunistic forwarding and block acknowledgments on
a wireless segment [30, 10]. Segments reassemble ADUs
and deliver them to the transfer layer. In some scenarios,
applications may want to send or receive ADUs piecewise for
performance reasons; we give an example in §4.3.

The benefit of tailoring the congestion control algorithm
to the type of network has similarly been recognized [9, 30].
Some segments may need specialized routing protocols for
delivering data over multiple hops within a segment (e.g.,
wired Internet or mesh network). Some segments (single hop,
point-to-point) may not require routing or congestion control.
The important point to note is that all these mechanisms
are hidden from the transfer and session layers, which focus
on application oriented functions.

Figure 1 shows some possible ways to implement these
functions for wired and wireless segments. On the wired side,
we can use variants of existing transport protocols (e.g., TCP,
DCCP) over different network layers (IP, XIA [26]), while on
the wireless side we can use completely different protocols.
In §5.2, we describe various segment protocols that we use
in the Tapa prototype.

Alice and the segment layer: Alice can use various
segment protocols on the wireless side. If she is connected to
a wireless mesh network, she can use a segment protocol like
HOP [30], which relies on per-hop mechanisms for reliability
and rate control. She can also bypass IP and traditional link
layers, using options as diverse as blue-tooth or wireless USB.
This is a direct benefit of raising the level of abstraction –
not all networks and devices need to implement heavy-weight
functions of TCP/IP (e.g., congestion control) in order to be
part of the Internet.

16

Function Description
Session Layer Interface for Applications

get(ADU-id, hint, src, session + xfer options) Call used to pull an ADU.

put(ADU, dest, session + xfer options) Call used to push/publish an ADU.

Transfer Layer Interface for Session/Higher Layers
get(ADU-id, hint, src, xfer options) Call used to pull an ADU.

put(ADU, dest, xfer options) Call used to push/publish an ADU.

register(ID, handler) services/apps registering with the xfer layer

to receive ADUs destined to them.

Segment Layer Interface for Higher Layers
send(ADU) Call used to send the ADU across a segment

register(ID, handler) registering to receive incoming ADUs

Table 1: Interfaces used at different levels of the Tapa system. Identifiers (e.g., src, dst, ADU id, etc,) are
self-certifying labels. Session and xfer options are a list of (type, value) pairs.

3.4 Transfer Layer
The transfer layer is the “inter-segment” layer of Tapa

and its role is somewhat similar to that of IP in today’s
Internet: providing a best effort data delivery service over
multi-hop paths. There are however some differences in both
the control and data plane. For example, Internet routing
needs to establish routes in large scale but fairly stable
networks; in contrast, the Tapa transfer layer establishes
short (e.g., two-segment) paths but paths can be very volatile
due to the dynamics of the edge network (e.g., mobility and
wireless dynamics, volatility in data center networks). The
introduction of a transfer layer allows for a separation of
concerns. The segment layer can focus on the challenges
associated with specific networks (e.g., scalability within core
Internet) while the transfer layer can focus on dealing with
higher level challenges (e.g. selection of segments based on
content or service availability, or mobility).

3.4.1 Basic Operations and API
The service supported by the transfer layer is the transfer

of ADUs based on a push/pull model as described below.
The push and pull modes of the transfer layer are used by the
higher layers through the put and get interfaces, respectively.
The same API is used by both the end-points as well as by
services running at the TAPs. As shown in Table 1, the API
takes in an ADU, which is mandatory, hint, src/dst, and
xfer options, which is an optional list of (type, value) pairs
that are used to provide more control to higher layers so that
they can choose different transfer semantics, if they desire so.
The semantics are optional – if they are not specified, default
transfer semantics are used. We first describe the working of
the two calls with default semantics and then elaborate on
optional semantics.

Pull Mode: The get interface allows higher layers to
retrieve an ADU based on its identifier, irrespective of which
source or transfer mechanism (e.g., choice of segment or
interface) is used to retrieve it. The flexibility means that
the lower layers are free to choose any source, including local
storage,

Applications can aid this decision by providing hints re-
garding hosts who may have the data (e.g., friends in a social
network - see Vigilante (§4.1), or a previously used TAP
in case of a mobile user – see Swift (§4.2)). We do require
the higher layer to specify a source (src) that is guaranteed
to have the ADU (e.g., a server), so hints are completely
optional and are just intended as an optimization. The com-

bined use of a hint and src is somewhat similar to XIA’s use
of intent and fallback [26]: hints serve as optimization, but
if they don’t work (or are not provided) then the source is
used to retrieve data. This ensures that data is retrieved
even if the network cannot “route” on the ADU identifiers
or the hints fail. Having the src information, in addition
to the content indentifer, is a pragmatic decision given that
scalable Internet-scale routing on flat content identifiers is
still an open problem.

To inititate an ADU transfer, the transfer layer establishes
an end-to-end path between the client and the server passing
through the TAP(s). The underlying segment protocol can
create a new segment or reuse an existing one, if one already
exists. The ADU request is sent to the other end-point and
data is returned as a result. In the typical scenario, the data
plane of the transfer layer is relatively straightforward: TAPs
read data from one-segment and write to the other, ensuring
that adequate buffering is provided.

We can also have scenarios where segments may have
high volatility or TAPs use more sophisticated services that
change the typical behavior of the data plane (e.g., Catnap
- §4.3). In such scenarios, suitable buffering at the TAP
becomes critical for end-to-end performance. Our experience
so far has been limited to various kinds of wireless segments
and the challenges they pose for provisioning buffer space
at the TAPs. In our case studies, we discuss how additional
buffering at the TAP is used in various scenarios.

Finally, the get call returns the actual ADU or a failure
notification if the ADU cannot be retrieved. Note that
because the higher layers are letting the transfer layer make
several transfer decisions, they are likely to observe fewer
failures compared to using today’s socket API because the
transfer layer has more options for failure recovery.

Push Mode: The put interface is used to publish an
ADU to a specific destination (dest), which could be a storage
service (local or remote) or any other service running on a
host. Applications can use this API to publish their data once
and a generic storage/transfer service can later take care of
serving it to future client requests (similar to DOT [37]). This
enables temporal decoupling between the publisher and the
consumer, so both of them need not be present at the same
time. The push mode sends an ADU to a given destination,
similar to how IP datagrams are pushed from a source to
a destination. Its overhead is also comparable to that of
sending UDP datagrams in today’s Internet (see Figure 5.3).

17

A key reason for supporting a push mode is to facilitate
real-time applications that cannot benefit from data oriented
optimizations. Unlike the pull mode, which requires an
extra round trip time for the ADU request, the push mode
directly sends an ADU to the intended recipient. Even though
Tapa’s data oriented optimizations are not applicable in this
mode, there are still benefits to using this mode compared
to using today’s protocols. For example, using appropriate
segment protocols, instead of a single end-to-end transport,
can provide better performance for real-time applications.
We expect the push mode to be used in scenarios where the
pull mode is not applicable, such as transferring dynamic
data, publishing content or exchanging control messages.
The protocol followed in the push mode works similar to the
pull mode except that no ADU request precedes the data
ADU.

Different Semantics: Higher layers can choose different
transfer semantics by extending the basic get and put calls
with (type, value) options. Some types that are relevant
for the transfer layer include: TAP, service, and segment.
Higher layer could use a specific TAP for its communication
(e.g., an enterprise TAP for policy reasons) or it can specify
a specific type of segment that should be used. For example,
a “slow” segment could be used for background transfer of
data that is not immediately required, thereby reducing the
load on the server.

Alice and the transfer layer: Tapa’s transfer layer can
help a mobile user like Alice in several ways. First, it can
improve performance of data transfers through caching and
intelligent use of segments. Consider an example where Alice
is downloading a large file from a slow server. Initially she is
using her home TAP but in the middle of the download she
moves to Starbucks. Her home TAP will continue to download
ADUs from the server and cache them in its storage; after
she moves to Starbucks, the transfer layer will re-establish a
segment to her home TAP via the Starbucks TAP and retrieve
the missing ADU (by re-issuing requests for the missing ADU
ids). This will be a much faster option compared to going all
the way to the slow server to retrieve the missing ADUs. Note
that the get call is used for this purpose and the Starbucks
TAP information is provided as a hint.

Second, ADUs and segments simplify the use of wireless
optimizations that allow multiplexing of multiple interfaces
or access points (TAPs in this case). Such optimizations
are not only difficult to implement in today’s Internet, but
are also tied to a specific transport protocol (e.g., TCP) or
specific underlying technology (e.g., WiFi) [28]. In Tapa,
multiplexing of segments is naturally supported: the transfer
layer decides an appropriate segment for each ADU, so for
the same application, it can fetch some ADUs using one
particular segment while other ADUs can be retrieved using
a different segment.

Third, TAPs can pre-establish long-lived segments with
popular websites or frequently accessed WAN locations, pro-
viding Alice low latency access for interactive communication.
Alice will only establish a segment with her local TAP, which
will be close-by in most cases, and the TAP will use a pre-
existing segment to communicate with the other end-point,
gaining vital latency savings on the long RTT part of the
end-to-end path. Such techniques are already used by CDN
providers to accelerate dynamic website access [2]; with Tapa,
such techniques can be used at users’ TAPs.

3.4.2 Resource Management
Although congestion control is implemented inside seg-

ments, the transfer layer also needs to ensure that TAP
buffers do not overflow. We include this broadly under re-
source management, which includes congestion control across
a multi-segment path as well as protection against malicious
sources (e.g., DoS attacks)

Several Tapa features support a holistic approach towards
resource management, enabling TAPs to consider a variety of
techniques for congestion prevention, avoidance, and control.
For example, Tapa’s use of ADU hints, which include the
length of the ADU, provides information to the TAPs about
future traffic load, which can be used to do admission control.
TAPs strategic location at network edges means that they
can also coordinate with end-points to install filters against
potential DDoS attacks, thereby acting as a first line of
defense [31]. The limited number of segments in an end-
to-end path means that it is easier for TAPs to coordinate
amongst each other in order to avoid congested segments.
For example, many techniques that are difficult to use in
Internet settings, such as hop-by-hop flow control based on
back-pressure (implemented in our prototype) or end-to-
end congestion control based on feedback from the network,
become feasible in Tapa.

3.5 Session Layer
Similar to IP in today’s Internet, the segment and transfer

layers offer a best effort service to the transfer and ses-
sion layer, respectively. This means that they deliver data
with high probability, but delivery is not guaranteed. The
motivation for the best effort nature of the segment and
transfer layers is the same as for IP [35], i.e., full network-
level reliability is expensive and not always needed. So the
reliability provided by the segment layer is purely a perfor-
mance enchancement, similar to how, in today’s Internet, we
have reliability at the link layer (e.g., 802.11) despite having
TCP’s end-to-end reliability. This follows the end-to-end
arguments [35], as lower layers of the system may have relia-
bility for performance reasons, but we still need end-to-end
reliability for correctness/robustness reasons.

Tapa’s session layer provides reliability and other applica-
tion semantics (e.g., ordering, confidentiality, data integrity,
etc) to the end-points, albeit over a very short path consist-
ing of a small number of segments. An important thing to
note is that we can easily implement support for different
semantics (e.g., partial reliability or out-of-order delivery)
as the session layer need not re-implement network specific
functions, like congestion control, which are coupled with
application semantics in TCP. Another important considera-
tion is that TAPs are visible to the end-points, opening the
door for richer semantics that explicitly capture the role of
services running on the TAP.

3.5.1 Basic Operations and API
The session API is similar to the transfer API; the only

difference is that it takes additional options that are relevant
to the session layer semantics. In our design, this includes
semantics associated with the four functions discussed earlier:
reliability, confidentiality, ordering, and data integrity. If
applications do not specify any additional option then the
default semantics associated with these functions are chosen.
We now describe a specific session protocol that supports
semantics associated with these four functions. We briefly

18

present the traditional semantics as well as the new semantics
that emerge with the use of in-network services.

Reliability: Applications can choose a fully reliable data
delivery (default) or a best effort delivery service. We focus
on the reliable delivery case because it is by far the most
common use case. For a reliable service, the session layer
holds on to the ADU until it is acknowledged by the other end-
point. If required, the session layer has to undertake recovery
in the face of different kinds of failures (e.g., TAP failure).
These are the traditional end-to-end reliability semantics
that are offered in today’s Internet as well. However, because
we also have reliability within segments, Tapa’s session layer
is likely to experience fewer failures compared to today’s
transport (TCP) and such instances are mostly limited to
TAP failures. In §5.3.2 we quantify the overhead of such
end-to-end recovery, showing that we can efficiently recover
from TAP failures.

Tapa can also accommodate different reliability semantics
where an end-point can delegate data transfer responsibility
to an intermediate storage service. So even if the sender
disconnects after completing the transfer to the intermediary,
the transfer is not affected. In such scenarios, applications
may be interested in differentiating between when the data
is received by the TAP compared to when it is received by
the end-points. Of course, this information can be used by
the user or application in a number of ways. For example,
the application may discard the data if it is received by
the server but may like to hold on to the data if it is only
received by the intermediary. Our implementation provides
allows applications to choose the desired semantics from
these different options.

Confidentiality: Tapa can make use of existing security
protocols (e.g., SSL/TLS) to provide end-to-end confidential-
ity and data integrity. Moreover, it opens up new semantics
that are not supported in today’s Internet. For example,
Tapa’s use of ADUs allows applications more flexibility in
implementing their confidentiality requirements as they can
make fine-grained decisions on whether some data needs to
be encrypted or not. The main benefit of Tapa, however,
comes with the use of in-network services combined with the
confidentiality semantics, allowing them to selectively look at
certain data with the explicit permission of the application.
This is important for both policy and performance reasons.
For example, some intermediaries, like an enterprise or gov-
ernment, may require looking at certain types of data. We
allow applications to explicitly state whether certain ADUs
can be seen by intermediaries or not providing a form of “con-
trolled transparency” [14]. So applications can hide ADUs
that contain sensitive information, like credit card number
or social security number, while allowing the company TAP
to look at other data ADUs.

Similarly, the use of an intermediary with the confidential-
ity semantics can also result in performance benefits. One
advantage is that it can reduce the burden of maintaining
SSL connections for servers by shifting it to third party ser-
vices running at TAPs. Specifically, the intermediary can
maintain a single encrypted connection with the server and
multiple clients can have their individual encrypted connec-
tions with the intermediary. Note that as the intermediary
service could be provided by a third-party (e.g., an ISP),
the semantics of this communication are very different from
those of end-to-end encryption as the application/user is

also trusting a third party and explicitly involving it in the
confidentiality semantics.

Another advantage is that it can improve the effectiveness
of redundancy elimination techniques, which are ineffective
if the traffic is encrypted [7]. Specifically, applications/user
can explicitly involve a trusted intermediary (i.e., ISP) in
implementing confidentiality, such that the intermediary can
decrypt the data as it enters its network, use RE techniques
inside its network, and then encrypt the data again before
sending it to the destination/next ISP. Of course, users
will only choose weaker confidentiality if ISPs give them
additional incentives to do so.

Data Integrity: In addition to verifying end-to-end data
integrity, we also allow intermediaries to be involved in these
semantics as there are scenarios where there could be legiti-
mate reasons why an intermediary may change the bit-stream
(e.g., transcoding, virus scanning proxies, etc). By explicitly
involving the intermediary, applications can verify that the
data was changed only by a legitimate party (i.e., the inter-
mediary) and not by someone else. Data integrity is also
closely tied to confidentiality as an application may allow in-
termediaries to look at the encrypted data but not to modify
it (e.g., government or an ISP). With flexible data integrity
and confidentiality semantics, applications can choose how
an intermediary can read or modify the data.

Ordering: Tapa’s use of ADUs helps the session layer in
supporting different ordering semantics; these semantics de-
termine whether the session layer presents these ADUs to the
application in the same order in which they were generated
by the other application end-point, or presented in the order
in which they are delivered by the network. Of course, this is
based on the assumption that the network does not provide
any guarantee with respect to the ordering of ADUs. In fact,
the use of Tapa may cause greater reordering compared to
today’s Internet because of Tapa’s use of multiple segments
for transferring ADUs.

Alice and the session layer: While Alice can benefit
from all the rich semantics offered by Tapa’s session layer,
the one feature that is specifically useful for mobile users
is delegation. Alice can benefit from delegation in the fol-
lowing way. Suppose Alice is chatting with her friend, with
both users on the road, in a highly mobile setting. With
end-to-end TCP, they can only communicate when both of
them are simultaneously connected. Using Tapa’s delegation
semantics, the chat application can delegate the transfer
responsibility to the TAP; in this case, both Alice and her
friend would be interested in differentiating between whether
their messages are actually received by the other end-point
or just the TAP. Similar functionality is already offered by a
popular messaging application, WhatsApp1, which lets mo-
bile users know whether their message was received by the
intermediate server or the other end-device. With Tapa, any
application can make use of this generic delegation service
while maintaining correct semantics.

4. CASE STUDIES
We now present three case studies on how Tapa can be

used to support diverse services. To support these services,
we designed and implemented a proof-of-concept prototype
of Tapa that focuses on the data plane of Tapa and a con-
trol plane that deals with two-segment paths: a wireless

1www.whatsapp.com

19

www.whatsapp.com

Vigilante
• put(ADU, serverAdd, reliability = “delegation”,

(first)segment = “fast”, (second)segment = “slow”)
• get(ADU-id, hint (friends), serverAdd)

Swift
• get(ADU-id, hint (previous TAP), serverAdd)

Catnap
• get(ADU-id, hint (ADU-length), serverAdd)

Table 2: Some sample API calls used in different
case studies.

segment between the client and TAP and a wired segment
between the TAP and server. We present the prototype
evaluation in §5 while more details of the prototype design
and implementation are available elsewhere [19, 17].

4.1 Content Distribution in OSNs
Online Social Networks (OSN) have massive popularity.

Facebook (FB) alone has more than 500 million users spread
all over the world. Supporting this huge scale is a major chal-
lenge for the OSN provider. Despite significant investments
in network and data center infrastructure, ensuring a high
quality user experience still remains challenging. In order
to address the problem of scaling OSNs to billions of users,
we have designed and prototyped Vigilante, a system that
uses TAPs (e.g., home AP, media center, etc) for storing and
distributing online social networking content.

Leveraging Tapa: Tapa facilitates the use of TAPs for
storing and distributing OSN content. It provides support for
publishing, retrieving, and caching content in an application
independent manner. Social networking applications can
aid these content centric functions of Tapa by providing
hints or by pushing content in advance to suitable TAPs for
performance or availability reasons.

Hints provide information to the TAP on the likely nodes
that may have the required ADU in their cache. Hints can
be generated and managed in a variety of ways. The simplest
solution is to have application generated hints stored on a
centralized server. For example, when Bob uploads content,
it can include a hint that he is keeping a copy on his TAP.
Similarly, after downloading Bob’s photos, Lisa can store a
copy on her TAP and notify the server. Alternatively, hints
can also be managed in an application independent manner
by Tapa, for example by having TAPs exchange information
about the content (i.e., the self-certifying ADU identifiers)
they are caching.

Tapa can also easily support a variety of roles for the TAP
in the context of OSNs. In the simplest case, the TAP just
maintains a cache of content stored at the server, as described
above. However, it is possible to make the TAP the primary
source of content, with the server simply keeping a backup
copy. It is also possible to control when data is uploaded
to the server, for example to reduce server peak loads. The
precise role of the TAP can be controlled by the application
by associating specific semantics with the transfer, using
Tapa’s API.

Photo Distribution in OSNs: As part of Vigilante, we
have built a photo distribution application that allows users
to publish and retrieve photos within a social circle. The
working of the system is best illustrated through an example
where Lisa wants to share her photos with her friends and

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

%
 R

e
q
u
e
s
ts

Response Time (sec)

FB-CacheMiss
FB-CacheHit

Single-TAP
Vigilante

Figure 4: Performance comparison of various
schemes for downloading photos.

family. Her social networking application uses Tapa’s put

API to publish the content to both the server and her home
TAP. Data transfer from her device to the TAP is done
using a normal/fast segment, while the data transfer from
the TAP to the server is over a “slow” segment because
the server only stores the data for backup purposes. All
this is managed through a single put call by controlling the
appropriate session and transfer semantics (see Table 2).

The application also sends the meta-data associated with
the photo to the server. In addition to other things specific
to the photo, the meta-data also includes the ADU identifier
corresponding to the photo and information that it is cached
at Lisa’s TAP. When Bob later contacts the server to get
his latest news-feeds, the meta-data corresponding to Lisa’s
photo is sent to his social networking application. As shown
in Table 2, his application uses Tapa’s get API, specifying
the ADU identifier as well as a hint that it is likely to be
available at Lisa’s TAP. Bob’s TAP will retrieve the ADU
from Lisa’s TAP, cache it and serve it to Bob’s application.
A notification is also sent to the server so that it can update
the hints i.e., that Bob’s TAP also has a copy of the photo.
Later, when Julie wants to retrieve the photo, the hints
contain information about TAPs of both Lisa and Bob, so
Julie’s TAP can choose the one that can provide the better
service (we base this decision on the RTT between the nodes).
As more users access the photos, more copies are created,
helping load balance future requests and also improving the
fault-tolerance of the system. A final point is that when
Lisa first published the photo, it was also possible to pre-
load some other TAPs using the same put API; this further
improves the performance and fault-tolerance of the system.

Evaluation: We have conducted an evaluation of Vigi-
lante on the PlanetLab testbed, using more than 150 nodes
spread all over the world. We compare the performance of
Vigilante with a more centralized design, such as the content
distribution infrastructure used by Facebook. Note that Vigi-
lante’s performance is comparable to what we might get with
a customized P2P based solution, so the key point of this
case study is to highlight the flexibility of Tapa in supporting
a diverse content distribution model without requiring any
changes to the underlying mechanisms.

We run the client application as well as the TAP on the
same node. We focus on the performance of photo downloads
and consider four schemes/scenarios in this regard:

1. Vigilante: This refers to the implementation described
in the previous section but without any pre-loading.

20

2. Single-TAP: Only the publisher’s TAP, which is located
in the US, serves the content. We test this scenario by
disabling updating of hints.

3. FB-CacheMiss: This refers to downloading the photo
from the root photo server of FB. This is the worst case
performance with using FB.

4. FB-CacheHit: This refers to the case when the photo is
served from the nearest Akamai CDN. This corresponds
to the best case for downloading a photo from FB.

We present the results of an experiment under a non-
bursty traffic load scenario. We generate a schedule where
the consumers make requests to download a 80kB image in
a sequential order at roughly 1 photo request per second.
This schedule is repeated 10 times and the same process
is followed for all four schemes. We present the results for
clients who are located outside USA: they have a latency of
at least 100ms with the publisher. On the y-axis, we have
the CDF of client requests and on the x-axis we have the
response times.

As shown in Figure 4, performance is poor for both Single-
TAP and FB-CacheMiss as the consumer has to retrieve the
content all the way from US, which adds considerable latency.
On the other hand, both Vigilante and FB-CacheHit are able
to find a nearby cached copy. However, we observed that
non-US sites, in general, had a higher latency to the nearest
Akamai/Facebook CDN compared to US sites and therefore
Vigilante provides greater benefits for such consumers.

4.2 Mobile and Wireless Optimizations
Through Alice’s example in the previous section, we have

already explained how Tapa can help a mobile and wireless
user. We have implemented Swift, a system that implements
these various optimizations. Here, we present a proof-of-
concept evaluation of Swift that focuses on the optimization
of using multiple segments, as this single optimization shows
the underlying flexibility that Swift offers. For example,
the multiplexed segments could correspond to different pro-
tocols (e.g., one segment uses HOP while the other uses
TCP), different underlying technologies (e.g., one bluetooth
based segment and another 802.11 based segment), and dif-
ferent ISPs/service providers. We have used multiplexing
of segments in the following ways: to aggregate AP uplink
bandwidth, to aggregate throughput of multiple interfaces,
for efficient hand-offs and to to mask failures in highly volatile
scenarios (see [19, 17] for detailed experiments and results).
As a proof-of-concept, we present results corresponding to
the last use-case.

We consider communication between a vehicle and multiple
TAPs and how use of multiple segments can mask short
disruptions that are difficult to handle if we use a single
segment for end-to-end communication. We use link level
traces from a real world testbed at Microsoft’s campus in
Redmond [4]. We pick the two APs in the MS testbed
with the best connectivity with the van and emulate their
wireless channels. For the experiments, we use an Emulab
style testbed that also offers a wireless emulator [1]. The
van downloads a 10MB file from a server located over the
Internet and having a 60ms RTT with the APs. We compare
the performance of Swift with multiple segments (Swift-
mult) with the scenario where only a single segment is used
(Swift-single). We make 20 requests for each scenario and
start times for the requests are randomly selected.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

C
D

F

Download Time (sec)

Swift-single
Swift-mult

Figure 5: File Download Times in a Vehicular Com-
munication Scenario. Use of multiple segments can
mask disruptions that are common in such environ-
ments.

App	
Session	

Xfer	

App	
Session	

Xfer	 Xfer	

Session	

Seg.	 Seg.	 Seg.	 Seg.	 802.11	 g/n	 DSL/Cable	

TAP	

1. ADU Req 2. ADU Req

Time	

3.* Hint + ADU
Response

Active

5. ADU Response

Finish	 Time	

4. Buffer
Data

Delegation Semantics

Figure 6: Overview of Catnap.

Figure 5 shows the cdf of the download times achieved
in the two scenarios. Around 50% of the transfers do not
experience any difference: these transfers are made during
periods of good connectivity where there is no need to switch
to the alternate segment. However, transfers that occur
during bad periods experience severe performance degrada-
tion in the case of Swift-single whereas with Swift-mult

switching to the alternate segment (if it is available at that
time) significantly mitigates the performance degradation.

4.3 Energy Savings through Catnap
Catnap allows a mobile client to sleep during ADU trans-

fers by intelligently shaping data before sending it over the
wireless segment. Catnap targets settings where the wire-
less segment is much faster compared to the wired segment;
in such scenarios, Catnap allows the wireless segment to
remain inactive most of the time while still ensuring that
the transfer finishes on time (Figure 6). During the time
the wireless segment is inactive, the mobile device can en-
ter into various sleep modes (e.g., 802.11 Power Save Mode,
Suspend-to-RAM mode, etc), thereby providing significant
energy savings to the mobile client. Catnap can provide
up to 2-5x battery life improvement for real mobile devices
under certain conditions [20].

Catnap can be viewed as a transfer service that leverages
the key concepts of Tapa in the following ways. First, decou-
pling of segments, through use of different segment protocols
and buffering at the TAPs, allows the wireless segment to
remain inactive even though data continue to flow on the
wired segment. This is not possible with end-to-end TCP as

21

it relies on strict synchronization between end-points through
the use of end-to-end acknowledgments. Second, the concept
of ADU and associated hints (i.e., length in this case) allows
the TAP to know when data will be consumed by the client
application, so the initial packets of an ADU can be delayed
as long as the finish time of the ADU remains the same.

If we consider Catnap in the opposite direction i.e., to
upload data from the client to server, then we can see how
richer reliability semantics at the session layer can be used to
delegate transfer responsibility to the TAP. For example, in
order to upload a large file to a server, the mobile client can
burst the data to the TAP using the fast wireless segment,
go offline, and the TAP can take over the responsibility of
sending data to the server over the slow wired link.

5. PROTOTYPE EVALUATION
In this section, we present our experience of using various

segment protocols and legacy applications with Tapa. We
also present micro-benchmarks to quantify the overhead of
using Tapa in various scenarios.

5.1 Supporting Legacy Applications
It is important to consider the effort required in developing

applications that can leverage Tapa. We focus on modifying
existing applications – which were not developed with Tapa
in mind – as they represent the hard case. We modified
the open source Mozilla Firefox browser to make use of
Tapa API instead of sockets. Specifically, we created a Tapa
stub that provided a socket-like interface to the applications
and was used by the browser. This greatly simplified the
browser modification process once the code was separated
from sockets. Although there was a general separation of
socket communication code and application logic, some of the
browser optimizations violated this separation and made the
modification process non-trivial. However, the modification
effort required is still manageable. Our experiences, as well
as earlier similar efforts [37], suggest that typically it is in the
order of 1-2 weeks for reasonably sized applications. Overall,
despite the huge code base of the browser the changes made
to the browser code were small and required approximately
200 lines of code (LOC)).

5.2 Supporting Diverse Segment Protocols
We now discuss our experience in adding different segment

protocols to Tapa – as we expect customized segment pro-
tocols for different types of networks, it should be easy to
implement and use these protocols within Tapa. In addition
to TCP/IP, our prototype supports the following segment
protocols:

HOP: HOP is a possible replacement for TCP in multi-
hop mesh networks and environments involving mobility and
disruption [30]. It runs between a client and a mesh gateway
and expects some kind of decoupling at the gateway, so that
a TCP-like protocol can work on the wired side for end-
to-end transfers. We added a light weight stub (50 LOC)
that removed the differences between the HOP API and the
interface that Tapa expects segment layers to implement.
Overall, it took roughly 20 man hours to fully add support
for HOP as a segment layer for Tapa.

Blast: We have specifically designed a protocol for 802.11
based single-hop wireless networks where TCP features, like
congestion control and ACK based reliability, are often an
over-kill. Blast is built on top of UDP – it offers no congestion

control, but provides light-weight reliability (in the form of
NACKs) and flow control. The protocol was developed
independently and later integrated with Tapa as a segment
protocol, requiring approximately 10 man hours for the
integration effort.

Bluetooth: We also added support for Bluetooth RF-
COMM transfer mode as a Tapa segment protocol. As this
mode bypasses IP, it is an attractive option for small devices
with limited capabilities who want to communicate over the
Internet (through a TAP). The API exposed by the blue-
tooth library uses the socket API (unlike HOP). As a result
it was straightforward to incorporate bluetooth as a segment
protocol in Tapa, requiring approximately 5 man hours and
20 LOC for this task.

Performance: Table 3 shows performance of these dif-
ferent segment layers (with tcp on the wired side) in an
end-to-end transfer. TCP, HOP, and Blast used WiFi on the
Emulab testbed while the bluetooth (BT) experiment was
on the emulator. The results show expected performance
under the given conditions.

TCP HOP Blast BT
Xput 5.95Mbps 6.4Mbps 6.6Mbps 600kbps

Table 3: Download of a 10MB file with different
segment protocols. End-to-end TCP throughput i.e.,
without Tapa, is roughly 5.9Mbps.

5.3 Overheads: Micro-benchmarks
Tapa offers several optimization but not every application

can benefit from them, so it is important to consider scenarios
where it may hurt to use Tapa. We therefore conduct micro
evaluation to evaluate the overhead of using Tapa under a
scenario where no optimization is used.

5.3.1 Performance Overhead
We consider a simple scenario involving a wireless client,

TAP, and server. TAP and server are connected via a wired
network – either LAN or WAN. We use TCP on both the
wireless and wired segment. Also, even though Tapa allows
reuse of segments which can eliminate connection set up
delay, we disable this option for these experiments. This
ensures a fair comparison with standard end-to-end tcp.

We compare the time required to complete a short request-
response exchange in four different scenarios: Tapa-ir which
refers to the mode where we push ADUs, Tapa-pull where
we pull an ADU by first retrieving its id and then retrieving
the data, tcp and udp. Figure 7(a) shows the results in a
WAN setting with 80 ms RTT. tcp and Tapa-ir perform
the same whereas Tapa-pull requires more time because of
the extra RTT involved in making a request for individual
ADUs. Figure 7(b) shows that even in a LAN setting Tapa
does not introduce any noticeable overhead and performs
similar to the underlying segment protocols that it uses
(TCP).

The above results for messages as small as 70 bytes show
that the extra overhead introduced by Tapa in the form of
ADUs and TAP is negligible. It also shows that Tapa-ir is
a useful mode that can be used by interactive applications
with short messages. This analysis suggests that over stable
wireless links, Tapa will perform as well as today’s protocol
stack for a wide range of applications.

22

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

70B 1200B 8KB

D
o

w
n

lo
a

d
 T

im
e
 (

m
s
)

File Size

Comparison of Overhead

Tapa-ir
Tapa-pull

tcp
udp

(a) WAN

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

70B 1200B 8KB

D
o
w

n
lo

a
d
 T

im
e
 (

m
s
)

File Size

Comparison of Overhead

Tapa-ir
Tapa-pull

tcp
udp

(b) LAN

Figure 7: Tapa adds negligible overhead in both
LAN and WAN scenarios. For transfers larger than
1MB (not shown) all scenarios have similar perfor-
mance.

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160

D
o
w

n
lo

a
d
 T

im
e
 (

m
s
)

ADU No

End-to-End
Tapa

Figure 8: Case of TAP failure. Tapa recovers effi-
ciently from TAP failures. Note log scale.

5.3.2 Reliability
As Tapa has to deal with ADU recovery in case of a TAP

failure, we want to measure the overhead of this process.
We use the LAN topology with tcp on both segments, and
consider a scenario where the TAP fails after 15 sec and
loses all its state. It comes up and starts serving the clients
again after 5 seconds. This pattern is repeated and clients
continue to make requests at random times for a 10MB file.
We compare end-to-end tcp which naturally recovers from
such AP failures with Tapa, where a TAP failure requires
recovering the ADU that was being transmitted and all the
ADUs that were yet to be transferred.

Figure 8 shows the download time for each of the 160
ADUs present in the file (note log scale). The spikes show
the increased time that is required to download the affected
ADU – during whose transfer the TAP failed. Note that
as requests are made at random time we pick two typical
runs (one each for Tapa and end-to-end tcp) that depicts
how the recovery process works in both scenarios. In Tapa,
the client discovers that the TAP is down (using absence
of hello messages) and establishes another segment with an
alternate TAP or waits for the old TAP to appear again. As
the transfer service knows the ids of the missing ADU, it
sends a new request to the server using the new TAP. As the
graph shows, Tapa can recover efficiently from TAP failures.

6. RELATED WORK
Tapa’s design is inspired by a large body of work, including

the design of the original Internet, wireless and mobility
related proposals, overlay networks, and proposals that deal
with making middleboxes first-class citizens [12, 35, 9, 36, 18,
16]. We give a brief overview of the most relevant proposals,
focusing on the key differences with Tapa.

Visible Middleboxes: Tapa shares the concern of earlier
work that hidden middleboxes can be a source of problems,
although we focus on ”flow middleboxes” that carry transport
state (e.g., proxies or other middleboxes that use different
transport regimes for an end-to-end connection). This is
different from proposals like NUTSS[25] and DOA[38] that
deal with network level middleboxes, i.e., ensuring that mid-
dleboxes become part of routing and addressing and can
therefore process packets (e.g., NATs, firewalls, etc).

The work that is most relevant is the proposal by Ford and
Iyengar [24] who break-up the transport layer to accommo-
date flow middleboxes in the end-to-end path. Tapa provides
a more general form of decoupling of segments, allowing use of
non-IP protocols within a segment (e.g., XIP [26]). Another
key difference is that Tapa uses ADUs and supports various
ADU based services (e.g., pull mode of data retrieval).

Delay Tolerant Networks[23] provide a similar level of
decoupling as Tapa, but their focus on arbitrary disruptions
results in fundamental differences with Tapa. First, Tapa
supports reasonably reliable, homogeneous segments whereas
DTN regions provide either full reliability or no reliability.
Second, DTNs only support push mode of transfers whereas
the pull mode is an important mechanism in Tapa. Finally,
DTNs do not have a notion of visible services that support
new end-to-end semantics.

Overlays: Tapa is designed to be complementary to the
Internet as it focuses on application/session semantics while
Internet deals with network issues (reachability, forwarding,
etc). As a result Tapa has very unique characteristics com-
pared to traditional overlays. For example, Tapa’s topology
is highly constrained, so we do not need a complex routing
protocol. Edge segments can be short-lived, which can result
in very dynamic topology. Segments in Tapa mostly line
up with network boundaries and as a result, Tapa segments
may use very different technologies, e.g., IP on the wired
segment and custom protocols on the wireless/data-center
segment. Finally, the role of the two end-points (e.g., client
and a server) is very asymmetric. All the differences require
new mechanisms not found in other overlays.

Transfer Services and Data Oriented Proposals:
Tapa’s transfer service leverages several concepts used in
DOT [37]. However, Tapa focuses on transfer services within

23

the network (TAPs) as well as end-points. Also, in order
to provide rich end-to-end semantics, our transfer service
is implemented below an end-to-end session whereas DOT
works on top of existing transport layer protocols.

Recently, Popa et al [33] propose the use of HTTP as the
narrow waist of the Internet, so it can be viewed as a transfer
service. While the use of HTTP is certainly easier to use in
the short-term, it is difficult to exploit many content centric
and multi-path optimizations due to the inherent limitations
of HTTP (i.e., naming, rigid semantics, etc), Moreover, we
also define the roles of layers below and above the transfer
service i.e., segment and session layers, which play a key role
in the Tapa architecture.

Future Internet Architectures: Tapa’s pull mode is
inspired by data oriented architectures (e.g., CCN [27]), but
there are important differences as we discuss below. First,
unlike CCN, Tapa is not a“pure” content-centric architecture,
so host and destination identifers are present in the packets
even if we are retrieving an ADU based on its identifer. This
results in different per-hop router operations as well as differ-
ent failure modes in Tapa compared to CCN. Second, CCN
operates at a per-packet granularity while Tapa uses ADUs.
This difference mandates the need for different mechanisms
to support traditional transport functions like congestion
control, reliability, and data reassembly.

A better positioning of Tapa compared to CCN and other
new network architectures is to view it as a transport ar-
chitecture that can leverage these proposals as part of its
segment protocol. For example, if Tapa is implemented over
content centric network architectures [27, 26, 29], or service
centric architectures [32, 26] then Tapa’s transfer service can
leverage the inherent features provided by these architectures
for content/service routing. This will simplify Tapa’s transfer
layer and can also potentially improve performance due to
late binding, native support for content/service discovery,
and intrinsic security [26].

7. FINAL THOUGHTS
We presented the design, implementation, and evaluation

of Tapa, a transport architecture that accommodates network
heterogeneity and rich in-network services. Tapa unbundles
today’s transport and makes explicit use of in-network ser-
vices that operate on ADUs. Our practical experience, as
well as the case studies in this paper, confirms that Tapa
offers great flexibility at multiple levels: customized solutions
as segment protocols; diverse data oriented optimizations at
the transfer level; and services with new semantics at the
session level.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers, XIA team members,

Ratul Mahajan, Ihsan Qazi, and Dina Papagiannaki for
providing useful feedback on this work. This research was
funded in part by NSF under award number CNS-1040801.

9. REFERENCES
[1] CMU Wireless Emulator. www.cs.cmu.edu/ emulator/.

[2] Dynamic site acceleration.
http://www.akamai.com/html/solutions/dsa_curriculum.html.

[3] Service Location Protocol. RFC 2608.

[4] Vanlan. research.microsoft.com/en-us/projects/vanlan/.

[5] A. Akella, et al. Self-management in chaotic wireless
deployments. In MobiCom ’05, pp. 185–199. 2005.

[6] M. Alizadeh, et al. Data center tcp (dctcp). In Proceedings of
the ACM SIGCOMM 2010, pp. 63–74. 2010. ISBN
978-1-4503-0201-2.

[7] A. Anand, et al. Redundancy in network traffic: findings and
implications. In Proc. of SIGMETRICS, pp. 37–48. 2009.

[8] D. G. Andersen, et al. Accountable Internet Protocol (AIP). In
SIGCOMM. 2008.

[9] A. V. Bakre, B. Badrinath. Implementation and performance
evaluation of indirect tcp. IEEE Transactions on Computers,
46(3):260–278, 1997.

[10] S. Biswas, R. Morris. Exor: opportunistic multi-hop routing for
wireless networks. SIGCOMM CCR, 35(4):133–144, 2005.

[11] J. Border, et al. Performance enhancing proxies intended to
mitigate link-related degradations, 2001.

[12] D. Clark. The design philosophy of the darpa internet protocols.
In SIGCOMM ’88, pp. 106–114. 1988. ISBN 0-89791-279-9.

[13] D. D. Clark, D. L. Tennenhouse. Architectural considerations
for a new generation of protocols. In SIGCOMM. 1990.

[14] D. D. Clark, et al. Addressing reality: an architectural response
to real-world demands on the evolving internet. SIGCOMM
Comput. Commun. Rev., 33(4):247–257, 2003.

[15] D. D. Clark, et al. Making the world (of communications) a
different place. SIGCOMM CCR., 35(3):91–96, 2005.

[16] J. Crowcroft, et al. Plutarch: an argument for network
pluralism. SIGCOMM Comput. Commun. Rev., 33:258–266,
August 2003. ISSN 0146-4833.

[17] F. R. Dogar. Architecting for diversity at the edge: Supporting
rich network services over an unbundled transport. PhD thesis.
2012.

[18] F. R. Dogar, P. Steenkiste. M2: Using Visible Middleboxes to
Serve Pro-active Mobile-Hosts. In ACM SIGCOMM MobiArch
’08, pp. 85–90. 2008.

[19] F. R. Dogar, P. Steenkiste. Segment based internetworking to
accommodate diversity at the edge. Technical Report -
CMU-CS-10-104, 2010.

[20] F. R. Dogar, P. Steenkiste, K. Papagiannaki. Catnap:
Exploiting high bandwidth wireless interfaces to save energy for
mobile devices. In ACM MobiSys, pp. 107–122. 2010.

[21] F. R. Dogar, et al. Ditto: a system for opportunistic caching in
multi-hop wireless networks. In ACM MobiCom. 2008.

[22] J. Eriksson, H. Balakrishnan, S. Madden. Cabernet: vehicular
content delivery using wifi. In MobiCom ’08, pp. 199–210. 2008.

[23] K. Fall. A delay-tolerant network architecture for challenged
internets. In SIGCOMM ’03, pp. 27–34. 2003.

[24] B. Ford, J. Iyengar. Breaking up the transport logjam. In ACM
Hotnets. 2008.

[25] S. Guha, P. Francis. An end-middle-end approach to connection
establishment. In SIGCOMM. 2007.

[26] D. Han, et al. XIA: Efficient support for evolvable
internetworking. In Proc. 9th USENIX NSDI. Apr. 2012.

[27] V. Jacobson, et al. Networking named content. In CoNEXT
’09, pp. 1–12. 2009.

[28] S. Kandula, et al. FatVAP: Aggregating AP Backhaul Capacity
to Maximize Throughput. In NSDI. April 2008.

[29] T. Koponen, et al. A data-oriented (and beyond) network
architecture. In SIGCOMM ’07, pp. 181–192. 2007.

[30] M. Li, et al. Block-switched networks: a new paradigm for
wireless transport. In NSDI’09, pp. 423–436. 2009.

[31] X. Liu, X. Yang, Y. Xia. Netfence: preventing internet denial of
service from inside out. In ACM SIGCOMM 2010.

[32] E. Nordstrom, et al. Serval: An end-host stack for
service-centric networking. In Proc. 9th USENIX NSDI. April
2012.

[33] L. Popa, A. Ghodsi, I. Stoica. HTTP as the narrow waist of the
future Internet. In Hotnets 2010.

[34] S. Roy, et al. Application level hand-off support for mobile
media transcoding sessions. In NOSSDAV ’02, pp. 95–104.
2002.

[35] J. H. Saltzer, D. P. Reed, D. D. Clark. End-to-end arguments
in system design. ACM Trans. Comput. Syst., 1984.

[36] I. Stoica, et al. Internet indirection infrastructure. SIGCOMM
Comput. Commun. Rev., 32(4):73–86, 2002.

[37] N. Tolia, et al. An architecture for internet data transfer. In
NSDI ’06.

[38] M. Walfish, et al. Middleboxes no longer considered harmful.
OSDI, pp. 215–230, 2004.

24

http://www.akamai.com/html/solutions/dsa_curriculum.html

	Introduction
	Requirements and Concepts
	Key Concepts

	Tapa
	Services
	Routing and Addressing
	Segment Layer
	Basic Operations and API

	Transfer Layer
	Basic Operations and API
	Resource Management

	Session Layer
	Basic Operations and API

	Case Studies
	Content Distribution in OSNs
	Mobile and Wireless Optimizations
	Energy Savings through Catnap

	Prototype Evaluation
	Supporting Legacy Applications
	Supporting Diverse Segment Protocols
	Overheads: Micro-benchmarks
	Performance Overhead
	Reliability

	Related Work
	Final Thoughts
	Acknowledgments
	References

