
Orchestrating Massively Distributed CDNs

Joe Wenjie Jiang∗

Princeton University
Princeton, NJ
wenjiej@cs.

princeton.edu

Stratis Ioannidis
Technicolor

Palo Alto, CA
stratis.ioannidis@
technicolor.com

Laurent Massoulié
INRIA

Paris, France
laurent.massoulie@

inria.fr

Fabio Picconi
Technicolor,

Paris, France
fabio.picconi@
technicolor.com

ABSTRACT

We consider a content delivery architecture based on geo-
graphically dispersed groups of“last-mile”CDN servers, e.g.,
set-top boxes located within users’ homes. These servers
may belong to administratively separate domains, such as
multiple ISPs. We propose a set of scalable, adaptive mech-
anisms to jointly manage content replication and request
routing within this architecture. Relying on primal-dual
methods and fluid-limit techniques, we formally prove the
optimality of our design. We further evaluate its perfor-
mance on both synthetic and trace-driven simulations, based
on real BitTorrent traces, and observe a reduction of network
costs by more than 50% over traditional mechanisms such
as LRU/LFU with closest request routing.

Categories and Subject Descriptors

C.4 [Computer-Communication Networks]: [Distributed
Systems]

Keywords

Distributed Content Distribution Networks, Content Place-
ment, Request Routing

1. INTRODUCTION
The total Internet traffic per month was already in excess

of 1019 Bytes in 2011 [1]. Video-on-demand traffic alone is
predicted to grow to three times this amount by 2015. Ex-
isting content providers such as Youtube and Netflix, which
represent a large fraction of today’s Internet video traffic,
use content delivery networks (CDNs) to replicate, cache,
and stream videos at many servers across the world. Never-
theless, the large volumes of traffic exiting the CDN infras-
tructure incur significant operational costs for the content
providers. This state of affairs prompts a rethinking of the
current content delivery architecture.

∗The author is currently at Google Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10–13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

A promising evolution from today’s approach consists of
extending the CDN to the “last mile” of content delivery by
incorporating small servers close to the edge of the network.
For instance, this approach leverages devices within users’
homes, such as set-top boxes or broadband gateways, as
advocated by the Nano Datacenter [2] consortium, network
attached storage (NAS) such as Boxee [3], or appliances pro-
moted by business initiatives such as AppleTV. Part of or
the entire storage and bandwidth capacities of these devices
can be leased to a CDN or a content provider. The latter
leverage these resources to store content and serve download
requests effectively in a managed peer-to-peer fashion.

Such an architecture has considerable advantages for both
providers as well as users. First, it harnesses available band-
width and storage resources of appliances already deployed
at users’ homes. Second, it enables serving requests locally,
e.g., from a device within the same ISP or even within the
same neighborhood. In addition to reducing latency, this al-
leviates CDN server traffic while also reducing cross-traffic
among ISPs, thereby significantly decreasing the operational
cost of the CDN. In practice, the service operator can make a
combined use of the traditional CDN and distributed CDNs
to optimize performance and reduce cost simultaneously.

Ideally, one would like to optimize the design of this “dif-
fuse cloud” of nano-servers so that such cross-traffic costs
are minimized. There are two degrees of freedom in this
design: (a) content placement, i.e., identifying what content
to cache in each device, and (b) request routing, identifying
which device is to serve an incoming request for content.

As devices have limited resources, the storage and band-

width constraints of each device need to be taken into ac-
count in the above optimization. Also, optimal placement
and routing decisions depend on the demand for content
across users; to reduce traffic costs, it is preferable to cache
content closer to where it is most frequently requested.

Nevertheless, this optimization raises several important
challenges. First, while traditional CDN design has ad-
dressed content caching and request routing separately, a
joint optimization is required as both decisions impact each
other in the case of massively distributed last-mile servers.
Second, as the optimization is to be performed over millions
of devices, scalability is a crucial issue. Third, the system
comprises devices dispersed across multiple ISPs and their
heterogeneity—in terms of bandwidth and storage resources,
as well as the relative costs of serving requests—needs to be
addressed. In addition, managing many boxes over differ-
ent ISPs requires a distributed and collaborative solution
that does not reveal the internal structure of ISPs. Finally,

133

though optimal placement and routing decisions depend on
demand, the latter may be a priori unknown or time-variant.
Hence, adaptive placement and routing schemes that react
to changes in user demand, are preferred.

In this work, we address these challenges by developing a
solution for efficient traffic management in next-generation
CDNs. We make the following contributions:

• We propose a distributed, adaptive content placement
and routing architecture, designed to scale over mil-
lions of heterogeneous devices.

• Building upon primal-dual decomposition techniques,
we formally establish that our adaptations jointly op-
timize both content placement and routing, and prove
that they minimize CDN traffic costs.

• To establish these results, we characterize the asymp-
totic loss probability of the uniform-slot service assign-
ment policy (determining which device serves a request
inside an ISP), a crucial component of our design. We
show that although much simpler to implement than
prior art, it exhibits the same asymptotic behavior.

• As part of this design, we propose a novel content
placement scheme that changes cache contents, and
prove that it is order-optimal: it reaches a targeted
replication within a constant factor from the optimal
number of write operations necessary.

• We conduct simulations driven by BitTorrent traces,
with all the associated features of real traffic (bursti-
ness, long-tail distribution), and show that our mech-
anism reduces network costs by more than half, as
compared to traditional solutions based on LRU cache
management and nearest-neighbor routing.

The remainder of this paper is organized as follows. We
first review related work (Section 2) and describe our prob-
lem setup (Section 3). In Section 4 we overview our system
architecture. The theoretical guarantees of our adaptation,
request routing and content placement algorithms are pre-
sented in Sections 5 and 6. Finally, in addition to this the-
oretical underpinning, our architecture is further validated
experimentally in Section 7.

2. RELATED WORK
Peer-assistance of CDNs has been studied from several

perspectives. Recent work has shown that it can reduce
CDN server traffic [4] and energy consumption [5] by more
than 60%. Early research compared the efficiency of prefetch-
ing policies for peer-assisted VoD [6], and bandwidth alloca-
tion across different P2P swarms [7]. Peer incentivization,
e.g., through rebates or service fee reductions, has also been
studied [8–10]. Moreover, the use of dedicated home de-
vices as an extension of a CDN’s infrastructure has been the
model of at least one recent start-up [11] and has been the
subject of several recent papers [5,12]. We build and extend
upon these works by providing a formal framework for joint
placement and routing optimization.

Minimizing cross-traffic is extensively studied in the con-
text of “ISP-friendly” P2P system design and is known to
reduce both ISP cross-traffic and download delays [13, 14].
Typically, the selection of download sources is biased to-
wards nearby peers; peer proximity can be inferred either

through client-side mechanisms [15] or through a service of-
fered by the ISP [16–18]. In the latter case, the ISP can
explicitly recommend which neighbors to download content
from by solving an optimization problem that minimizes
cross-traffic [18]. In the context of peer-assisted CDNs, an
objective that minimizes a weighted sum of cross-traffic and
the load on the content server can also be considered [17].
Prior work on ISP-friendliness reduces cross traffic solely by
performing service assignment to suitable peers. We add a
control knob on top of service assignment, namely content

placement : our optimization selects not only where requests
are routed, but also where content is stored.

In the cooperative caching problem, clients generate a set
of requests for items, that need to be mapped to caches that
can serve them; each client/cache pair assignment is asso-
ciated with an access cost. The goal is to decide how to
place items in caches and assign requests to caches that can
serve them, so that the total access cost is minimized. The
problem is NP-hard, and a 10-approximation algorithm is
known [19]. Motivated by CDN topologies, Borst et al. [20]
obtain lower approximation ratios as well as competitive
online algorithms for the case where cache costs are deter-
mined by weights in a star graph. A polynomial algorithm is
known in the case where caches are organized in a hierarchi-
cal topology and the replica accessed is always the nearest
replica [21]. We significantly depart from the above studies
by explicitly dealing with bandwidth constraints, assuming
a stochastic demand for items and proposing an adaptive,
distributed algorithm for joint content placement and ser-
vice assignment among multiple classes of identical caches.

Finally, recent work [22–24] has considered cache manage-
ment specifically in the context of P2P VoD systems, and
is in this sense close to our work. However, the heteroge-
neous (e.g., across multiple ISPs) aspect of our system is
not present in any of the above works. As in [24], we cap-
ture box service behavior through a loss model; our Thm. 2
extends their analysis, by establishing that a simple service
assignment policy (the “uniform slot” policy), has asymp-
totically the same behavior as the one proposed in [24] (see
also Section 6.1).

3. PROBLEM FORMULATION
In the system we consider, a content provider such as

YouTube or Netflix delivers content (e.g., videos or music) to
home users subscribing to its services. Users access the ser-
vice through devices installed at their home, such as set-top
boxes (providing common Internet connectivity and limited
storage) or network-attached storage (NAS) devices. Part of
the storage and upload capacities of these boxes is leased to
the content provider. The latter uses these resources to serve
requests for its content, alleviating the load on its CDN.

Users are geographically dispersed across ISPs. Serving
them incurs a cost depending on the cross-traffic they gen-
erate. The content provider’s goal is to determine (a) where
to cache content and (b) how to serve user requests for con-
tent, in order to minimize this cost. The remainder of this
section formalizes our setup; our key notation is in Table 1.

3.1 Box Classes
We represent the users’ home devices by a set B, the set of

boxes, where B = |B|. We partition B into D classes Bd, d ∈
D = {1, . . . , D}, with size Bd = |Bd|. Such partitioning may
correspond, e.g., to grouping together boxes managed by the

134

s Existing CDN infrastructure.
B Set of all boxes in the system.
C Content catalog.
D Set of all set-of-box classes.

Bd Boxes in class d ∈ D.

Md Storage capacity of boxes in Bd.
Ud Upload capacity of boxes in Bd.
Fb Cache content of box b.

pdc Replication ratio of content c in Bd.
λd
c Request rate for content c ∈ C in Bd.

wdd′ Cost of a transfer from d′ ∈ D ∪ {s} to d ∈ D.

rdd
′

c Rate of requests for c forwarded from d ∈ D to d′ ∈
D ∪ {s}.

r·dc Aggregate rate of incoming requests for c to d ∈ D.
Rd Rd = BdUd, the total upload capacity in class d.

Table 1: Summary of key notation

same ISP. Different levels of aggregation or granularity may
be used: for example, each class may comprise boxes within
the same city or even the same city block. Throughout the
text, we use the index d for a class in D and the index s (as
in “server”) to indicate the existing CDN infrastructure.

Through the CDN, boxes gain access to the provider’s
content collection, such as, e.g., movies, clips or shows. We
denote this collection by C and call it the content catalog. We
assume that items in C have identical size—if not, the origi-
nal content can be partitioned into fixed-size chunks, and C
viewed as a collection of chunks. Classes are heterogeneous:
storage and bandwidth capacities as well as traffic costs as-
sociated with serving requests differ across classes. Never-
theless, as described below, boxes within the same class have
the same capacities and incur the same costs.

3.2 Storage and Bandwidth Capacity
Part of the boxes’ storage is allocated to and managed by

the CDN. Each box in Bd has Md storage “slots”, used by
the CDN to store content items. We call Md the storage

capacity of boxes in Bd. For each b ∈ Bd, we denote the
set of items cached in box b by Fb ⊂ C, where |Fb| = Md.
Note that Fb is determined by the CDN, not the user. Users
may store (or delete at will) content they retrieve in private
storage devices, or even at the spare storage of their box,
but such replicas are not managed or shared by the CDN.

Boxes can serve incoming requests for content they store
in this designated space. We model this service behavior
through a loss model [25], rather than a queueing model. A
box in Bd can upload at most Ud content items concurrently,
each at a fixed rate. We refer to Ud as the upload capacity

of boxes in class d. Alternatively, each box has Ud upload
“slots”: if a box receives a request for a content it stores and
has a free upload slot, this slot is used to serve the request
and upload the requested content. The service time, i.e.,
the duration of an upload, is assumed to be exponentially
distributed with one-unit mean. Slots remain busy until the
upload terminates, at which point they become free again.

The use of a loss model ensures that incoming requests
are immediately served by a box at a guaranteed rate and
no queuing delays are incurred. Moreover, most of today’s
content services, such as video streaming, require a constant
bit-rate and do not consume additional bandwidth, so par-
titioning uplink bandwidth into “slots” makes sense.

3.3 Request Load
Users (boxes) generate content requests at varying rates

across different classes. We model requests for content c
generated by each box b ∈ Bd through a Poisson process
with rate λ̃d

c . Hence, the aggregate request process for c in
class d is also Poisson with rate λd

c = λ̃d
cB

d, which scales
proportionally to the class size. When a box b ∈ Bd storing
c ∈ C (i.e., c ∈ Fb) generates a request for c, it is served by
the local cache—no downloading is necessary. Otherwise,
the request must be served by either the CDN’s pre-existing
infrastructure or some other box in B.

Though our analysis assumes that the request generation
process is stationary and Poisson (Thms. 1-3) we relax this
assumption in Section 7, evaluating our system over requests
of time-varying intensity generated by real-life P2P users.

3.4 Minimizing Traffic Costs
Serving a user request from class d using either the exist-

ing CDN infrastructure or another class d′ requires transfer-
ring content across the class boundaries. In general, cross-
traffic costs are dictated by the transit agreements between
peering ISPs and may vary from one class to the next. As

such, we denote by wdd′ , d, d′ ∈ D, the traffic cost for serv-
ing a request from class d by a box in class d′. Similarly, we
denote by wds as the traffic cost of serving a request from
class d by the CDN’s existing infrastructure.

The content provider that manages the boxes pays in-
curred cross-traffic costs to ISPs. Hence, it is in its interest
to minimize such costs. In particular, the service provider
needs to determine (a) the content Fb placed in each box b,
and (b) where the request generated by each box should be
directed to, so that its aggregate traffic costs are minimized.

Solving this problem over millions of devices, while sat-
isfying the constraints imposed by the limited storage and
bandwidth capacities at each box, poses a significant scal-
ability challenge. Further, deciding where to place content
and how to route requests is, in general, a computationally
intractable combinatorial problem [19]. In addition, manag-
ing boxes from different ISPs raises the need for a distributed
solution that does not require the ISPs to reveal their inter-
nal structure to each other. Finally, the optimal placement
and routing scheme depends on the demands λd

c ; these may
dynamic and a priori unknown to the CDN. As such, an
adaptive scheme, that measures and reacts to user demand,
is preferable. We present a system design that addresses
these challenges in the next section.

4. SYSTEM ARCHITECTURE
To address the challenges above, we propose a distributed,

adaptive scheme for joint placement and routing. Through
a combination of asymptotic results, we show our design is
optimal, in the sense that it minimizes the CDN’s aggregate
traffic cost when the number of boxes is large.

4.1 Overview
Rather than centralizing the management of the distributed

CDN, our solution delegates management to one device per
class, termed the class tracker. Class trackers are deployed
by the content provider, either as separate servers or as des-
ignated boxes within each class. They manage (a) content
placement within their classes, (b) the routing of requests
either generated or served by boxes in their classes.

135

Each tracker has a full view of the state of boxes within
its class, knowing, e.g., the contents of each box’s cache and
the number of its free upload slots. Nevertheless, the tracker
does not have access to the same information about boxes in
other classes. In fact, its knowledge about the state in other
classes is limited to lightweight congestion signals exchanged
periodically between trackers.

Overall, trackers perform the following operations:
Adaptation. For each content c ∈ C, the tracker maintains
the desirable replication ratio pdc , i.e., the fraction of boxes in
the class that store c. In addition, it also maintains the desir-

able forwarding rates rdd
′

c , d′ ∈ D ∪ {s}, which correspond
to the rate of outgoing requests for c, forwarded to other
class trackers as well as the CDN infrastructure (denoted by
s). These variables are stored locally by the tracker and up-
dated periodically, at fixed time intervals (e.g., once every
day). The updated values are used as inputs to the tracker’s
placement and routing algorithms within the next adapta-
tion round. Updating these variables allows the trackers
to adapt both their placement and routing decisions, in a
way that the system reaches a global objective (namely, the
minimization of aggregate costs).

Content Placement. At the termination of each adap-
tation round, after deciding the replication ratios pdc of each
content item in class d, the tracker allocates the content
items to boxes: for each box b ∈ Bd, it determines Fb in a
manner so that the fraction of boxes storing c is indeed pdc .

Request Routing. Trackers are responsible for routing
requests either generated or served by boxes in their classes.
We separate the routing of requests into two phases: request
forwarding and service assignment. Request forwarding de-
termines to which class a request generated by a local box

is forwarded, so that the desirable forwarding rates rdd
′

c are
maintained. Upon receiving a request, the tracker of the
class selects a box within its class to serve the request; we
refer to this selection as service assignment.

In the remainder of this section, we formally define the
optimization performed by the tracker through adaptation
and describe our request routing algorithm in detail. We also
outline our distributed adaptation and content placement
algorithms; their full specification is in Sec. 5 and 6.

4.2 Tracker Information
As stated above, each class tracker has a complete view of

the current state of every box inside its own class. In par-
ticular, it knows (a) which content items are stored in each
box, and (b) how many free upload slots it has. The trackers
also collect traffic statistics: the class d tracker maintains es-
timates of λd

c , c ∈ C, the rate with which requests for content
c are generated within the class. It also maintains estimates
of the incoming rate of requests for content c in class d.
All the above are measured and maintained locally at the
tracker; this is possible precisely because it manages both
content placement and request routing within its class.

Nevertheless, trackers are a-priori unaware the states of
boxes in other classes: they learn about congestion in other
classes through the exchange of appropriate light-weight con-
gestion signals, at the end of each adaptation round.

4.3 Replication and Forwarding Policies
In addition to the above information pertaining to their

classes, trackers maintain |C| local variables pdc ∈ [0, 1], for

c ∈ C, d ∈ D. We call pdc the replication ratio of item c in
class d, and the vector pd = [pdc]c∈C the replication policy of
class d. At any point in time, the replication ratios satisfy:

pdc =
∑

b∈Bd 1c∈Fb
/Bd, ∀c ∈ C, d ∈ D, (1)

i.e., the replication ratio pdc equals the fraction of boxes in
Bd that store content c ∈ C. Also, by summing (1) in terms
of c, it is easy to see that, when all caches are full,

∑

c∈C p
d
c = Md, ∀d ∈ D. (2)

The replication policy of a tracker serves as an input to its
content placement algorithm. That is, the tracker updates
it replication policy (or, its desired replication ratios) at the
end of every adaptation round. Subsequently, the replication
policy is used to determine the placement of content to boxes
in Bd, so that (1) is indeed satisfied.

In addition to its replication policy, the tracker maintains
(|D|+ 1)× |C| additional local variables

rdd
′

c , d′ ∈ D ∪ {s}, c ∈ C.

We call these the forwarding rates of class d, and the vector

rd = [rdd
′

c]d′∈D∪{s}C of these values the forwarding policy

of d. At any point in time each variable rdd
′

c ∈ R+, for
d′ ∈ D, equals the rate of requests for content c that the
tracker forwards from class d to d′. Similarly, each variable
rdsc ∈ R+ equals the rate of requests for c forwarded by the
tracker directly to the CDN’s existing infrastructure. The
forwarding policies satisfy the equalities:

rdsc +
∑

d′∈D rdd
′

c = λd
c(1− pdc), ∀c ∈ C, d ∈ D, (3)

i.e., requests not immediately served by local caches are for-
warded to the CDN or a box in another class.

The tracker also updates its forwarding policy at the end
of an adaptation round. The updated values are subse-
quently used as inputs to the tracker’s request forwarding
algorithm for the next round. In particular, the tracker im-
plements a routing scheme that ensures that the rate of re-

quests for item c forwarded to d′ ∈ C ∪ {s} is precisely rdd
′

c .

4.4 Request Routing and Loss Probabilities
As mentioned above, the routing of requests in our scheme

consists of two phases, request forwarding and service assign-

ment. We describe these in detail below.
Request Forwarding. In the request forwarding phase,
a box b ∈ Bd generating a request for an item c ∈ C first
checks if it already stores c, i.e., c ∈ Fb. If so, the request
is served immediately and no downloading is necessary. If
not, the box contacts the class tracker; the latter determines
whether the request should be forwarded to (a) another box
within the class, (b) a box in another class, or (c) served
directly by the CDN’s infrastructure. If the tracker deter-
mines that the request is to be forwarded to class d′ (case
(b)), it routes the request to the tracker managing this class.

To select among these 3 outcomes, the tracker uses rd

as follows: it forwards a request to d′ ∈ D ∪ {s} with a

probability proportional to rdd
′

c . As a result, provided that
(3) is satisfied, requests forwarded from class d to d′ form

independent Poisson processes with rates rdd
′

c .
Service Assignment. In the service assignment phase,

the class d tracker assigns a request for a content c to the
box in its class that is to serve it. Requests can be local, i.e.,

136

generated by a box in Bd and deemed to be served locally
during the forwarding phase, or external, i.e., generated by
a box in a different class d′ and forwarded to the class d
tracker by the tracker of d′. To assign requests to boxes, the
tracker follows a uniform slot policy. Under this policy, an
incoming request for content c is assigned to a box selected
among all boxes currently storing c and having an empty
upload slot. Each such box is selected with a probability
proportional to the number of its empty slots. Equivalently,
the request is matched to a slot selected uniformly from all
free upload slots of boxes storing c: for Xb the number of
free slots of box b ∈ Bd, an incoming request for content c is
mapped to a slot selected uniformly at random among the
∑

b∈Bd:c∈Fb
Xb slots of boxes that can serve this request.

Loss Probabilities. It is possible that no free upload
slots in the class exist when the request for c arrives (i.e.,
∑

b∈Bd:c∈Fb
Xb = 0). In such a case, a request is re-routed to

the CDN’s infrastructure. Hence, not all requests for content
c that arrive at class d are served by boxes in Bd.

Let νd
c be the loss probability of item c in class d, i.e., the

probability that a request for c cannot be served and is re-
routed to the infrastructure. We say that requests for item
c are served with high probability (w.h.p.) in class d, if

limBd→∞ νd
c (B

d) = 0, (4)

i.e., as the total number of boxes increases, the probability
that a request for content c fails goes to zero. Two necessary
constraints (see, e.g., [24]) for (4) to hold in class d ∈ D are:

∑

c∈C r·dc < BdUd, (5)

r·dc < BdUdpdc , ∀c ∈ C, (6)

where r·dc =
∑

d′∈D rd
′d

c is the aggregate request rate for
content c received by class d. Constraint (5) states that the
aggregate traffic load imposed on class d should not exceed
the total upload capacity over all boxes; (6) states that the
traffic imposed on d by requests for c should not exceed the
total capacity of boxes storing c.

4.5 Content Placement
Our content placement algorithm is presented in detail in

Section 6. In summary, the algorithm is executed at the end
of every adaptation round. It receives as input the replica-
tion policy pd and generates a placement {Fb}b∈Bd that is
consistent with (1).

Implementing the new placement requires copying new
contents to box caches; transferring content incurs traffic
costs. Our design ensures these costs are small in two ways.
First, policy adaptations are smooth, i.e., changes in rd,pd

are gradual. Second, we implement the new placement by
performing as few changes to box contents as possible.

Crucially, our placement also satisfies the following prop-
erty: when uniform slot service assignment is used, all re-
quests are satisfied w.h.p. In particular, our placement is
such that (5) and (6) are not only necessary but also suf-

ficient for (4) to hold (c.f. Thms. 2 and 3). As such, our
content placement ensures that, asymptotically, almost no
requests are re-routed to the CDN.

4.6 Global Optimization
Recall that the cost incurred when a request originating

from class d is served by d′ ∈ D∪{s} is wdd′ . Moreover, the

rate of requests for content c forwarded from d to d′ is rdd
′

c .

Hence, the total traffic cost is
∑

c∈C

∑

d∈D

[

wdsrdsc +
∑

d′

(

wdd′rdd
′

c (1− νd′

c) + wdsrdd
′

c νd′

c

)]

.

This is because a fraction νd
c requests for content c arriving

at class d are re-routed to the CDN. In general, this is not a
convex function, due to the loss probabilities νd

c . However,
given that (4) holds, the contribution of these losses becomes
negligible for large system sizes. The total system costs can
thus be approximated as

∑

d∈D F d(rd), where

F d(rd) =
∑

c∈C

(

wdsrdsc +
∑

d′∈D wdd′rdd
′

c

)

(7)

is the total traffic cost generated by class d. Hence, the
operator’s minimal cost is a solution to the linear program:

GLOBAL
Min.

∑

d∈D F d(rd) (8a)

subj. to
∑

c∈C p
d
c = Md, ∀d ∈ D (8b)

∑

d′∈Drdd
′

c +rdsc =λd
c(1−pdc), ∀c∈C, d∈D (8c)

∑

c∈C r
·d
c < Rd, ∀d ∈ D (8d)

r·dc < Rdpdc , ∀c∈C, d ∈ D (8e)

rdd
′

c ≥ 0, rdsc ≥ 0, 1 ≥ pdc ≥ 0, ∀c ∈ C, d, d′ ∈ D

var. rd,pd,∀d ∈ D

where Rd = BdUd is the total upload capacity in class d.
The objective of this optimization problem is to minimize
the total cost incurred by content transfers. Constraints
(8b) and (8c) correspond to equations (2) and (3); they state
that the full storage capacity of each class is used and that
all requests are eventually served, respectively. Constraints
(8d) and (8e) correspond to (5) and (6), respectively.

GLOBAL is a linear program in rd,pd, d ∈ D. Our
distributed, adaptive method for updating the routing and
placement policies, is presented in detail in Section 5. It is
designed in a way so that (a) trackers measure and adapt
their policies to user demand, and (b) policy updates are
computed in a distributed fashion, thus scaling well as the
number of boxes increases. Most importantly, the policies of
our design converge to a solution ofGLOBAL (see Thm. 1),
i.e., our design minimizes aggregate traffic costs.

The formal properties of our design are shown in the next
two sections. In Section 5, we specify how trackers update
their policies so that they converge to a solution of (8). In
Section 6, we characterize content placements under which
requests assigned by a uniform slot policy are served w.h.p.

Moreover, we show that if (8d) and (8e) hold, such a content
placement exists, and give an algorithm implementing it.

5. POLICY ADAPTATION
We now present how the trackers solve GLOBAL and

determine their replication and forwarding policies in a dis-
tributed fashion. In short, trackers exchange congestion sig-
nals and update pd, rd over several rounds. We ensure that
both are updated in a smooth fashion, i.e., changes between
two rounds are incremental and the system does not oscil-
late wildly. We proceed by first discussing the challenges in
solving (8) in a distributed fashion with classical methods,
and then presenting our distributed implementation.

137

5.1 Standard Dual Decomposition
Consider the partial Lagrangian of (8).

L(r,p;α,β) =
∑

d F
d(rd) +

∑

d′ β
d′
(
∑

c,d r
dd′

c −Rd′
)

+
∑

d′

∑

c α
d′

c

(
∑

d r
dd′

c −Rd′pd
′

c

)

where αd′

c , βd are the dual variables (Lagrange multipliers)
associated with the constraints (8d) and (8e), respectively.
Observe that L is separable in the primal variables, i.e., it
can be written as L(r,p,α,β) =

∑

d L
d(rd,pd;α,β) where

Ld(rd,pd,α,β) =F d(rd)− βdRd −
∑

c α
d
cR

dpdc

+
∑

d′

(

βd′
∑

c r
dd′

c +
∑

c α
d′

c rdd
′

c

)

.

This suggests a standard dual decomposition algorithm [26]
for solving GLOBAL. Recall that a dual decomposition
algorithm runs in multiple rounds t = 0, 1, The class d
tracker maintains the primal variables rd, pd, as well as the
dual variables αd = [αd

c]c∈C, β
d, associated with the cou-

pling constraints (8d) and (8e). At the end of each round,
the tracker updates the dual variables αd

c , βd, increasing
them when the respective constraints (8d) and (8e) are vi-
olated or decreasing them when the constraints are loose.
Subsequently, each tracker broadcasts its current dual vari-
ables with all other trackers. Having all dual variables α,
β in the system, the trackers adapt their primal variables,
reducing traffic forwarded to congested classes and increas-
ing traffic forwarded to non-congested ones. This can be
performed by each tracker solving the linear program:

(rd,pd)(t+ 1) = argmin
(rd,pd)∈Id

Ld(rd,pd;α(t),β(t)). (9)

where Id is the set of pairs (rd,pd) defined by (8b) and (8c)
as well as the non-negativity constraints. Such adaptations
are known to converge to a maximizer of the primal prob-
lem when the functions Ld are strictly convex (see, e.g., [26]
Section 3.4.2, pp. 229-230). Unfortunately, this is not the
case in our setup, as Ld are linear in rd, pd: convergence to
optimal policies does not readily follow. In practice, the lack
of strict convexity makes rd, pd oscillate wildly with every
application of (9). This is disastrous: wide oscillations of
pd imply that a large fraction of boxes in Bd need to change
their content in each round. This is both impractical and
costly; ideally, we would like each round to change the con-
tents of each class smoothly, so that the cost of implementing
these changes is negligible.

5.2 A Smooth Distributed Implementation
To address these issues, we use an interior point method

that deals with the lack of strict convexity called the method

of multipliers [26]. Applied to GLOBAL this implemen-
tation yields the algorithm summarized in Fig. 1. The fol-
lowing theorem, proved in App. A, follows from the analysis
in [26] and establishes that this algorithm indeed solves (8):

Theorem 1. Assume that the tracker in class d correctly

estimates λd
c , r

·d
c in each round, and that {θ(t)}t∈N is a non-

decreasing sequence of non-negative numbers. Then, under

the adaptation algorithm in Fig. 1, rd(t),pd(t) converge to

an optimal solution of (8).

Crucially, the algorithm in Fig. 1 performs smooth adap-
tations of rd,pd. Though the theorem assumes that trackers

Tracker d at the end of round t:
Obtain estimates of λd

c , r
·d
c , c ∈ C.

// Update dual variables
sdtot ←

1
|D|

(
∑

c∈C r·dc + yd −Rd
)

βd ← βd
c + θsdtot

for each content c

sdc ←
1

|D|

(

r·dc + zdc −Rdpdc
)

αd
c ← αd

c + θsdc
end for

Broadcast
(

αd, βd, sd, sdtot
)

to other trackers d′ ∈ D
Receive dual variables from all other trackers d′ ∈ D

// Update primal variables

(rd,pd,zd, yd)←argmin
Id

LOCALd(rd,pd, zd, yd,α,β, s, stot)

Figure 1: Decentralized solution to the global prob-
lem GLOBAL.

correctly estimate the request rates λd
c , which are station-

ary, we relax both assumptions in Section 7, evaluating our
adaptive approach under real-life, time-varying traffic.

We describe the operations performed and messages ex-
changed by each tracker below. The class d tracker main-
tains rd(t),pd(t),αd(t), βd(t), the primal and dual variables
of (8), as well as the slack variables yd, zd = [zdc]c∈C, result-
ing from converting of (8d) and (8e) to equality constraints:

∑

c∈C r·dc + yd = Rd, ∀d ∈ D (10a)

r·dc + zdc = Rdpdc , ∀c ∈ C, d′ ∈ D (10b)

yd ≥ 0, zdc ≥ 0, ∀c ∈ C, d ∈ D (10c)

In addition, for every c ∈ C, the tracker maintains an esti-
mate of λd

c , i.e., the request rate of c from boxes within its
own class, as well as an estimate of r·dc ,i.e., the request rate
for content c served by boxes in Bd. These can be estimated
through appropriate counters or through more sophisticated
moving-average methods (such as, e.g., EWMA).

Using these estimates, the primal and dual variables are
updated as follows. At the end of round t, the tracker in
class d uses the estimates of r·dc to see whether constraints
(10a) and (10b) are violated or not. In particular, the tracker
computes the quantities:

sdtot(t) =
(
∑

c r
·d
c (t) + yd(t)−Rd

)

/|D|

sdc(t) =
(

r·dc (t) + zdc (t)−Rdpdc(t)
)

/|D|, ∀c ∈ C

and updates the dual variables as follows:

βd(t) = βd(t− 1) + θ(t)sdtot(t)

αd
c(t) = αd

c (t− 1) + θ(t)sdc(t), ∀c ∈ C

where {θ(t)}t∈N are positive and non-decreasing. Subse-
quently, the tracker broadcasts to every other tracker in D
its congestion signals αd(t), βd(t),sd(t), sdtot(t). This entails
the exchange of 2|D|(|D| + 1) values, in total.

For any d, d′ ∈ D, let Gdd′

tot (r
d, yd) =

∑

c r
dd′

c + 1d=d′y
d,

and Gdd′

c (rd,pd,zd) = rdd
′

c + 1d=d′(z
d
c −Rdpdc). Intuitively,

these capture the “contribution” of the primal variables of
class d to the constraints (10a) and (10b) of class d′. After
the tracker in class d has received all the messages sent by
other trackers, it solves the following quadratic program:

138

LOCALd(rd(t),pd(t),zd(t), yd(t),α(t),β(t), s(t),stot(t))

Min. F d(rd) +
∑

d′

βd′(t)Gdd′

tot (r
d, yd)

+
∑

d′,c

αd′

c (t)Gdd′

c (rd,pd,zd)

+
θ(t)

2

∑

d′

[

(

Gdd′

tot

(

r
d−r

d(t), yd−yd(t)
)

+ sd
′

tot(t)
)2

+
∑

c

(

Gdd′

c

(

r
d−r

d(t),pd−p
d(t),zd−z

d(t)
)

+ sd
′

c (t)
)2

]

s.t. (rd,pd,zd, yd) ∈ J d, ∀d ∈ D

var rd,pd,zd, yd, d ∈ D

where J d is the set of quadruplets (rd,pd,yd, zd) defined
by (8b) and (8c) as well as the non-negativity constraints.
LOCALd thus receives as input all the dual variables α,
β, the congestion variables sd, sd

tot, as well as all the local
primal variables at round t. The last four are included in
the quadratic terms appearing in the objective function, and
ensure the smoothness of the changes to the primal variables
from one round to the next.

6. CONTENT PLACEMENT
The previous section establishes that, through an appro-

priate exchange of congestion signals, trackers can solve (8)
in a distributed fashion. Nevertheless, the objective (8a) is
only an approximation of the actual traffic; this is because
requests reaching a class may be “dropped” and redirected
to the CDN infrastructure. In this section, we describe our
content placement scheme and show that it ensures that all
incoming requests are satisfied w.h.p..

6.1 Conditions for Non-Redirection
We begin by establishing the necessary and sufficient con-

ditions for requests to succeed w.h.p., when the trackers im-
plement the uniform slot service assignment.

Consider a collection of contents F ⊂ C such that |F| =
Md. Let Bd

F = {b ∈ Bd : Fb = F} be the set of boxes
in the class that store exactly F . These sets partition Bd

into sub-classes, each comprising boxes that store identical
contents. Let the number of boxes B = |B| go to infinity,
while scaling both the request arrival rates r·dc and the size of
the subclasses Bd

F = |Bd
F | proportionally to B. That is, the

quantities r.dc /B, Bd
F/B are constants that do not depend on

B as the latter increases. This scaling is consistent with our
design: as B increases, the aggregate content demand and
the storage and upload capacities grow proportionally with
B. The following theorem, proved in App. B, characterizes
the conditions under requests succeed w.h.p.

Theorem 2. Assume that requests are assigned according

to the uniform slot policy. Then, requests for every content

c ∈ C are served w.h.p. if and only if
∑

c∈A r·dc <
∑

F:F∩A6=∅B
d
FUd, for all A ⊆ C, (11)

Condition (11) stipulates that for any set of items A ⊆ C the
arrival rate of requests for these items does not exceed the
total upload capacity of class d boxes storing these items.

It is relatively straightforward to see that (11) is necessary
for (4) to hold (see [24]). It has recently shown that it is also
sufficient when the service assignment policy used is the

so-called repacking policy [24]. At the arrival of a request,
repacking re-assigns requests already served in boxes in the
system in order to accommodate this request. Performing
this “repacking” requires finding a maximum matching in a
bipartite graph of 2BdUd nodes. Our uniform slot policy is
thus easier to implement than repacking; moreover, Thm. 2
establishes that, despite its simplicity, it exhibits the same
asymptotic performance.

The theorem implies that, to serve all requests in a class
w.h.p., the content placement should be such that condi-
tion (11) is satisfied. Unfortunately, this condition consists
of a number of inequalities that is exponential in the catalog
size |C|, and is not a priori clear how to construct a content
placement scheme. We address this in the next section.

6.2 Placement Algorithm
In this section, we show that if the conditions (8d) and (8e)

of GLOBAL hold, there exists a simple content placement
scheme that satisfies (11). This has the following immediate
implications. First, it simplifies our design, as we only need
to ensure that the O(|D||C|) constraints (8d) and (8e) hold,
rather than the exponentially many constraints in (11); in-
deed it is only these constraints that our adaptation scheme
of Section 5 takes into account. Second, by Thm. 2, imple-
menting the placement in this section along with a uniform
slot assignment ensures that all requests are served w.h.p.

Below, we first describe this placement scheme, i.e. the
mapping of contents to boxes caches, that satisfies (11). We
then present an algorithm that, at each round, reshuffles
cache contents in the class to reach this placement with as
few item transfers as possible.
Designated Slot Placement. We now show that if (8d)
and (8e) hold, there exists a simple placement scheme—i.e.,
a set of cache contents {Fb}b∈Bd—that satisfies (11).

For every box b ∈ Bd, we identify a special storage slot
which we call the designated slot. We denote the content
of this slot by Db and the remaining contents of b by Lb =
Fb \ {Db}. For all c ∈ C, let Ed

c = {b ∈ Bd : Db = c} be the
set of boxes storing c in their designated slot. The following
lemma implies that if a sufficient number boxes store c in
their designated slot, then (11) is satisfied.

Lemma 1. If |Ed
c | > r·dc /Ud then (11) holds.

Proof. As Ed
c are disjoint, we have

∑

F:F∩A6=∅B
d
FUd =

∑

b∈Bd:Fb∩A6=∅ U
d =

∑

b∈Bd:Db∈A Ud +
∑

b∈Bd:Db 6∈A Ud ≥
∑

c∈A |Ed
c |U

d >
∑

c∈A r·dc , for all A ⊆ C.

Hence, to ensure that (11) is satisfied, it suffices that at
least r·dc /Ud boxes store c in their designated slot. We call
such a placement scheme a designated slot placement. On
the other hand, the fraction of boxes that store c in any

slot must not exceed pdc . The following lemma states that is
possible to place contents in each designated slot to ensure
that both constraints are satisfied when (8d) and (8e) hold:

Lemma 2. Given a class d, consider r·dc and pdc , c ∈ C,
for which (8d) and (8e) hold. There exist qdc ∈ [0, 1], c ∈ C,
such that

∑

c q
d
c = 1 and

0 ≤ r·dc /BdUd < qdc ≤ pdc ≤ 1, ∀c ∈ C. (12)

Moreover, such qdc can be computed in O(|C| log |C|) time.

The proof can be found in App. C. In summary, if (8d) and
(8e) hold, ensuring that requests for all contents are served

139

Input: Initial placement {Fb}b∈B and target ratios q′c, p
′
c

Let A+ := {c ∈ C : qc > q′c}, A
− := {c :∈ C : qc < q′c};

while there exists b ∈ B s.t. Db ∈ A+ and Lb ∩ A− 6= ∅
Pick c ∈ Lb ∩A−, and swap it locally with the content of Db.
Update q, π, A+, A− accordingly

while there exists b ∈ B s.t. Db ∈ A+ and Lb ∩ A− = ∅
Pick c ∈ A− and place c in the designated slot Db;
Update q, π, A+, A− accordingly

Let C+ := {c : πc > π′
c}; C

+ := {c : πc < π′
c};

C0 := C \ (C+ ∪ C−).
Let G := { b ∈ B s.t. C+ ∩ Lb 6= ∅ and C− \ (Db ∪ Lb) 6= ∅ };
while (G 6= ∅) or (there exists c ∈ C− s.t. (πc − π′

c)B ≥ 2)
if (G 6= ∅) then

Pick any b ∈ G
Replace some c ∈ C+ ∩ Lb with some c′ ∈ C− \ (Db ∪ Lb);

else

Pick c ∈ C− s.t. (πc − π′
c)B ≥ 2.

Find a box b that does not store c.
Pick c′ ∈ C0 ∩ Lb and replace c′ with c.

update G, π, C+, C−, C0 accordingly.

Figure 2: Placement Algorithm

w.h.p. in class d is achieved constructing a designated slot
placement. Such a placement stores content c in the desig-
nated slot of at least qdcB

d boxes, where qdcB
d are determined

as in Lemma 2; the remaining slots are used to achieve an
overall replication ratio of pdc within the class. Below, we
describe an algorithm that, given ratios qdc and pdc , places
content in class d in a way that these ratios are satisfied.
For simplicity, we drop the superscript d in the remainder of
this section, referring to content placement in a single class.

Constructing a Designated Slot Placement. We
now describe how to change cache contents at the end of
each adaptation round. The tracker is aware of the initial
content placement {Fb}b∈B over B boxes in set B, prior to
the adaptation, as well as the target (i.e., adapted) repli-
cation ratios p′c and q′c, c ∈ C, satisfying (12); the former
are given by the adaptation algorithm, and the latter by
Lemma (2). The placement algorithm, outlined in Fig. 2, re-
ceives these as inputs and outputs a new content placement
{F ′

b}b∈B in which q′cB boxes store c in their designated slot,
while approximately p′cB boxes store c overall. Crucially,
the placement requires as few cache changes as possible.

We assume that q′cB and p′cB are integers—for large B,
this is a good approximation. Let qc, pc be the corresponding
designated slot and overall fractions in the input placement
{Fb}b∈B. Let πc = pc − qc, π

′
c = p′c − q′c. A lower bound

on the cache modification operations needed to attain the
target replication ratios q′c and p′c is given by B(α + β)/2,
where α =

∑

c |qc − q′c|, β =
∑

c |πc − π′
c|. We also express

the number of operations performed in terms of these quan-
tities. The complexity and correctness of the algorithm
are established in the following theorem, whose proof is in
App. D:

Theorem 3. The content placement algorithm in Fig. 2

leads to a content replication {F ′
b}b∈B in which exactly q′cB

boxes store c in their designated slot, and p′′cB boxes store c
overall, where

∑

c |p
′
c − p′′c |B < 2M, and |p′c − p′′c |B ≤ 1, for

all c ∈ C. The total number of write operations is at most

B[α+ (M − 1)(α+ β)]/2.

In summary, our algorithm produces a placement in which
at most 2M items are either under or over-replicated, each

by only one replica. Most importantly, the placement is
achieved with at most O(B(α+ β)) write operations, which
is order-optimal. If replication ratios change gradually (and,
thus, α and β are small), as ensured by our policy adapta-
tion, the algorithm does not perform a large number of cache
changes. We describe the algorithm in more detail below.

The algorithm proceeds in three phases. In the first phase,
the algorithm modifies the designated slots to reach the de-
sired ratios q′. To do so, the algorithm picks any over-
replicated content c in set A+ = {c : qc > q′c}. For any
user holding c in its designated slot, it checks whether it
holds in its normal slots an under-replicated content c′ ∈
A− = {c : qc < q′c}. If such content exists, it renames the
corresponding slot as “designated” and the slot holding c as
“normal”. This is repeated until an under-replicated content
c′ cannot be found within the normal cache slots of boxes
storing some c ∈ A+. If there still are over-replicated items
in A+, some c′ ∈ A− is selected arbitrarily and overwrites
c within the designated slot. At the end of this phase, the
replication rates within the designated slots have reached
their target B~q′, and the resulting caches are free of du-
plicate copies. Also, after these operations, the intermedi-
ate replication rates π′′

c within the normal cache slots verify
|Bπc −Bπ′′

c | ≤ |Bqc −Bq′c|.
In the second phase, the algorithm begins transforming

these intermediate replication rates π′′
c into π′

c. To this end,
we distinguish contents c that are over-replicated, under-
replicated and perfectly replicated by introducing C+ = {c :
πc>π′

c}, C− = {c :πc<π′
c}, and C0 = {c :πc=π′

c}.
C+ = {c : πc > π′

c}, C− = {c : πc < π′
c}, C0 = {c : πc =

π′
c}.
For any box b, if there exists c ∈ C+ ∩ Lb, and c′ ∈

C− \ (Db∪Lb), the algorithm replaces c by c′ within Lb. We
call the corresponding operation a greedy reduction. Greedy
reductions are repeated until the algorithm arrives at a con-
figuration where no such changes are possible; this termi-
nates the second phase. At that point, for any box b such
that C+ ∩ Lb is not empty, necessarily C− ⊂ (Lb ∪ Db).
Hence, the size of C− is at most M − 1. If any of the el-
ements in C− is under replicated by at least two replicas,
the algorithm enters its third phase. In this phase, the al-
gorithm picks some content c′ that is under-replicated by at
least 2 replicas, and finds a user b which does not hold c′,
i.e. c′ ∈ C−\(Db∪Lb). It also selects some content c within
C0 ∩ Lb: such content must exist, since |C−| ≤ M − 1, and
C− ∩ Lb ⊂ C− \ {c′} has size strictly less than M − 1, the
size of Lb; the remaining content c must belong to C0 since
otherwise we could have performed a greedy reduction.

The algorithm then replaces content c by content c′. We
call this operation a switch. This augments the size of set
C−: indeed content c is now under-replicated (one replica
missing). The algorithm then tries to do a greedy reduc-
tion, i.e., a replacement of an over-replicated content by
c if possible. If not, it performs another switch, i.e., by
identifying some content under-replicated by at least 2, and
creating a new replica in place of some perfectly replicated
item, thereby augmenting the size of C−. Hence, in at most
M −1 steps, the algorithm inflates the size of C− to at least
M , at which stage we know that a greedy reduction can be
performed. This alteration between greedy reductions and
switches is repeated until the size of C− is at most M − 1,
and each such content is missing exactly one replica.

140

10
2

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

0.25

Number of Boxes B

D
ro

p
p

in
g

 P
ro

b
a

b
ili

ty
 P

(B
)

M=1

M=2

M=4

M=8

Figure 3: Dropping probability decreases fast with
uniform slot strategy. Simulation in a single class
with a catalog size of C = 100.

0 2 4 6 8 10
0

0.5

1

1.5

Timeline

G
lo

b
a
l
C

o
s
t

Empirical

Numerical

Optimal

Figure 4: Decentralized optimization, content place-
ment scheme and uniform-slot policy, under param-
eters C = 1000, D = 10, B̄ = 1000, Ū = 3, M̄ = 4.

7. PERFORMANCE EVALUATION
In this section, we evaluate our algorithms under synthe-

sized traces and a real-life BitTorrent traffic trace. We im-
plement an event-driven simulator that captures box-level
content placement and service assignment. In particular,
we implement the solutions we proposed in Section 5 (decen-
tralized optimization) and Section 6 (Designated Slot Place-
ment). We also implement class trackers that execute the
decentralized solution in Fig. 1.

In the rest of this section, all evaluations are performed
using a cost matrix with random class-pairwise sampled uni-
formly from [0, 1]. The download cost from a box in the same
class is 0, while the cost of downloading from the infrastruc-
ture is set to 3 for all classes.

7.1 Simulation on Synthesized Trace
First, we show that the uniform-slot policy achieves close-

to-optimal service assignment, given that content-wise ca-
pacity constraints are respected. We focus on a single ISP
and assign requests to individual boxes under the uniform-
slot policy. Fig. 3 shows the loss probability under various
settings of B and M . We utilize a synthesized trace with
Poisson arrivals and exponentially distributed service time
of mean one. Content popularity follows a Zipf distribution.
We scale the total request rate to be proportional to the
number of boxes. As predicted by the theory, the dropping
probability quickly vanishes as B grows. For the same B, the
dropping probability is higher when M is larger. When the
storage is rich, our scheme tries to allocate popular content
in caches in order to minimize cost. The locally absorbed
requests are not counted in calculating the dropping prob-
ability. In fact, the effective requests come from unpopular
contents, which is expected to generate a higher drop rate.

We next show the optimality of our full solution, again
utilizing a synthesized trace generated as above. Content
popularities are heterogeneous in different classes. Fig. 4 il-
lustrates the average empirical cost per request, compared
to (a) the fluid prediction under distributed optimization,

when λd
c and rdd

′

c are estimated perfectly, and (b) the op-
timal cost computed offline. Though the number of boxes
is finite, and the above quantities are estimated empirically,
the distributed algorithm converges close to the global opti-
mum after a handful of rounds.

7.2 Simulation on BitTorrent Trace
We next employ a real-life trace collected from the global

Vuze network, one of the most popular BitTorrent clients.
Our main motivation for using the BitTorrent trace is to
validate our solution under realistic content popularity and
access patterns.

Trace Collection and Evaluation Setup. Vuze clients
issue a put each time they start downloading a file, and
route the put to the 20 nodes whose IDs are closest to the
file identifier. To collect these traces, we ran 1000 DHT
nodes with randomly-chosen IDs, and logged all DHT put

messages routed to our nodes. Therefore, our traces show
all downloads for those files whose identifiers are close to
the ID of one of our 1000 DHT nodes. Since the Vuze
DHT has around 1 million nodes, and each file download
is observed by 20 nodes, by running 1000 nodes we observe
around 106/20/1000, i.e., 2% of all download requests. Dur-
ing 30 days we traced the downloads of around 2 million
unique files by 8 million unique IP addresses. We deter-
mined the country of each IP using Maxmind’s GeoLite City
database [27]. We use the country-level geo-locality of BT
users to organize them into classes. We do not model inter-
class cost, e.g., latency, on geo-locality, as measuring and
estimating such costs are outside the scope of this paper.

To limit the runtime of our event-driven simulations, we
trim the traces by considering only the top 1,000 most popu-
lar files, which contribute 52% of the total downloads. Given
a fixed number of boxes and cache size, there are very few
copies of unpopular contents cached in these boxes. As a re-
sult, adding more contents will not significantly change the
system configuration and the overall cost.

Fig. 5(a) illustrates the total number of download events
and unique IPs, grouped by countries in a decreasing order
of total downloads during the 30-day period, and the cumu-
lative counts in Fig. 5(b). We select the top 20 countries as
classes in our evaluation, comprising over 80% of all down-
loads. The trace shows that one user issues, on average,
approximately one content request. We use 2 upload slots
and 2 storage slots for each user (box) in our simulation.

Previously we have shown the efficiency of our algorithm
given fixed request rates. In practice, the content popularity
may change over time. The content demand should remain
sufficiently stable in order for our algorithm to work well and
not oscillate wildly. In our evaluation, we measure content
demands based on a 24-hour interval, and simply use the de-
mand from the previous day to project the request rates for
the next day. This undoubtedly only provides a conservative
estimate for our solution, as a more accurate traffic predic-
tion will further improve the performance of our approach.
Fig. 5(c) shows the relative difference between the predicted
rate and the true rate, grouped by content in decreasing
order of popularity. Each data point is averaged over the

141

0 50 100 150 200 250
10

0

10
5

Country in Decreasing Order of Total Downloads

#
 o

f
D

o
w

n
lo

a
d
s
/I

P
s

Downloads

Unique IPs

(a)

0 50 100 150 200 250
0.2

0.4

0.6

0.8

1

Country in Decreasing Order of Total Downloads

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
ti
le

Downloads

Unique IPs

(b)

0 200 400 600 800 1000
0

100

200

300

400

500

Content ID in Decreasing Order of Popularity

R
e
la

ti
v
e
 D

if
fe

re
n
c
e
 (

%
)

(c)

Figure 5: BitTorrent trace statistics. (a) Cumu-
lative counts of downloads/boxes. (b) Per-country
counts of downloads/boxes. (c) Predictability of
content demand in 1-hour interval over 1 month.

entire 30-day period. The results show that demand is sta-
ble over 24 hrs for most content. High variations are due
to new contents such as videos that reach a popularity peak
during the first few days after their releases.

Evaluation results. We compare our solution to fre-
quently used caching strategies, as well as a request rout-
ing heuristic. In particular, we implement Least Recently
Used (LRU), and Least Frequently Used (LFU) caching al-
gorithm. Each box implements the cache eviction policy
locally. The recency and frequency counts apply to all con-
tents, i.e., including both local and remote requests. We also
implement a local request routing heuristic, i.e., the “clos-
est” policy. When a download request is issued, all classes
are examined in a greedy manner, e.g., starting from its own
class, to remote classes in an increasing order of cost. The
request is accepted by a class whenever there exists at least
one box in this class which stores the desired content and
has one or multiple free slots. If no such a class is found, the
request is directed to the CDN server. We implement the
following solutions: (i) LRU-closest and (ii) LFU-closest, the
combinations of caching and request routing heuristics, (iii)
Decentralized, the full set of solution proposed in this paper,
and (iv) Offline Optimal, which assumes the perfect knowl-
edge of content demands and is the optimal solution to the
global problem. The offline optimal provides a lower-bound
for download costs, but does not reflect content shuffling
costs between different periods.

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

Hour

A
v
e
ra

g
e
 D

o
w

n
lo

a
d
 C

o
s
t

Offline Optimal

Decentralized

LRU−closest

LFU−closest

Figure 6: Performance of different algorithms over
a real 30-day BitTorrent trace.

We evaluate the same BitTorrent trace under the four so-
lutions. All scenarios begin with the same initial content
placement over all boxes. Fig. 6 shows the average down-
load cost (between 0 and 3) every hour for the entire 30-day
period. Results demonstrate that our solution significantly
reduces cross traffic between classes compared to the two
heuristics. This is not surprising because both LRU and
LFU are local heuristics that do not consider the global
demand and optimize overall costs, and are implemented
on top of a greedy local routing policy, which is certainly
sub-optimal than a jointly optimized scheme. Our results
provide an evidence that such an optimal gap can be quite
large. The spiked cost is a consequence of content shuffles
and temporary request drops when new popular contents
are introduced. Our solution is able to quickly adapt to
such changes and save a significant amount of costs.

8. SUMMARY
We offer a solution to regulate cross-traffic and minimize

content delivery costs in decentralized CDNs. We present
an optimal request routing scheme that can nicely accom-
modate user demands, an effective service mapping algo-
rithm that is easy to implement within each operator, and
an adaptive content caching algorithm with low operational
costs. Through a live BitTorrent trace-based simulation,
we demonstrate that our distributed algorithm is simultane-
ously scalable, accurate and responsive.

9. REFERENCES
[1] “Cisco visual networking index: Forecast and methodology,

2010-2015.”
[2] “Nanodatacenters: http://www.nanodatacenters.eu/.”
[3] “Boxee.” http://www.boxee.tv/.
[4] C. Huang, A. Wang, J. Li, and K. W. Ross,

“Understanding hybrid CDN-P2P: why Limelight needs its
own Red Swoosh,” in NOSSDAV, 2008.

[5] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, and
P. Rodriguez, “Greening the Internet with nano data
centers,” in CoNEXT, 2009.

[6] C. Huang, J. Li, and K. W. Ross, “Peer-assisted VoD:
Making Internet video distribution cheap,” in IPTPS, 2007.

[7] R. S. Peterson and E. G. Sirer, “Antfarm: Efficient content
distribution with managed swarms,” in NSDI, 2009.

[8] Y. Chen, Y. Huang, R. Jana, H. Jiang, M. Rabinovich,
B. Wei, and Z. Xiao, “When is P2P technology beneficial
for IPTV services,” in NOSSDAV, 2007.

[9] Y. F. Chen, Y. Huang, R. Jana, H. Jiang, M. Rabinovich,
J. Rahe, B. Wei, and Z. Xiao, “Towards capacity and profit
optimization of video-on-demand services in a peer-assisted

142

IPTV platform,”Multimedia Systems, vol. 15, no. 1,
pp. 19–32, 2009.

[10] V. Misra, S. Ioannidis, A. Chaintreau, and L. Massoulié,
“Incentivizing peer-assisted services: A fluid Shapley value
approach,” in ACM SIGMETRICS, 2010.

[11] “People’s CDN: http://pcdn.info/.”
[12] D. Han, D. G. Andersen, M. Kaminsky, K. Papagiannaki,

and S. Seshan, “Hulu in the neighborhood,” in COMSNET,
2011.

[13] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala,
T. Bates, and A. Zhang, “Improving traffic locality in
bittorrent via biased neighbor selection,” in ICDCS, 2006.

[14] R. Cuevas, N. Laoutaris, X. Yang, G. Siganos, and
P. Rodriguez, “Deep diving into BitTorrent locality,” in
INFOCOM, 2011.

[15] D. R. Choffnes and F. E. Bustamante, “Taming the
torrent: a practical approach to reducing cross-ISP traffic
in peer-to-peer systems,” in SIGCOMM, 2008.

[16] V. Aggarwal, A. Feldmann, and C. Scheideler, “Can ISPs
and P2P users cooperate for improved performance?,”
ACM SIGCOMM Computer Communication Review,
vol. 37, pp. 29–40, July 2007.

[17] J. Wang, C. Huang, and J. Li, “On ISP-friendly rate
allocation for peer-assisted VoD,” in Multimedia, 2008.

[18] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. Liu, and
A. Silberschatz, “P4P: Provider Portal for (P2P)
Applications,” in SIGCOMM, 2008.

[19] I. Baev, R. Rajaraman, and C. Swamy, “Approximation
algorithms for data placement in arbitrary networks,”
SIAM Journal of Computing, vol. 38, no. 4, 2008.

[20] S. C. Borst, V. Gupta, and A. Walid, “Distributed caching
algorithms for content distribution networks,” in
INFOCOM, 2010.

[21] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman,
“Placement algorithms for hierarchical cooperative
caching,” Journal of Algorithms, vol. 38, 2001.

[22] Y. Zhou, T. Z. J. Fu, and D. M. Chiu, “Modeling and
analysis of P2P replication to support VoD service,” in
INFOCOM, 2011.

[23] W. Wu and J. C. S. Lui, “Exploring the optimal replication
strategy in P2P-VoD systems: characterization and
evaluation,” in INFOCOM, 2011.

[24] B. R. Tan and L. Massoulié, “Optimal content placement
for peer-to-peer video-on-demand systems,” in INFOCOM,
2011.

[25] K. W. Ross, Multiservice Loss Networks for Broadband
Telecommunications Networks. Springer-Verlag, 1995.

[26] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and
Distributed Computation: Numerical Methods. Athena
Scientific, 1997.

[27] “http://www.maxmind.com/app/geolitecity.”
[28] L. Massoulié, “Structural properties of proportional

fairness,”The Annals of Applied Probability, vol. 17, no. 3,
2007.

[29] H. Kushner and G. Yin, Stochastic approximation and
recursive algorithms and applications. Springer, 2003.

[30] M. Benäım and J.-Y. LeBoudec, “A class of mean field
interaction models for computer and communication
systems,” Perform. Eval, pp. 11–12, 2008.

APPENDIX

A. PROOF OF THEOREM 1
After the conversion of (8d) and (8e) to equality con-

straints through (10), GLOBAL has the following prop-
erties. First, the objective (8a) is separable in the local
variables (rd,pd, yd,zd), corresponding to each class. Sec-
ond, the constraints (10a) and (10b) coupling the local vari-
ables are linear equalities. Finally, the remaining constraints

(8b) and (8c) as well as the positivity constraints define
a bounded convex domain for the local primal variables.
These properties imply that the method of multipliers ad-
mits the distributed implementation in [26], Example 4.4.,
pp. 249–251, and the theorem follows.

B. PROOF OF THEOREM 2
We partition the set of boxes B according to the contents

they store in their cache. In particular, each of the boxes
in B are grouped into L sub-classes B1,B2, . . . ,BL, where
all boxes in the i-th class Bi, 1 ≤ i ≤ L, store the same
set of contents Fi ⊂ C such that |Fi| = M . We denote by
L = {1, 2, . . . , L} and by Bi = |Bi| the number of boxes
in the i-th sub-class. For A ⊆ C, let supp(A) = {i ∈ L :
Fi ∩ A 6= ∅} be the set of sub-classes of boxes storing at
least one content in A, and βi =

BiU

BU
, i ∈ L and ρc = rc

BU
,

c ∈ C. Note that, by our scaling assumption, when B → ∞,
the above quantities remain constant, and that (11) can be
rewritten as:

∑

c∈A ρc <
∑

j∈supp(A) βi, ∀A ⊆ C.
Let Xi be the number of empty slots in the i-th subclass.

Then, under the uniform slot service assignment policy, the
stochastic process X : R+ → N

L is a Markov process and
can be described as follows:

Xi(t) = Xi(0) + E+
i

(
∫ t

0

BiU −Xi(τ)dτ

)

−E−
i





∫ t

0

∑

c∈Fi

rc
Xi(τ)

∑

j:c∈Fj
Xj(τ)

dτ



 , i ∈ L,

(13)

where E+
i , E−

i , i ∈ L, are independent unit-rate Poisson
processes. Assume by convention that for all i ∈ L and all

c ∈ Fi,
Xi(τ)∑

j:c∈Fj
Xj(τ)

= 0 whenever
∑

j:c∈Fj
Xj(τ) = 0. A

mapping x : R+ → [0, 1]L is a fluid trajectory of the system
if it satisfies the following set of equations for all i ∈ L.

xi(t)=xi(0)+βit−

∫ t

0

xi(τ)dτ−
∑

c∈Fi

ρc

∫ t

0

zc,i(x(τ))dτ, (14)

where zc,i, c ∈ Fi, are functions satisfying

zc,i(x) =
xi

∑

j:c∈Fj
xj

, if
∑

j:c∈Fj

xj > 0, and (15a)

zc,i(x) > 0,
∑

i∈supp({c})

zc,i ≤ 1 otherwise (15b)

Given a vector x0 ∈ [0, 1]L, we define S(x0) to be the set
of fluid trajectories defined by integral equation (14) with
initial condition x(0) = x0.

Lemma 3. Consider a sequence of positive numbers {Bk}k∈N

such that limk→∞ Bk = +∞, and a sequence of initial con-

ditions Xk(0) = [xk
i]1≤i≤L s.t. the limit limk→∞

1
Bk X

k(0) =

x0 exists. Let {Xk(t)}t∈R+ denote the Markov process given

by (13) given that B = Bk, and consider the rescaled process

xk(t) = 1
BkU

Xk(t), t ∈ R+. Then for all T > 0 and all ǫ >

0, limk→∞ P
(

infx∈S(x0) supt∈[O,T] |x
k(t)− x(t)| ≥ ǫ

)

= 0.

Proof. The proof is identical to the one in [28]. The
only steps that we need to verify is that for every i and
every c ∈ Fi, Xi/

∑

j:c∈Fj
Xj is bounded (by 1), and at

its points of discontinuity x′ such that
∑

j:c∈Fj
Xj is zero,

lim sup
x→x′ Xi/

∑

j:c∈Fj
Xj = 1. Both are easy to verify.

143

Lemma 3 implies that (a) the set of fluid trajectories S(x)
is non-empty and (b) the rescaled process xk converges on
every finite set [0, T] to a fluid trajectory, as B → ∞, in
probability. We therefore turn our attention to studying the
asymptotic behavior of such fluid trajectories.

Given an x0 ∈ [0, 1]L, consider a fluid trajectory x ∈
S(x0). Since zi,c are bounded by 1, (14) implies that x is Lip-
schitz continuous (with parameter

∑

c ρc). By Rademacher’s
theorem, ẋ exists almost everywhere and is given by

ẋi = βi − xi −
∑

c∈Fi

ρczc,i(x), i ∈ L. (16)

Let J = limt→∞

⋃

y∈[0,1]L{x(s), s ≥ t : x(0) = y} be the

limit set [29] of ODE (16). Then, Lemma 3 implies (see
Thm. 3 in Benäım and Le Boudec [30]) that, as k tends to
infinity, the support of the steady state probability of Xk

converges to a subset of J . Thus, to show that the proba-
bility that queries for every content item succeed asymptot-
ically almost surely, it suffices to show that x∗

i > 0 for every
x∗ ∈ J . Indeed, let I0(x) = {i : xi = 0} be the zero-valued
coordinates of x and C(I) = {c ∈ C : supp({c}) ⊆ I} de-
note the set of items stored only by classes in I ⊆ L. Con-
sider the following candidate Lyapunov function: G(x) =
∑

i∈L βi log(xi) −
∑

i∈L xi −
∑

c∈C ρc log
(

∑

j∈supp({c}) xj

)

,

if x > 0 and G(x) = −∞ otherwise.

Lemma 4. Under (11), G is continuous in [0, 1]L.

Proof. Consider a x′ such that I ≡ I0(x
′) 6= ∅. Con-

sider a sequence xk ∈ [0, 1]L, k ∈ N, s.t. xk → x in the
‖ · ‖∞ norm (or any equivalent norm in R

L). We need
to show that limk→∞ G(xk) = −∞. If I0(x

k) 6= ∅ for
some k, then G(xk) = −∞; hence, w.l.o.g., we can assume
that xk ∈ (0, 1]L. Then G(xk) = Ak + Bk, where Ak =
∑

i∈L\I

βi log(x
k
i)−

∑

i∈L

xk
i −

∑

c∈C\C(I)

ρc log
(

∑

j∈supp({c})

xk
j

)

, and

Bk =
∑

i∈I βi log(x
k
i) −

∑

c∈C(I) ρc log
(

∑

j∈supp({c}) x
k
j

)

.

The by the continuity of the log function, and the fact that
x′
i > 0 for all i /∈ I , it is easy to see that limk→∞ Ak exists

and is finite. On the other hand, if C(I) = ∅, Bk obviously
converges to −∞. Assume thus that C(I) is non-empty.
Partition I into classes I1, . . . , Im s.t. xk

i = yk
ℓ for all i ∈ Iℓ

(i.e., all coordinates in a class assume the same value). Then

Bk ≤
∑

i∈I

βi log(x
k
i)−

∑

c∈C(I)

ρc log(max
j∈supp({c})

xk
j)

=

m
∑

ℓ=1

log(yk
ℓ)

∑

i∈Iℓ

βi −
m
∑

ℓ=1

log(yk
ℓ)

∑

c∈C(I)

ρc1yk
ℓ
=maxj∈supp({c}) x

k
j

≤
m
∑

ℓ=1

log(yk
ℓ)(

∑

i∈Iℓ

βi −
∑

c∈C(Iℓ)

ρc)

since 1yk
ℓ
=maxj∈supp({c}) xk

j
≤ 1supp({c})∩Iℓ=∅ and log(yk

ℓ) < 0

for k large enough. Under (11), the above quantity tends to
−∞ as k → ∞, and the lemma follows.

Suppose that I0(x(t)) = ∅, i.e.. x(t) > 0. Then (16)

gives d(log xi)
dt

= ẋi

xi
= βi

xi
− 1 −

∑

c∈Fi
ρc

1∑
j:c∈Fj

xj
= ∂G

∂xi

Hence, dG(~x(t))
dt

=
∑

i
∂G
∂xi

ẋi =
∑

i xi

(

∂G
∂xi

)2

≥ 0, i.e., when

at x, G is increasing as time progresses under the dynamics

(16). This, implies that if x(t) > 0 then the fluid trajec-
tory will stay bounded away from any x′ s.t. I0(x) 6= ∅,
as G(x′) = −∞ and by Lemma 4 to reach such an x′ the
quantity G(x(t)) would have to decrease, a contradiction.

Suppose now that I = I0(x(t)) 6= ∅. We will show that
I0(x(t+ δ)) = ∅, for small enough δ. Our previous analysis
for the case I0(x) therefore applies and the theorem, as the
limit set L cannot include points x∗such that I0(x

0) 6= ∅.
By (14) and (15), fluid trajectories are Lipschitz continuous;
hence, for δ small enough, xi(t + δ) > 0 for all i /∈ I . By

(16),
∑

i∈I
dxi

dt
=

∑

i∈I βi −
∑

i∈I
c∈Fi

ρczc,i(x)
(15a)
=

∑

i∈I βi −

∑

i∈I
c∈Fi∩C(I)

ρczc,i(x)
(15b)

≥
∑

i∈I βi−
∑

c∈C(I) ρc
(11)
> 0. Hence,

for δ small enough, there exists at least one i ∈ I such that
xi(t+ δ) > 0. Given that xi, i /∈ I , will stay bounded away
from zero within this interval, this implies that within δ
time (where δ small enough) all coordinates in I will become
positive. Hence, I0(x(t+ δ)) = ∅, for small enough δ.

C. PROOF OF LEMMA 2
We provide a constructive proof below, calculating qdc that

satisfy (12). If Md = 1, the lemma trivially holds for qdc =
pdc . Now suppose that Md ≥ 2. Let ǫ = 1−

∑

c∈C r
·d
c /BdUd

and ǫc = pdc − r·dc /BdUd. From (8d) and (8e), we have
that ǫ > 0 and ǫc > 0. Sort ǫc in an increasing fashion, so
that ǫc1 ≤ ǫc2 ≤ . . . ≤ ǫc|C|

. If ǫc1 ≥ ǫ, then the lemma

holds for qdc = r·dc /BdUd + ǫ/|C|. Assume thus that ǫc1 < ǫ.

Let k = max{j :
∑j

i=1 ǫci < ǫ}. Then 1 ≤ k < |C|, as
∑

c∈C ǫc
(8b)
= M − 1 + ǫ > M − 1 > ǫ for M ≥ 2. Then,

ǫ′ = ǫ −
∑k

i=1 ǫci > 0, by the definition of k. Let qdci =

r·dc /BU + ǫci for i ≤ k and qdci = r·dc /BU + ǫ′/(|C| − k) for

i > k. Then qdci = pdci > λc/BU for i ≤ k. For i > k,

qdci > r·dc /BU as ǫ′ > 0 while ǫ′/(|C| − k) ≤ ǫ′ ≤ ǫck+1 , as

otherwise
∑k+1

i=1 ǫci < 1, a contradiction. Moreover, ǫck+1 ≤

ǫci for all i ≥ k, so qdci ≤ r·dci/BU+ǫci ≤ pdc . Finally,
∑

c q
d
c =

∑k

i=1(r
·d
ci
/BU + ǫci) +

∑C
i=k+1 r

·d
ci
/BU + ǫ′ =

∑

c r
·d
c /BU +

ǫ = 1, and the lemma follows.

D. PROOF OF THM. 3
Every modification in the first phase of the algorithm in-

curs at most one cache write, and reduces the l1 norm—
i.e., the imbalance—between the vectors Bq and Bq′ by 2.
As such, the first phase terminates in at most Bα/2 opera-
tions, at a total cost of at most Bα/2 writes. In the second
phase, every greedy reduction reduces the l1 distance—i.e.,
the imbalance—between vectors Bπ and Bπ′ by 2, at the
cost of one write operation. In the third phase, every switch
maintains the imbalance constant; moreover, there can be no
more than M − 1 consecutive switch operations that must
immediately be followed by a greedy reduction. As such,
the imbalance reduces by 1 in at most M write operations.
At termination of the third phase, since C− is a has size at
most M − 1, and each item is missing at most one replica,
the imbalance is at most 2M . Since after phase one the im-
balance was N

∑

c |πc − π′
c| ≤ B(α + β), the total number

of write operations in the second and third phase is at most
(M − 1)(B/2)(α+ β).

144

