
MAClets: Active MAC Protocols over Hard-Coded Devices

Giuseppe Bianchi
CNIT

Universitá degli Studi
di Roma Tor Vergata

Italy
giuseppe.bianchi@uniroma2.it

Pierluigi Gallo
CNIT / Universitá degli Studi

di Palermo - Italy
pierluigi.gallo@unipa.it

Domenico Garlisi
CNIT / Universitá degli Studi

di Palermo - Italy
domenico.garlisi@unipa.it

Fabrizio Giuliano
CNIT / Universitá degli Studi

di Palermo - Italy
fabrizio.giuliano@unipa.it

Francesco Gringoli
CNIT / Universitá degli Studi

di Brescia - Italy
francesco.gringoli@unibs.it

Ilenia Tinnirello
CNIT / Universitá degli Studi

di Palermo - Italy
ilenia.tinnirello@unipa.it

ABSTRACT
We introduce MAClets, software programs uploaded and ex-
ecuted on-demand over wireless cards, and devised to change
the card’s real-time medium access control operation. MAClets
permit seamless reconfiguration of the MAC stack, so as to
adapt it to mutated context and spectrum conditions and
perform tailored performance optimizations hardly account-
able by an once-for-all protocol stack design. Following tradi-
tional active networking principles, MAClets can be directly
conveyed within data packets and executed on hard-coded de-
vices acting as virtual MAC machines. Indeed, rather than
executing a pre-defined protocol, we envision a new architec-
ture for wireless cards based on a protocol interpreter (en-
abling code portability) and a powerful API. Experiments
involving the distribution of MAClets within data packets,
and their execution over commodity WLAN cards, show the
flexibility and viability of the proposed concept.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications, Wire-
less communication

General Terms
Design, Experimentation, Management

Keywords
programmable MAC; WLAN 802.11, reconfigurability; cog-
nitive radio

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10–13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

1. INTRODUCTION
It was the end of the last century since cognitive [1] and

active [2] wireless networks were considered near to come.
The promise was that wireless networks would have soon be-
come capable of being dynamically reprogrammed so as to
best fit unpredictable and dynamically mutating context sit-
uations; adapt to user preferences, usage patterns, or service
demand variations; smartly exploit temporarily unused radio
spectrum, etc.

The aftermath is that such a vision is still fighting with the
limited flexibility of commercial wireless products and stan-
dards. Whereas, in the last decade, the scientific community
emerged with open-source, fully programmable DSP, FPGA,
or SDR platforms, most wireless manufacturers have con-
sistently pursued a closed products’ design strategy, which
reduces programmability to the tuning of some pre-defined
device parameters. On the other side, although many stan-
dards include different configurable operation modes, they
are designed to be comprehensive, one-size-fits-all and may
fail to be effective in specific niche contexts or particular net-
work situations.

With specific reference to the Medium Access Control func-
tionalities, on which this paper is focused, flexibility has been
so far accomplished by standardizing a set of configurable
parameters, as well as the means to dynamically signal, con-
trol, and enforce the relevant settings. Even the 802.22 MAC
layer, specifically defined for cognitive networks, is based on
pre-defined transport modes (combining polling, contention
and unsolicited bandwidth grants mechanisms) that can be
selected according to the service requirements [3]. Another
example is the case of the 802.11 QoS (EDCA) extensions,
originally standardized in the 802.11e amendment, which per-
mits dynamic configuration, via beacons, of the key param-
eters characterizing each traffic category, namely contention
windows, transmission opportunities, and arbitration inter
frame spaces. Such parameters can then be exploited to opti-
mize performance for dynamically varying context conditions
such as number of competing stations [4, 5].

The current solutions prevent to extend configuration fa-
cilities to new MAC parameters or functions, unless a rele-

229

vant standard amendment is first approved and then adopted
by manufacturers. With this paper, we aim to show that a
radically different approach allowing wireless devices to dy-
namically download and install on-the-fly a full protocol logic
(rather than a set of parameter settings), customized for spe-
cific contexts and conditions, is technically feasible even in a
multi-vendor scenario. As a basic use-case, imagine a termi-
nal associating to an Access Point in a specific context, for
instance an home or an airport. The network provider has
programmed a number of custom MAC protocols, each opti-
mized for the specific context and for a different operation or
traffic/service condition. Upon association (or upon changes
in conditions), the terminal downloads a new MAC protocol
from the AP, and starts using it. This network management
approach (which makes concrete, at least for what concerns
the MAC protocol stack, the futuristic vision described in
[6]) is not anymore hindered by the reliance on standards;
it suffices that all terminals support i) a “default” protocol
operation, for instance WiFi, for first communicating with
the AP, and ii) an architecture which permits the real time
programming of the MAC protocol, and which runs a same
software on different hardware platforms, say something as
Java for wireless MAC protocols (adapting a quote from [6]
- indeed this justifies the name “MAClet” we use throughput
this paper). Note that in a single vendor scenario (or in an
idealistic scenario where all clients are open source devices),
this would trivially reduce to load a new firmware in the
wireless cards. Rather, the challenging real world hurdle to
overcome is how to re-program, or, even better, dynamically
reconfigure in real time the MAC protocol operation, under
the constraint that such reconfiguration is done in a way that
does not require vendors to open their platforms.

Our contribution
In order to program MAC protocols on closed devices, suit-
able Programming Interfaces are mandated. This problem
has recently received crucial attention, and the identification
of a MAC programming interface appears to emerge (explic-
itly or implicitly) from a number of recent works [7, 8, 9, 10],
where a number of common primitives (core functions in [7],
modules in [8], components in [9], actions/event/conditions
in [10]) have been proposed for assembling different MAC
schemes in an high-level programming language.

This paper leverages, as starting point, our prior findings
described in [10], where we proposed to formally describe a
MAC protocol through extended finite state machines, ex-
ecuted by a Wireless MAC Processor (WMP) architecture
running inside the wireless card. The further steps taken
in the present work involve both technical and application
aspects. From the technical side, several extensions to the
framework described in [10] were necessary to support real-
time code switching (and MAC multi-threading) with neg-
ligible (sub microseconds) delay. On top of the extended
WMP architecture, we developed a control framework for
supporting MAClet code mobility, i.e. for moving, loading
and activating MAC software programs embedded into ordi-
nary data packets (akin to traditional active networks’ cap-
sules) along with relevant meta-data such as initial state and
startup conditions. From the application side, this paper
takes a completely different perspective with respect to [10]:

from the node-level ability to run different MAC protocols,
to the network-level perspective of managing and dynami-
cally reconfiguring, in real-time, the network, well beyond
the parameter-based reconfiguration of today WLAN deploy-
ments [11, 12]. The network-level reconfiguration capabilities
of the framework have been validated in two interesting use-
cases examples (including dynamic spectrum access and sup-
port of virtual operators using different MAC protocols over
a same, time-shared, infrastructure).

Our contribution focuses on the actual MAC stack recon-
figuration via dynamically delivered MAClets. We do not
claim any contribution on i) the strategies for disseminating
mobile code, being many already available in the literature,
and on ii) the measurement gathering, learning and decision
processes by which a reconfiguration is triggered, being these
tasks mostly orthogonal to the “act phase”perspective (using
cognitive networking terminology) we tackle in this paper.

2. WIRELESS MAC PROCESSORS
In what follows we briefly review the WMP main concepts

[10] and anticipate some discussion on extensions for sup-
porting code switching. Indeed, a pre-requirement of any
wireless active MAC framework is the ability to support cus-
tomized MAC operation on general-purpose wireless devices,
and the possibility to switch to a desired MAC protocol logic
described through suitably formal languages and application
programming interfaces.

Concept
The Wireless MAC Processor architecture somewhat mimics
the organization of ordinary computing systems, where pro-
grammability is accomplished by specifying i) an adequate
instruction set which permit to perform elementary tasks on
a machine; ii) a programming language which conveys multi-
ple instructions (suitably assembled to implement a desired
behavior or algorithm) to the machine, and iii) a Central
Processing Unit (CPU), which executes such program inside
the machine, by fetching and invoking instructions, updating
relevant registers, and so on.

Instruction set: Actions, Events, Conditions
A breakdown analysis of MAC protocols reveals that they are
well described in terms of three types of elementary building
blocks: actions, events and conditions.

Actions are commands acting on the radio hardware. In
addition to ordinary arithmetic, logic, and memory related
operations, dedicated actions implement atomic MAC func-
tions such as transmit a frame, set a timer, build an header
field, switch to a different frequency channel, etc. Actions
are not meant to be programmable. As the instruction set of
an ordinary CPU, they are provided by the hardware vendor.
The set of actions may be extended at will by the device ven-
dor, and complex actions may be considered, so as actions
not necessarily restricting to MAC primitives (e.g. perform
a PHY encoding/decoding).

Events include hardware interrupts such as channel up/down
signals, indication of reception of specific frame types, expi-
ration of timers, signals conveyed from the higher layers such
as a queued packet, and so on. As in the case of actions,

230

also the list of supported events is a-priori provided by the
hardware design.

Conditions are boolean expressions evaluated on internal
configuration registers. These registers are either explicitly
updated by actions, or implicitly updated by events. Some
registers are dedicated to store general MAC layer informa-
tion (such as channel used, power level, queue length), frame
related information (source or destination address, frame size,
etc), or more specific MAC parameters (contention window,
backoff parameters, etc - used to achieve a more compact
protocol description in case of specific MAC designs such as
CSMA-based ones).

Actions, events, and registers on which conditions may
be set, form the application programming interface exposed
to third party programmers. This API is implemented (in
principle) once-for-all, meaning that programs may use such
building blocks to compose a desired operation, but have no
mean to modify them. In [10] we proposed an API able of
supporting several MAC behaviors, including a TDMA-like
and a multi-channel medium access control. However, this
API was not envisioned for supporting code mobility. For in-
stance, we could not enforce conditions to control the switch-
ing between a previously running MAC code and a newly up-
loaded one. Thus, we needed to extend the WMP internals
to implement an extended API accounting for new actions,
events and registers, tailored to dynamic code management.

Programs: Extended Finite State Machines
MAC protocols are well suited to be described in terms of
Finite State Machines. Indeed, they are used in the formal
appendices of the 802.11 (and many other) standard. We
chose to rely on the more powerful and expressive model
of eXtended Finite State Machines (XFSM). XFSMs are a
generalization of the finite state machine model and permit
to conveniently control the actions performed by the MAC
protocol as a consequence of the occurrence of events and
conditions on configuration registers.

An XFSM is formally specified through an abstract 7-tuple
(S, I, O,D, F, U, T): the meaning of such symbolic states and
the correspondence with the MAC terminology above intro-
duced is summarized in Table 1 (configuration commands
being a special case of actions, devised to update registry
status).

A MAC program is simply a table listing all possible state
transition relations. Note that the number and meaning of
the set of protocol states is specified by the programmer. By
formally describing, per each protocol state, which events
and conditions do trigger a state transition, and by associat-
ing actions and configuration commands to each state tran-
sition, the programmer may access the available hardware
primitives, and enforce a desired MAC behavior within the
radio hardware. Since the configuration memory is not ex-
plicitly represented in the state space, XFSMs allow to model
complex protocols with relatively simple transitions and lim-
ited state space. For an example, the table programming
the legacy 802.11 Distributed Coordination Function MAC
protocol is coded in less than 600 bytes, and hence can be
transmitted in just a single packet.

XFSM formal notation meaning
S symbolic states MAC protocol states
I input symbols Events
O output symbols MAC actions
D n-dimensional

linear space
D1 × · · · ×Dn

all possible settings of n
configuration registers

F set of enabling func-
tions fi : D →
{0, 1}

Conditions to be veri-
fied on the configuration
registers

U set of update func-
tions ui : D → D

Configuration com-
mands, update regis-
ters’ content

T transition relation
T : S × F × I →
S × U ×O

Target state, actions
and configuration com-
mands associated to
each transition

Table 1: MAC programs expressed as Extended Fi-
nite State Machines

CPU: MAC engine
The ability to timely react to events is a crucial property
of lower-MAC protocols (e.g. for triggering a transmission
right at the end of a timer expiration). In the Wireless MAC
Processor architecture, this is accomplished by implementing
an XFSM execution engine, called MAC engine, directly on
the radio hardware. The MAC program, namely the table
containing all the possible state transitions, is loaded in a
memory space deployed on the hardware. Starting from an
initial (default) state, the MAC engine fetches the table entry
corresponding to the state, and loops until a triggering event
associated to that state occurs. It then evaluates the associ-
ated conditions on the configuration registers, and if this is
the case, it triggers the associated action and register status
updates (if any), executes the state transition, and fetches
the new table entry for such destination state.

Multi-thread extensions
The MAC engine work-flow allows to easily support code
switching: in analogy to usual multi-threading, this entails
the time-shared execution of different MAC programs simul-
taneously uploaded on the device. Indeed, the MAC engine
does not need to know to which MAC program a new fetched
state belongs, so that a code switching is basically achieved
by moving to a state in a different transition table and by
updating the platform configuration registers (e.g. the op-
erating channel, the transmission power, etc.) when needed.
The definition of code switching transitions are logically inde-
pendent of the MAC program definition. Therefore, rather
than adding them to the MAC program, we chose to pro-
gram the switching transitions into a second-level state ma-
chine (meta state machine), whose states represent the MAC
program under execution.

To simplify the management of error conditions due to the
dynamic loading of multiple transition tables, we assumed
that each table can be loaded starting from a pre-defined
memory position, called memory slot. For each memory slot,
a dedicated register describes the state of the slot as empty,
available for re-writing, ready to be executed, or under execu-

231

Figure 1: Architecture for MAClet support: ex-
tended WMP and external MAClet Control.

tion. Although the number of these slots can be in principle
arbitrary, we consider the simplest case of two slots only 1.

Summarizing, the time needed to change a MAC program
(i.e. the MAC stack reconfiguration delay) consists in the
time needed to fetch a new state plus the time needed to up-
date the WMP configuration registers (i.e. a series of memory
accesses). All this accounts for a marginal, sub-microseconds,
time (a few MAC engine clock cycles, the exact time depend-
ing on the platform’s clock frequency and on the number of
registers to be updated).

3. MACLET CONTROL ARCHITECTURE
In this section we describe how low-level MAC functionali-

ties can be encapsulated in a MAClet and transferred from a
node to another of the network by exploiting the WMP API
and a MAClet distribution protocol.

Figure 1 shows the envisioned system: the control archi-
tecture is a pure software architecture, running at the ap-
plication level, that interacts with the enriched WMP by
means of an open control API. This approach has several
advantages. First, the selection of the MAC protocol can be
based not only on low-level performance parameters (such as
the link quality, the interference conditions, etc.), but also
on high-level context estimates, including the application re-
quirements, the network topology, the user preferences, and
so on. Second, the code distribution model (handshaking
mechanisms, peer-to-peer code sharing, server-client upload-
ing, etc.) is completely independent on the underlying pro-
grammable interface, thus allowing full flexibility and a wide
range of applications for the same platform. Moreover, the
communication delays between the host and the card have a
minimum impact on the MAClet Control, since the dynamics
of the networks (which require MAC protocol customizations)

1Such a choice has been also confirmed by the analysis of
different use cases requiring prompt adaptations of the MAC
operations. We never found an actual need to switch between
more than two protocols at a frequency so high to require
the simultaneous loading of multiple transition tables on the
device.

WMP Control Interface
load i load a MAC program on memory slot i
run i, e activate MAC program on slot i

(asynch. or at the event e)
verify i recognize trusted code by means of an

hard-coded signature computation
switch i, j, t, a/r add or remove a switching transition t

from the slot i to j

Table 2: WMP Commands to be locally or remotely
invoked

are reasonably much slower than the processing delay due to
an application-level decision module.

More into details, the architecture is based on four main
components: the WMP control interface, the MAClet man-
ager, the MAClet Controller and the MAClet repository. The
WMP control interface is the interface to the hard-coded de-
vice, through which new MAC state machines and switching
conditions are loaded on the card, as summarized in table 2.
The MAClet manager is responsible of receiving/transmitting
MAClets and MAClet protocol messages, enabling the load-
ing on the card, and programming MAC reconfigurations.
The MAClet Controller is the intelligent part of the system,
dealing with the network-level configuration decisions in a
centralized way (e.g. at the Access Point only, as assumed
in this paper), or in a distributed way (e.g. by involving
multiple cooperating controllers, sharing both the monitored
data and the available MAClet tables). Finally, the MAC
program repository contains the MAClets available to the
network operator, including either standard as well as cus-
tomized (context-specific) MAC protocols.

3.1 MAClets
A key component of our architecture is the code transport

unit, i.e. the MAClet. A MAClet is a coded state machine
with an initial state description to be fed on the wireless
device.

Being ns the number of symbolic protocol states and ne

the number of events revealed by the device, a common ap-
proach for coding XFSMs is using a ns × ne table, where at
each location (i, j) is stored the state transition when event
j is received at state i. A transition is defined by a triplet
(a, c, s), specifying the action label a, the enabling condition
label c and the target state label s. As each state generally
reacts to a number of input events much lower than the total
input number, the state machine coding can be optimized
by skipping null-transitions. The initial state (from which
the state machine has to be run) includes the protocol logic
state and the platform configuration registers. For example,
according to the API defined in [10], these registers (of equal
size) specify the settings of the physical channel, the slot
size, the contention window values, the current backoff, the
transmission power, the retry limit, generic protocol timers
and MAC addresses to be filtered. Optionally, the initial
state descriptor can be extended with a signed digest of the
MAClet code to be used for verifying trusted code sources2.

2Although most of the security issues can be demanded to
the MAClet Control, this function can be used by manufac-

232

Figure 2: Messages of the MAClet Distribution Pro-
tocol: an example.

As detailed in what follows, MAClets are transmitted with
a special message of the MAClet Distribution Protocol, called
MAClet action message.

3.2 MAClet Distribution Protocol
MAClets can be propagated in the network by means of a

physical transport network. This means that nodes can ne-
gotiate the activation of a new MAC protocol only if they
belong to the same network (on a given channel) and employ
a compatible MAC protocol. Standard MAC protocols can
assume the role of default common protocols to be executed
(eventually, on a pre-defined common channel) for support-
ing dynamic reconfigurations. We assume that the default
protocol and configuration parameters are pre-loaded in each
WMP as a bios state machine (e.g. in our implementation,
the bios machine is a legacy DCF working on channel 1).

The MAClet Control process runs as a normal distributed
application, whose messages are defined by a protocol called
MAClet Distribution Protocol. This protocol is responsible
of: i) collecting information for estimating the network con-
text; ii) negotiating the network reconfiguration decisions; iii)
transporting the MAClets and the relative activation signals;
iv) verifying the network consistency after a reconfiguration.
Although the general definition of the MAClet distribution
protocols is out of the scope of the present work, we defined
some core messages to be used in case of centralized decision
processes. Specifically, in the following we always assume
that the reconfiguration decisions are taken in a centralized
way (as in [13, 14]) at the AP side, thus significantly sim-
plifying the negotiation phase (which is basically limited to
the transport of station measurements to the AP) and the
verification of consistency.

The protocol includes two types of messages: MACletman-
agement messages for associating each MAClet manager to
a MAClet Controller running the distribution logic and con-
firming control operations, and MAClet action messages for
transporting MAClets and remotely invoking the desiredWMP
control functions. When a new station activates, it tries to
associate to an AP (acting as a MAClet Controller) by using

turers for controlling the MAC program origins and limiting
or avoiding third-party reconfigurations.

the bios state machine. In case of success, the MAClet man-
ager is activated for enabling the reception of AP messages.
An announcement message is sent to the AP for notifying
the activation of the new MAClet Manager and receiving an
identifier. According to its decision logic, the AP is then able
to send a specific MAClet action messages to each associated
station, to a group of stations or to all the network stations
(see figure 2).

The MAClet action message comprises the following fields:
the list of destination addresses of the relevant MAClet man-
agers, a command to be executed on the addressed WMPs,
the MAClet bytecode, the MAClet configuration parameters,
and the MAClet activation data. Not all fields are always in-
cluded in the action messages: for example, it is possible to
specify a new set of parameters for a MAClet already loaded
on the station without carrying the relevant bytecode.

3.3 MAClet Synchronization
Achieving a network-level reconfiguration is obviously much

more complicated than working on a single node, because it
is necessary introducing some forms of coordination. In par-
ticular, the activation of a new MAClet on different nodes
could require a common reference signal for avoiding criti-
cal inconsistencies (such a temporary use of different trans-
mitting channels) leading to disassociations or other network
errors.

The MAClet Control Architecture provides the primitives
for programming the desired synchronization and error re-
covery operations, but the specific solutions are left to the
MAClet Decision Logic (synchronization) and MAC program
(management of error conditions) defined by the network op-
erator. For example, in section 5 we describe two different
use cases requiring network-level reconfigurations, for which
two different synchronization solutions have been envisioned.
The synchronization signals can be based on the events and
conditions available in the WMP and are specified in the
MAClet activation data.

In order to activate a new MAClet on a group of stations,
the AP sends a “run” action message to the stations list. If
the command does not include an activation data field, each
station can starts the program asynchronously, i.e. without a
common reference signal. If present, the activation data spec-
ifies the triggering event that is usually a control frame sent
by the AP or the expiration of a (relative or absolute) timer.
While the relative timer is in turns expressed as a function
of a network synchronization event (e.g. the next channel
busy time), for using an absolute time reference the MAClet
Control Process has to rely on a time synchronization func-
tion. In our infrastructure scenario, such a synchronization is
easily provided by the beacon timestamps, while in general
scenarios it has to be explicitly supported by the MAClet
Distribution Protocol.

Different activation solutions based on a 3-way handshake
mechanism can also be defined in the distribution protocol.
After the reception of the run message, each station involved
in the network reconfiguration sends a confirmation message.
When the AP receives all the confirmation messages, it sends
an enabling message. Only after the reception of this mes-
sage, the stations switch to the new MAC program at the

233

0x0BC0: 0100 FFFF 0B00 0014 A5FF 6ADA 0014 A5FF
0x0BD0: 6ADA 6C00 80A4 FF00 FF00 3600 80EE FF00
0x0BE0: FF00 0000 80BB FF00 FF00 0600 2C01 0600
0x0BF0: 0000 0000 0000 0000 0000 0000 0000 0000

0x0C00: 0100 0100 0100 0401 0108 0508 1C01 010B
0x0C10: 010B 3001 010D 0200 FFFF 5101 010E 030D
0x0C20: 0000 0100 010F C100 0102 0602 E100 0106
0x0C30: 0106 0401 0108 0508 1C01 010B 030B FFFF
0x0C40: CD00 0104 0E0C 0000 0100 0D00 FFFF 0E01
0x0C50: 0109 0909 1C01 010B 0D0B FFFF C700 0103
0x0C60: 0C03 E100 0106 0106 FFFF 6601 0110 1600
0x0C70: 0000 0100 0100 FFFF 0E01 0109 0109 1C01
0x0C80: 010B 010B FFFF 5F01 010F 0A00 0000 0100
0x0C90: 0D00 FFFF C100 0102 0A02 C700 0103 0B03
0x0CA0: E100 0106 0D06 FFFF D300 0105 0D05 E100
0x0CB0: 0106 0D06 FFFF D300 0105 0705 E100 0106
0x0CC0: 0106 FFFF 6D01 0111 1800 0000 0100 0100
0x0CD0: 0000 0100 0D10 7401 0112 1512 0000 0100
0x0CE0: 1111 9601 0113 0513 0000 0100 0500 0000
0x0CF0: 0100 0304 E100 0106 1206 0401 0108 0508
0x0D00: 1C01 010B 120B FFFF A901 0115 0100 B401
0x0D10: 0117 1200 0000 0100 0100 0000 0100 1214
0x0D20: B901 0118 0310 0000 0100 0300 0401 0108
0x0D30: 1708 1501 010A 010A 1C01 010B 010B C501
0x0D40: 0119 0800 0000 0100 0500 3001 010D 0200
0x0D50: 0401 0108 0508 1C01 010B 180B CB01 011A
0x0D60: 0200 0000 0100 0100 0000 0000 0000 0000
0x0D70: 0000 0000 0000 0000 0000 0000 0000 0000
0x0D80: 0000 0000 0000 0000 0000 0000 0000 0000

0x0D90: 00F0 03FE 0DF2 13FE 20FE 27FE 2EFE 35FE
0x0DA0: 3CFE 43FE 4AFE 54FE 5BFE 62F2 68F0 6BF2
0x0DB0: 71F2 77F0 7AFE 84F4 8DF0 90F2 96F4 9FF2
0x0DC0: A5F4 AEF2 0000 0000 0000 0000 0000 0000
0x0DD0: 0000 0000 0000 0000 0000 0000 0000 0000

transitions

Outgoing transitions
for state 01
0401 0108 0508 = trans. 1
1C01 010B 010B = trans. 2
3001 010D 0200 = trans. 3
FFFF = delimiter

Transition 1
0401 = event pointer
01 = event parameter
08 = event index
05 = target state
08 = action

Figure 3: MAClet binary implementation, as stored
in the micro-instruction memory

occurrence of the next triggering event. Figure 2 shows an
example of messages exchanged between the AP and two sta-
tions for loading two different MAClets (a legacy DCF on sta-
tion 2 and a TDMA protocol on station 1), whose activation
is triggered by the first beacon received after the enabling
message.

4. NODE-LEVEL VALIDATION
To prove te viability of the MAClet distribution framework,

we worked into two different directions: on one side, we modi-
fied the MAC Engine and the actions implemented within our
previous WMP implementation on the Broadcom card (i.e.
at the firmware level), by also adding some new condition
registers; on the other side, we developed a simple MAClet
Control process (including the MAClet manager, repository
and controller) at the application level (outside the card). For
supporting the upper-MAC operations and interacting with
the other protocol layers, we used the b43 soft-MAC driver
(without any modifications). Finally, we also extended the
WMP machine language (i.e. the labels of actions, events
and conditions) in order to code the new API.

4.1 Implementation
The implementation of the MAClet Control Architecture

has been based on the development of a new firmware and
an application-level software. Regarding the firmware, we
developed and pre-installed the micro-code procedures corre-
sponding to the WMP Control API (i.e. the load, bootstrap,
run, and switch primitives - the verify command has not
been currently implemented) and added new registers indi-
cating the state of the program slots and the program under
execution. We also worked on the MAC Engine work-flow,

MAClet Management Messages
announce sent by stations to request a MAClet ID
id assign sent by AP to assign unique MAClet ID
poll sent by AP to check if a station is attached
en enable command (requires activation message)
ack message acknowledgment

MAClet Action Message Fields
ID set MAClet IDs addressed by the message
maclet MAClet program or BYTECODE
params set of MAClet parameters

cmd
MAClet command
(load, run, en flag, dump, set timer)

activation MAClet triggering event

Table 3: MAClet management and action messages.

for allowing the execution of the meta machines. Specifically,
the new engine pre-fetches the switching transitions (defined
in the meta-machine) of the program under execution and
adds such a list to the transition list of the program state.
In case of events triggering a transition to a new program,
the transition action executed by the engine is the bootstrap
of the new program. Finally, the WMP machine language
has been revised for coding the new API and for trying to
guarantee a compact representation of the MAClet bytecode.

Figure 3 shows an actual example of MAClet bytecode for
the legacy DCF, where we can recognize the initial state de-
scriptor (for configuring the platform registers) and the tran-
sition table. The table is coded by: i) a list of transition
lists, and ii) a list of states represented by the pointer to the
relative transition list. For example, the state in the second
position of the list (whose symbolic label 01 corresponds to
the position index) points to the transition list coded from
the third byte of the table and ends at the occurrence of the
first FFFF delimiter. As evident from the figure, the code
is very compact (only 544 bytes).

The application-level software has been developed accord-
ing to a simple client-server paradigm, since we considered a
centralized decision logic implemented at the Access Point.
The key component of the application is the MAClet man-
ager that implements the MAC Distribution Protocols sum-
marized in table 3 (for loading and executing MAClets on dif-
ferent network nodes). In our implementation, MAClet man-
agement messages are unicast, while MAClet action messages
are broadcasted to all stations and filtered at the application
level according to the “ID set”. The MAClet distribution
logic, that is the block responsible of network configuration
decisions, has a very simplified structure. Basically, rather
than implementing a context estimation module and a pro-
gramming interface for the operators, we pre-scheduled some
decisions at the Access Point and pre-set the other nodes to
accept MAClets and switching commands sent by the AP.

4.2 MAClet Switching
We run some simple experiments of MAClet switching in

order to test the MAClet intra-node functionalities and mea-
sure the switching latency of our implementation. A more
complete validation also involving multi-node coordination is
described in the next section. In our tests, we used a USRP

234

185 190 195 200 205 210

−90

−80

−70

−60

−50

−40

R
S

S
I

[d
B

m
]

Time [ms]

MAClet switching

MAClet 1
DCF

MAClet 2
TDMA

Figure 4: An experimental trace of medium occu-
pancy times under MAClets switching (DCF and
TDM) performed at regular time intervals (10 ms).

board for acquiring the channel activity trace of the card
performing the MAClet switching. The trace is processed by
MATLAB for deriving the time-varying RSSI values corre-
sponding to channel idle and busy states. In order to clearly
visualize the change of the MAC protocol under execution, we
considered the switching between the random-access of stan-
dard DCF and the deterministic-access of a TDMA protocol.
The two corresponding state machines have been loaded on
the two different program slots of the card. A synchroniza-
tion transition has been programmed by specifying a switch-
ing event corresponding to the expiration of a 10ms timer.

Figure 4 shows a channel activity trace of 15 ms, captured
by the USRP board when the card is fed with a saturated
traffic (generated by the iperf tool, with a packet payload of
1470 bytes) transported over UDP. The MAClet initial state
descriptor specifies that the card is set to operate on channel
6 and with a modulation rate of 24 Mbps, while the proto-
col initial state is set to an idle state for both the MAClets.
When the switching to the TDMA protocol expires during a
frame transmission, the first packet transmission is skipped,
in order to avoid deferrals of subsequent packet schedules.
The figure allows to easily identify frame transmissions (char-
acterized by an RSSI value of about -60 dBm), acknowledg-
ments (with an RRSI value of about -55dBm), and idle times
(with an RSSI value of about -92 dBm). Thanks to the dif-
ferent inter-frame spaces (2ms under TDMA, random under
DCF), we can clearly distinguish the protocol under execu-
tion at a generic time instant. Moreover, the MAClet switch-
ing time is practically negligible and not quantifiable from
the figure. Even considering a much longer trace, we practi-
cally observed that the channel accesses performed under the
TDMA protocol are always scheduled at regular intervals of
2 ms as in the case of a permanent TDMA execution (i.e.
cumulative switching delays are not observable in a temporal
trace of 5 minutes). In fact, the switching time is practically
given by the execution of the bootstrap action, which in turns
require to set the configuration registers (12 registers in our
implementation), jump to the transition list of the new pro-
tocol state and load the new list of events. The execution of
these operations requires on average 20 clock cycles, which
correspond to about 0.2μs (being the clock frequency of the
card at 88MHz).

Figure 5 shows an experiment similar to the previous one,
where we also include a different configuration of the PHY
layer in the descriptor of the MAClet initial states. Specifi-
cally, we set the DCF MAClet to operate on channel 6 and
the TDMA MAClet to operate on channel 8, while the phys-

200 250 300 350 400 450 500 550 600

90

80

70

60

50

40

R
S

S
I

[d
B

m
]

Time [ms]

Channel Hopping MAClet Switching

MAClet 2
TDMA CH 8

MAClet 1
DCF CH 6

MAClet 1
DCF CH 6

Figure 5: An experimental trace of MAClet switch-
ings involving a channel switching operation.

DLS

BSS

AP

Figure 6: Use case 1: a streaming server (left) de-
livers HD video to an Internet enabled TV; a laptop
(right) is connected to the internet via the AP.

ical transmission rate is set to 1 Mbps for both the MAClets.
We set the most robust modulation scheme since we veri-
fied that, at this rate, the receiver station on channel 6 is
able to correctly demodulate the frame transmitted on chan-
nel 8, without performing the channel hopping (which would
have requested to implement a synchronized MAClet switch-
ing also at the receiver side). Similarly, although the USRP
receiver is set on channel 6, the board is able to detect part of
the power transmitted on channel 8. The switching time is set
to 200ms. In the figure, we can recognize the transmissions
performed on channel 6 (whose RSSI values are about -60
dBm) from the transmissions performed on the out-of-band
channel 8 (whose RSSI values are about -80 dBm). From
the figure, it is evident that the radio does not exhibit any
remarkable latency for hopping between the two channels.

5. NETWORK-LEVEL VALIDATION
We consider a generic infrastructure network, with an Ac-

cess Point and a given number of associated stations in radio
visibility. Despite of the scenario simplicity, we show two
different use cases in which network reconfigurations can be
really beneficial. The solutions proposed are on purpose not
general: they are meant to be just examples (which can be
further technically improved) devised to highlight our frame-
work’s flexibility and test the MAClet transport, loading, and
switching functionalities. In particular, we focus on two im-
portant features of the proposed architecture: the ability to
coordinate the execution of different MAC schemes at two
different stations (multi-thread), and the ability to support
heterogeneous node configurations performed by two differ-
ent operators (virtualization) and permit their coexistence on
a same shared channel.

235

Figure 7: DLS++ protocol definition as a meta ma-
chine between two different threads.

5.1 Use case 1: Multi-Thread

Scenario Description
The considered scenario is summarized in Figure 6. A WiFi
ADLS domestic router connects three stations to the Inter-
net. This usually works well if traffic to the stations comes
from the outside. However, when the kids are at home and
start downloading a high definition video from a streaming
server (on the left) to the Internet-enabled TVset (in the
middle), it is likely that who is trying to work on the laptop
will get impaired performance, as the legacy DCF protocol
requires traffic to be first routed from the server to the AP
and then again to the TVset, thus duplicating the bandwidth
used on the wireless channel.

This problem is obviously not nearly new, and indeed was
specifically addressed by the 802.11e task group with the in-
troduction of the Direct Link Setup (DLS), further extended
in the 802.11z-2010 amendment. However, a direct link setup
is not automatic (i.e. the kids should take care of changing
the settings of the TVset during the streaming!). Moreover,
the direct link uses the same wireless channel, thus, although
to a lower extent, the station connected to the Internet still
suffers of a bandwidth reduction.

Using the MAClet Control Architecture, the stations in
the networks are not expected to implement any specific DLS
amendment. By default, their Wireless MAC processor card
runs a MAC program implementing just the legacy 802.11
DCF operation. As soon as the AP detects that two associ-
ated stations are involved in a greedy data session, it delivers
a MAClet to just the two involved stations. Stations are
configured to accept and install MAClets coming from the
home AP. The AP further signals the (same) time instant at
which the two stations will start the installed MAClet. From
that time on, the two stations will implement a custom MAC
protocol.

The custom MAC protocol may be designed to be strictly
tailored to the considered context. For instance, the owner
of the network knows that at most one direct link connection
will be deployed, and that this direct link will always involve
the two same radio interfaces (the server and the TVset ones).
Moreover, the network owner wants to push bandwidth op-
timization further, by setting the direct link on a separate
frequency channel, but of course avoiding that the stations
will lose the association to the AP.

MAC Customization: Enhanced Direct Link
We have designed a protocol, hereafter referred to as En-
hanced Direct Link (DLS++), for coping with the above sce-

Figure 8: DLS++ timing

nario. The Enhanced Direct Link (DLS++) is meant to be
a simple variant of DLS able to simultaneously work on two
different channels. The primary channel is that of the AP
network; the station has to periodically access such chan-
nel for receiving beacons and retaining association. The sec-
ondary channel is ad-hoc set up and independently managed
by the peer stations. Under DLS++, the channel selection
and the associated channel access mode is performed frame
by frame. If the head of line frame is directed to the peer
station, the frame is sent on the secondary channel as it was
sent by the AP (i.e. with the from DS bit set to 1, and with
the sender address of the AP)3. In absence of collisions, the
random backoff on the secondary channel is suspended (by
using a backoff counter permanently equal to 0) for optimiz-
ing the capacity of the streaming. If the head of line frame
is a probe request frame or another frame directed to the
AP, the station switches back to the primary channel and to
the DCF protocol. It then returns to the secondary channel
after a short TBSS time interval. For simplicity of develop-
ment, the described operation is not yet optimized to prevent
packet losses; especially, buffering at the AP side should be
performed when a DLS++ station is set on the secondary
channel (this extension can be developed by mimicking the
standard mechanisms used for power savings).

Multi-threading and Synchronization
The above scheme requires that the peer stations use stan-
dard DCF rules on the primary channel and direct-link ac-
cess rules on the secondary one. This behavior can be pro-
grammed by defining a DLS++ meta machine switching from
DCF to DLS and vice versa. The DLS machine is derived
from the DCF one by changing the addressing operations for
both data frames and acknowledgments. Moreover, it can
be configured with independent contention window values,
thus allowing to support more aggressive access operations.
Figures 7 and 8 shows the envisioned meta machine and the
relevant timings. The direct link operations are executed af-
ter the reception of an AP beacon. At regular time intervals
TDLS++ (slightly lower than a multiple N of TBTT beacon
intervals), the station suspends DLS transmissions in order
to receive an AP beacon on the primary channel. This op-
eration is necessary for keeping the synchronization to the
AP clock and for receiving other MAClets4. A transitions to

3Without changing the driver, it is not possible to sup-
port simultaneously the ad-hoc and infrastructure addressing
modes. Therefore, we chose to provisionally employ a kind of
address spoofing for confining the updates in the MAC state
machine.
4Clock synchronization of all the nodes belonging to the same
network is a requirement for DCF (clock skews may toughen

236

0 1 2 3 4 5 6 7
0

20

40

60
MAClet setup compairson

T
hr

ou
gh

pu
t [

M
bp

s]

time [min]

DLS DLS CH DLS CH NO BK

Figure 9: Throughput comparison under legacy
DCF, DLS, and two versions of DLS++.

DCF can also occur when the head of line frame is a probe re-
quest or another frame directed to the AP. At the expiration
of another timer TBSS , the station switches back to DLS.

In order to minimize the frame losses due to the use of the
two channels, the peer stations should activate the DLS++
protocol simultaneously. To this purpose, we used a syn-
chronization mechanism based on the specification of an ab-
solute time (after which, the switching are managed by the
multi-thread meta-machine). The activation time is com-
puted by adding the desired time offset to the current Access
Point time-stamp, to which all the stations are continuously
aligned.

Performance evaluation
We setup a testbed in our laboratory with two client stations
(the ones with the peer-to-peer traffic) and the AP equipped
with our MAClet Control framework. A third client was stat-
ically set to the primary channel with a legacy DCF proto-
col. We repeated the MAClet loading and activation test
periodically, by programming the AP to alternatively send
(to the two programmable clients) the DLS++ MAClet and
the legacy DCF MAClet at regular intervals of 1 minute.
The DLS++ MAClet is built by programming the meta ma-
chine described above, while the legacy DCF MAClet is acti-
vated by sending a run command for the bios program. The
DLS++ protocol has been configured by setting TDLS++ to
890 ms, TDCF to 6 ms, and N ito 9 TBTT. For the other
protocol parameters, we used three different configurations:
both the primary channel and secondary channels set to chan-
nel 6; the primary channel set to channel 6 and the secondary
channel set to channel 11; the primary channel set to channel
6, the secondary channel set to channel 11, and the secondary
channel contention window set to 0.

Figure 9 shows the throughput results of the client sta-
tion sending saturated UDP traffic to the second client under
the three settings (labeled, respectively, as DLS, DLS-CH,
DLS-CH-NO-BK). The experiments were carried out during
the hours of the day (i.e. in presence of background traffic
due to students and researchers working in our department).
Starting from legacy DCF, the clients switch to the different
DLS++ configurations at 1, 3, and 5 minutes, and come back
to standard DCF at 2, 4 and 6 minutes. From the figure it
is evident that the customized direct-link access may bring
dramatic improvements, especially when it is managed on a

frame acknowledgement). Therefore, we always assume that
the bios machine provides a clock synchronization function.

30 40 50 60 70 80 90 100 110 120 130

−90

−80

−70

−60

−50

−40

R
S

S
I

[d
B

m
]

Time [ms]

MAClet − Network Virtualization

OP
A OP

B
OP

A OP
B

Figure 10: An experimental trace of network virtual-
ization: operator A and operator B use the channel
in different time intervals with independent access
schemes (TDM and DCF).

secondary channel without backoff (from about 12 Mbps of
the normal DLS case to about 38 Mbps under the DLS++
without backoff).

5.2 Use case 2: Virtualization

Scenario Description
In this second use case we assume that the same Access Point
(belonging to a public network) is shared between two differ-
ent WiFi operators. The scenario is obviously not new, and
indeed it has been specifically addressed by many manufac-
turers that allow to define Virtual APs, each advertising a
distinct SSID and capability set. Virtual APs allow operators
to share the same physical infrastructure, while offering ac-
cess to distinct networks, but they typically suffer of a scarce
level of isolation, since the resources allocated to each one
cannot be really partitioned when stations employ random
access schemes and suffer of unpredictable interference.

Suppose that the two operators want to implement a differ-
ent service model: the first operator (operator A) advertises
“FIXED” SSID, offering access to the Internet with a fixed
(guaranteed) bandwidth, while the second one (operator B)
advertises ”BEST” SSID, offering a traditional best effort ac-
cess. Although the standard includes PCF and HCCA for
managing the medium access by means of polling, the lack
of support in commercial products prevents an easy solu-
tion. Using MAClets, the resource repartition between the
two operators can be addressed in a very effective and flex-
ible manner. If all the stations employ a MAClet Control
architecture, each operator can send a MAClet to the associ-
ated stations for enabling the medium access at regular time
intervals (for example, in a fraction of the beacon interval re-
served to the specific operator) and preventing it in the rest
of the time. Moreover, the time reserved to each operator
can be dynamically tuned (by updating the MAClet configu-
ration parameters) according to the traffic conditions and to
the agreements between operators.

MAC Virtualization and Synchronization
Different solutions are possible for addressing the beaconing
and the MAC pausing in the above scenario. We chose to
transmit two SSID Information Elements within each bea-
con, thus leaving the beacon interval unchanged. The MAC
pausing has been programmed in a meta machine between
the operator-dependent MAC program and a simple state
machine with a waiting state only. At the expiration of the
pausing time, each station enters the waiting state until a
new activation event is revealed. In the waiting state, the

237

stations continue to receive beacons from the AP for keeping
the synchronization to the time interval of their operator.

According to the SSID specified in the association request,
each station receives a different MAClet: a legacy DCF pro-
gram for the stations associated “BEST”SSID, and a TDMA
program for the stations associated to the “FIXED” SSID.
The DCF MAClet is a legacy DCF protocol that is sus-
pended at the reception of a new beacon. The reactivation
is triggered at the expiration of a parametric timer set be-
fore the suspension. The opposite activation and deactivation
actions are performed for the TDMA MAClet. This mecha-
nism guarantees a perfect coexistence and isolation between
the two networks, since stations accessing the medium during
the same time interval employ uniform channel rules, and no
station associated to a given operator can interfere with the
other operator network. Isolation is not obviously guaranteed
with other external interfering networks.

The configuration parameters of the DCF MAClet are the
DCF contention parameters that are uniformly set to all the
stations (although some forms of user prioritization could be
easily supported by differentiating these parameters in the
MAClet directed to each station). Conversely, the MAClet
transmitted to a new station associated to the“FIXED”SSID
specifies a different program parameter indicating the slot
numbers allocated to the station (multiple slots can be allo-
cated to the same station). In each TDMA slot, frame trans-
missions still follow a 2-way handshake mechanism. When
the MAClets are loaded on a new arriving station, the re-
ception of the first beacon frame activates the execution of
the program. Subsequent beacons are used as synchroniza-
tion events for pausing the DCF programs and resuming the
TDMA ones, as well as for activating the DCF suspension
timer and computing the beginning of the TDMA slots. Al-
though beacon frames are scheduled at regular time intervals,
they can be delayed because of ongoing frame transmissions.
These transmissions can be due to external interference, but
also to stations associated to the “BEST” SSID starting a
frame transmission right before the expiration of the opera-
tor time (no control is indeed implemented on the residual
time before starting a transmission). In case of delay, to
guarantee the fixed rate of TDMA stations, the time allo-
cated to the “BEST” SSID operator can be reduced in the
subsequent beacon interval. The possibility to dynamically
tune the DCF activation time can also be exploited for per-
forming a dynamic repartition of the resources allocated to
each operator.

Figure 10 shows an example of resource repartitions be-
tween operators A and B in two consecutive beacon inter-
vals. The figure plots the channel activity trace captured by
the USRP: for better distinguishing the two virtual networks,
the TDMA stations transmit at 11 Mbps while the best ef-
fort stations transmit at lower data rates (5.5 Mbps and 2
Mbps). Note that in the first TDMA slot the channel is busy
(i.e. a transmission has been originated in that slot), but no
acknowledgment is received because of channel errors.

Performance Evaluation
We setup a testbed with a fixed number of stations associated
to the “FIXED” SSID and a time-varying number of stations

30 60 90 120 150 180 210 240 270 300
0

1000

2000

3000

4000

time [sec]

th
ou

gh
pu

t [
K

bp
s]

Aggregate Throughput DCF vs TDM

DCF
TDM
DCF

DYN WIN

TDM
DYN WIN

Figure 11: Resource repartition between two differ-
ent operators using different access rules (TDM and
DCF).

associated to the “BEST” SSID. Specifically, three stations
access the channel by using TDMA, while five stations join
sequentially the best-effort network at regular intervals of
one minute. The TDMA frame is organized in nine allocated
slots, uniformly assigned to all the stations (three slots each).
The beacon interval is set to 50ms, while the slot size is set to
1.7ms (enough to accommodate the transmission of a payload
equal to 1470 byte at 11 Mbps). All the stations transmit at
11 Mbps.

We repeated two different virtualization tests: in the first
one, each operator receives an equal share of the available
bandwidth (i.e. the activation time is one half of the bea-
con interval), while in the second one, the TDMA opera-
tor agrees to release the available bandwidth to the other
operator. TDMA stations have a traffic rate of 630 kbps
(smaller than the maximum guaranteed bandwidth, namely
3 · 1470 · 8/50ms = 705.6kbps), in order to have a non-null
probability to have some slots empty. DCF stations work
with a traffic rate of 1 Mbps.

Figure 11 shows the per-operator throughput results ob-
tained in both the experiments. In case of equal share of
the bandwidth, after the third station joins the network the
throughput of the best-effort operator (blue curve) saturates
to about 3 Mbps (i.e. one half of the total network capacity
at 11 Mbps). TDMA network is obviously under utilized be-
cause it consumes only 1.89 Mbps (being 3 Mbps the available
capacity). By adjusting the time allocated to the best-effort
operator, the third station can join the network without caus-
ing any throughput degradation. The aggregated network
throughput (green line) for the best-effort network is now
about 4 Mbps, while TDMA stations performance are not
affected by increased DCF traffic.

6. RELATED WORK

Programmable wireless platforms
The advent of WLAN soft-MAC [15] designs, endorsed by
several brand-name vendors (including Intel, Ralink, Realtek,
Atheros, Broadcom), has transferred non time-critical MAC
layer functionalities from the WLAN card to the host, thus
permitting their modifications by reprogramming relevant
open-source drivers. Moreover, several low level MAC/PHY
parameters (contention windows, TX power, TX/RX antenna

238

settings, etc) can now be accessed through configuration in-
terfaces. However, this level of flexibility is not enough to
bring into real world several optimizations solutions which
require small changes into the low-level MAC operations.
For example, in [16] the experimental validation of receiver-
initiated MAC protocols, which have been shown to improve
the overall network capacity, could not rely on commercial
802.11 cards, since these cards do not allow to define new
frame handshakes spaced of a SIFS time. Other promis-
ing solutions, such as the dynamic scheduling proposed in
[17], require advanced monitoring operations not supported
by current cards and drivers. To overcome this hurdle the re-
search community has developed custom programmable wire-
less platforms, typically revolving around an FPGA or DSP
core and software radio. For example, WARP [18] or Airblue
[8] are stand-alone software defined radio boards equipped
with fast and large FPGAs, hence not constrained anymore
(unlike, e.g., GNURadio [19]) by an host back-end PC run-
ning part of the needed processing. Similar performance are
obtained by SORA [20] by exploiting parallel computing. By
(re)implementing all the wireless protocol stack, from the
level of signals to that of frame payloads, these solutions sup-
port full MAC layer customization and cross-layer designs.
More recently, custom MAC programmability was made pos-
sible also on commodity card, thanks to the disclosure of a
(simplified) open source firmware [21] for a brand name card.

Clearly, the ability to access and modify the source code of
a wireless card or wireless custom boards permits in princi-
ple any modification. In practice, extreme expertise is needed
with the device internals and the low level programming lan-
guages (e.g. VHDL or assembler, at best C), as well as with
the understanding of how software modules do interact with
each other. An alternative solution which is currently emerg-
ing in other networking domains (such as flow switching tech-
nologies [22]) is the shift from open source code modifica-
tions to device reprogramming via open and suitably iden-
tified Application Programming Interfaces. This approach
may perhaps restrict generality, but comes along with huge
advantages: much simpler and faster programmability, code
portability across different vendors’ platforms, no need for
manufacturers to disclose their internal architecture. A first
step in this direction was taken by the split functionality ap-
proach proposed in [7]. The architecture proposed in this
work comprises a radio hardware, which implements (part
of) the core MAC functionalities, and a host PC which runs
a control software implementing the MAC protocol control
logic. The identification of how to most conveniently decom-
pose a MAC protocol into core functions is a further major
contribution (a similar analysis is carried out also in [9, 10]).

TRUMP [9] makes the further step of designing an inte-
grated platform which permits to compose a MAC protocol
operation using elementary modules. The core of this plat-
form is a Wiring Engine which connects the core functions
according to a programmable control flow, described through
a newly introduced language syntax for PHY/MAC protocol
description, and an associated compiler. The extended Wire-
less MAC Processor that we propose in this paper promotes
a more versatile description and dissemination of MAC pro-
tocols in terms of extended finite state machines that can be

encapsulated into common data packets. Central, in such ap-
proach, is the design of the MAC Engine, namely a generic
finite state machine executor devised to play the role of MAC
program interpreter.

Active Networks and Code Mobility
Despite the hype in the midst of the nineties [23], the appli-
cation of active networking principles to the wireless domain
has lagged behind. In the vision of [2], adaptations, envi-
sioned in terms of selection of PHY functionalities (spectrum
access, modulation, and coding) were expected to leverage
software radio technologies. But proposed wireless active net-
working frameworks [24] have mainly addressed issues at lay-
ers higher than low-MAC/PHY (e.g., QoS, network topology
adaptation, mobility, ad hoc network formation, etc).

The interest for code mobility, also embedded in in-band
data packets (capsules, as per [25]), has more recently emerged
in the wireless sensor networks arena. Indeed, in large sen-
sor networks, code mobility may be the only possibility for
upgrading the sensors’ behavior, given that physical access
to the nodes may not be viable. But, again, programmabil-
ity has been restricted to higher layers, and for tasks such as
changes in the monitoring functionalities or in the application
operation [26].

Especially in the sensor network field, several issues con-
cerning code distribution protocols [27, 28] and architectures
[29] have been considered. Obviously, the programmability
requirements for wireless local networks have some differences
from the sensor network ones. Sensor nodes deployed in the
same network are usually homogeneous, with the same Tiny
OS and hardware. A binary code image can be moved from
a node to another in active messages (natively supported by
TinyOS). Albeit not strictly necessary, bytecode interpreters
[30] may significantly improve efficiency of code distribution,
i.e. for giving an high-level virtual code representations which
significantly reduces the code length and/or facilitate incre-
mental updates. All the above referred solutions limit pro-
grammability to network, transport and application proto-
cols, and assume that the lower stack dealing with medium
access and single-hop communications is not modifiable [30].

7. WMP DEVELOPMENT PLATFORM
The WMP implementation for the AirForce54G card (by

Broadcom) has been released to the research community to-
gether with a detailed documentation of the available API
(i.e. the list of events, actions and conditions supported by
the card) and developing tools [31]. By replacing the original
card firmware with the WMP one, the card can work as a
generic state machine executor able to run a MAC bytecode.
The developing tools include: i) a graphical tool, working as
an editor for composing a MAC program in terms of a graph-
ical representation of state transitions and state labels; ii)
compiling tool, able to map the graphical representation into
a textual transition table and in a bytecode; iii) a MAClet
manager, able to load and run the bytecode in the card. The
combination of the MAC Engine, graphical editor, compiler,
MAClet manager and driver is a complete and cheap tool-
chain that allows developing and testing a new MAC scheme
in a very simple, robust and quick way over an ultra-cheap

239

platform. The current WMP implementation supports both
the infrastructure and the ad-hoc mode, it is compatible (in
terms of protocol timings, frame fields, etc.) with legacy
DCF stations in b and g mode, and it provides throughput
performance comparable with the proprietary card firmware
when executing the DCF state machine5.

8. CONCLUSIONS
This paper proposes a wireless active network framework

devised to permit seamless and dynamic MAC stack reconfig-
uration via MAClets, namely MAC programs conveyed into
data packets. This is accomplished by extending our formerly
proposed Wireless MAC Protocol architecture with primi-
tives to dynamically handle code inside the radio hardware,
by developing an overlay software control framework for mov-
ing and launching MAClets, and by experimentally assessing
the flexibility and performance of the system operation over
commodity WLAN cards.

Besides the specific technical contributions, we believe that
a further significance of our proposed approach is that proto-
col reconfiguration is accomplished via application program-
ming interfaces, rather than via binary images or access to
open source devices, thus perhaps permitting its possible fu-
ture endorsement also in the real commercial world.

Acknowledgement
This work has been carried out in the frame of the EU FP7-
FLAVIA project, contract number 257263. We thank the
reviewers and our shepherd Ruben Merz for the insightful and
constructive feedback that helped us in revising the paper.

9. REFERENCES
[1] J. Mitola III, G. Q. Maguire, “Cognitive radio: Making software

radios more personal”, IEEE Personal Communications, vol. 6,
no. 4, pp. 13–18, August 1999.

[2] V. Bose, D. Wetherall, J. Guttag, “Next century challenges:
RadioActive networks”, ACM/IEEE MobiCom ’99, Seattle,
USA, pp. 242–248.

[3] C. R. Stevenson, Z. Lei, W. Hu, S.J. Shellhammer, W. Caldwell,
“IEEE 802.22: The First Cognitive Radio Wireless Regional
Area Network Standard”, IEEE Communication Magazine,
January 2009, pp. 130-138

[4] A. Banchs, P. Serrano and H. Oliver, “Proportional fair
throughput allocation in multirate IEEE 802.11e wireless
LANs,” Wireless Networks, 2007, vol. 13, pp. 649-662.

[5] L. Scalia, I. Tinnirello, J.W. Tantra, C.H. Foh, “Dynamic MAC
Parameters Configuration for Performance Optimization in
802.11e Networks,” IEEE Globecom 2006

[6] C. Partridge, “Realizing the future of wireless data
communications,” Commun. ACM, Sep. 2011, Vol. 54, issue 9,
pp. 62-68

[7] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, P. Steenkiste,
“Enabling MAC Protocol Implementations on Software-defined
Radios”, NSDI’09, 2009.

[8] M. C. Ng, K. E. Fleming, M. Vutukuru, S. Gross, Arvind, H.
Balakrishnan, “Airblue: A System for Cross-Layer Wireless
Protocol Development”, ACM/IEEE ANCS 2010.

[9] X. Zhang, J. Ansari, G. Yang and P. Mahonen “TRUMP:
Supporting Efficient Realization of Protocols for Cognitive
Radio Networks”, IEEE DySPAN 2011

5The implementation has been tested on 4311 and 4318
chipset revisions, under the driver b43 and with kernel 3.1.4
(for more information see the specific documentation).

[10] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F.
Gringoli, “Wireless MAC Processors: Programming MAC
Protocols on Commodity Hardware” IEEE INFOCOM, March
2012.

[11] Wireless Management Suite. Data sheet, Enterasys Networks,
Inc., March 2009.

[12] AirWave Management Platform. Data Sheet DS AWMP US
081117, Aruba Networks, Inc., Nov. 2008

[13] Li-Hsing Yen and Tse-Tsung Yeh. SNMP-Based Approach to
Load Distribution in IEEE 802.11 Networks. In IEEE 63rd
VTC’06-Spring, vol. 3, pp. 1196-1200, May 2006

[14] B-S. Jeon, E-J. Ko, and G-H. Lee. Network Management
System for Wireless LAN Service. In 10th International
Conference on Telecommunications, 2003. ICT 2003, volume 2,
pages 948-953, March 2003.

[15] M. Neufeld, J. Fifield, C. Doerr, A. Sheth, D. Grunwald,
“SoftMAC - Flexible Wireless Research Platform” HotNets,
Nov. 2005.

[16] T. S. Bonfim and M. M. Carvalho, Reversing the IEEE 802.11
Backoff Algorithm for Receiver-Initiated MAC Protocols, IEEE
IWCMC 2012, Cyprus, 2012.

[17] M. Fang, D. Malone, K. R. Duffy and D. J. Leith, Decentralised
learning MACs for collision-free access in WLANs, Wireless
Networks. To Appear.

[18] Wireless Open Access Research Platform,
http://warp.rice.edu/trac.

[19] The GNURadio Software Radio, http://gnuradio.org/trac

[20] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang,
H. Wu, W. Wang, G. M. Voelker, “Sora: High Performance
Software Radio Using General Purpose Multi-core Processors”,
NSDI 2009.

[21] Open firmware for WiFi networks,
http://www.ing.unibs.it/openfwwf/

[22] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, J. Turner, “OpenFlow:
enabling innovation in campus networks”, ACM SIGCOMM
Comp. Commun. Review archive, Vol. 38(2), April 2008

[23] D. Tennenhouse, J. Smith, D. Sincoskie, D. Wetherall, G.
Minden, “A Survey of Active Network Research”, IEEE
Communications Magazine, January 1997.

[24] A. Campbell, H. De Meer, M. Kounavis, K. Miki, J. Vicente, D.
Villela, “A survey of programmable networks”, ACM
SIGCOMM 1999, pp. 7 – 23.

[25] D. Wetherall, J. Guttag, D. Tennenhouse, “ANTS: A Toolkit for
Building and Dynamically Deploying Network Protocols”, IEEE
Open Architectures and Network Programming, April 1998, pp.
117-129.

[26] R. K. Panta, I. Khalil, S. Bagchi, “Stream: Low Overhead
Wireless Reprogramming for Sensor Networks”, IEEE
INFOCOM 2007, May 2007, Anchorage, pp. 928-936.

[27] M. Krasniewski, R. Panta, S. Bagchi, C.L. Yang, W. Chappell,
“Energy-efficient on-demand reprogramming of large-scale
sensor networks”, ACM Trans. on Sensor Networks, February
2008, Vol. 2, pp. 1-38.

[28] P. Levis, N. Patel, S. Shenker, and D. Culler, “Trickle: A
Self-Regulating Algorithm for Code Propogation and
maintenance in Wireless Sensor Network,” NSDI 2004.

[29] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TinyDB: an acquisitional query processing system for sensor
networks,” ACM Trans. on Database Systems., vol. 30, no. 1,
pp. 122-173, 2005.

[30] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor
networks,” 10th int. conf. on Arch. support for programming
languages and operating systems, 2002, pp. 85-95.

[31] WMP Project, http://wmp.tti.unipa.it/.

240

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

