
A SOFT Way for OpenFlow Switch Interoperability Testing

Maciej Kuźniar† Peter Perešíni† Marco Canini‡∗ Daniele Venzano† Dejan Kostić•∗

†EPFL, Switzerland ‡TU Berlin / T-Labs, Germany •Institute IMDEA Networks, Spain
†{name.surname}@epfl.ch ‡m.canini@tu-berlin.de •dkostic@imdea.org

ABSTRACT

The increasing adoption of Software Defined Networking,
and OpenFlow in particular, brings great hope for increasing
extensibility and lowering costs of deploying new network
functionality. A key component in these networks is the
OpenFlow agent, a piece of software that a switch runs to
enable remote programmatic access to its forwarding tables.
While testing high-level network functionality, the correct
behavior and interoperability of any OpenFlow agent are
taken for granted. However, existing tools for testing agents
are not exhaustive nor systematic, and only check that the
agent’s basic functionality works. In addition, the rapidly
changing and sometimes vague OpenFlow specifications can
result in multiple implementations that behave differently.
This paper presents SOFT, an approach for testing the

interoperability of OpenFlow switches. Our key insight is in
automatically identifying the testing inputs that cause dif-
ferent OpenFlow agent implementations to behave inconsis-
tently. To this end, we first symbolically execute each agent
under test in isolation to derive which set of inputs causes
which behavior. We then crosscheck all distinct behaviors
across different agent implementations and evaluate whether
a common input subset causes inconsistent behaviors. Our
evaluation shows that our tool identified several inconsis-
tencies between the publicly available Reference OpenFlow
switch and Open vSwitch implementations.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Internet-
working—Routers; C.4 [Performance of Systems]: Reli-
ability, availability, and serviceability; D.2.5 [Software En-

gineering]: Testing and Debugging—Symbolic execution

Keywords

Switches, Bugs, Reliability, OpenFlow, Symbolic execution

∗
Work done when the author was with EPFL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10–13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

1. INTRODUCTION
Software defined networking (SDN) holds the promise to

lower the barrier for deploying and managing new function-
ality in networks. For example, Google recently outlined
how it uses SDN to solve the problem of scheduling bursty
traffic among its datacenters [1]. The main thrust in SDN
is currently OpenFlow [21]. In OpenFlow, the software run-
ning at a logically centralized controller manages a collection
of switches hosting programmable forwarding tables.

It is crucial to have reliable networks, and this requirement
does not change with SDN. Unfortunately, with the intro-
duction of greater programmability, the chances of software
faults (or bugs) are also on the rise. Debugging applica-
tion software that runs at the controller has recently started
receiving attention. For example, NICE [11] subjects the
controller software to a wide range of packet streams to un-
cover race conditions and other bugs.

However, an aspect that is mostly going unnoticed is that
OpenFlow switches also run software, which must behave
correctly. This software takes the name of OpenFlow agent,
and its role is to expose a standardized programmatic inter-
face to the switch forwarding tables and to handle the com-
munication with the controller. However, while testing high-
level network functionality, the interoperability and correct
behavior of any OpenFlow agent are taken for granted. In
practice, a real OpenFlow deployment likely has switches
from multiple vendors managed by one or more controllers.
To ensure correct network operation, all switches must work
properly. In other words, it may take just one buggy switch
to cause problems in the form of lost connectivity, unautho-
rized accesses, traffic overload, and so on. If failures start
occurring in OpenFlow deployments, the hard-earned ability

to innovate in the networking space will be severely hampered

by mistrust. In addition, hardware switches run OpenFlow
agents in the form of embedded firmware. Firmware is dif-
ficult to upgrade due to the impact of downtime, has longer
debug cycles than ordinary software, and is notoriously chal-
lenging to troubleshoot in the wild [23]. These issues only
raise the importance of trying to ensure that the firmware
is right during its development stage.

Several issues make it difficult to produce error-free switch
software. Consider that just the rule installation command
(Flow Mod) in the OpenFlow specifications [5] is two and
a half pages long. Moreover, the specifications are in rapid
flux (going through three revisions in slightly over one year).
Further, even given specifications have interpretation ambi-
guities or gives explicit implementation freedom. In some
cases, vendors do not even follow the specifications [22].

265

Despite advances in writing provably correct software, test-
ing remains the prime technique for ensuring dependability.
We observe that local testing and debugging (e.g., by using
OFTest [2]) can get the basic functionality working. Beyond
this, the only way of gaining confidence in the behavior of
multiple different switches currently is interoperability test-
ing. One way of doing this involves placing personnel and
switches at a third-party location for several days, and run-
ning OFTest and similar test suites [3]. Besides being ex-
pensive, this task is complex, in part because the number of
new OpenFlow switch implementations is quickly growing.
Of course, any new version of the specifications require a
new round of interoperability testing.
Moreover, since local test suites are unlikely to be exhaus-

tive, the above interoperability testing will not be exhaustive
either. For instance, vendors typically test control plane
software using manually-composed test cases, refined over
time. Evidence shows that critical interoperability bugs sur-
vive this process. For example, in two recent episodes, 100%
protocol-compliant BGP messages caused significant con-
nectivity problems [6, 7]. These examples strongly confirm
that local test cases are incomplete even for well-established
router software.
Towards achieving exhaustive testing, we propose an ap-

proach to interoperability testing that leverages the multi-
ple, existing OpenFlow implementations and herein iden-
tifies potential interoperability problems by crosschecking
their behaviors. Exploring code behaviors in a systematic
way is key to observe behavioral inconsistencies. Researchers
recently applied symbolic execution [18], a systematic pro-
gram code analysis technique, to test systems software with
considerable success [8,9,12]. Symbolic execution effectively
asks the code itself to provide the test inputs that are needed
to traverse all code paths at least once. The reasoning here is
that it is sufficient to test each code path once to exercise all
behaviors. Doing this is relatively simple for single-machine
code, while trying to find memory-related bugs.
While appealing, the use of symbolic execution is gener-

ally met with the scalability challenges of exhaustive path
coverage, which we must face. In addition, it would not be
practical to assume that a tool for interoperability testing
would have access to the source code of commercial Open-
Flow implementations from all vendors.1 It is then our
goal to make symbolic execution scale to crosscheck different
OpenFlow implementations and find interoperability issues
without having simultaneous access to all source codes.
In this paper, we introduce SOFT (Systematic OpenFlow

Testing), a tool that automates interoperability testing of
OpenFlow switches. Operating in two phases, SOFT uses
symbolic execution and constraint solving. In the first test-
ing phase, symbolic execution runs locally on each vendor’s
source code. Then, using the outputs of symbolic execution
(not the source codes), SOFT determines the input ranges
(e.g., fields in OpenFlow messages) that cause two Open-
Flow agent implementations to exhibit different behaviors.
Unlike normal execution, symbolic execution runs a pro-

gram with symbolic variables as inputs. A symbolic vari-

1Although modern symbolic execution engines only require
access to the binary code, this still needs to be produced
with a particular compiler or be interpreted at runtime,
which may incur impractical overhead. Also, it may not be
possible to simply use the binary form since the execution
environment is generally not known a priori.

able initially has no constraints on its actual value. As the
execution progresses, the possible values of symbolic vari-
ables become constrained based on how the program uses
these variables (e.g., in conditional expressions). At every
code branch based on a symbolic variable, symbolic execu-
tion logically forks and follows both branches, on each path
maintaining a set of constraints, called the path condition,
which must hold for the execution of that path.

Using symbolic execution as a base for interoperability
testing is conceptually similar to checking functional equiv-
alence on a per-path basis. Assume we have two functions
that take a single argument and implement the same algo-
rithm in different ways. We can check functional equiva-
lence by simply feeding them the same symbolic argument
and verifying they return the same value. In practice, when
applying symbolic execution to OpenFlow agent testing, we
must address several challenges. First, the input space is
theoretically infinite as an OpenFlow agent is a non-termi-
nating program. Simply limiting the input space (i.e., Open-
Flow messages and data packets) to N symbolic bytes is
not effective, given that it means feeding completely un-
structured inputs. Intuitively, with such inputs, the sym-
bolic execution engine would quickly run into the path ex-
plosion problem (number of paths grows exponentially with
the number of branches on symbolic inputs). Second, there
is no immediate or a standard way to compare the behav-
iors of different agents. Demanding modifications to the
agents’ source code for inspecting the state is clearly unde-
sirable. Third, the straightforward equivalence check out-
lined above requires simultaneous access to both OpenFlow
agents’ source codes, which is likely to be impossible for
commercial implementations.

The contributions of this paper are as follows:
1. We use symbolic execution to systematically identify

and collate code paths in OpenFlow agents to determine in-
put subspaces that result in the same outputs. To achieve
this, we address the difficult problems of managing the com-
bination of symbolic and concrete inputs, as well as deter-
mining internal agent state by observing external actions.
This step overcomes the first challenge in applying symbolic
execution to interoperability testing.

2. We demonstrate a novel use of a constraint solver to
compute an intersection of input subspaces belonging to dif-
ferent agent implementations. By doing so, we quickly deter-
mine inputs that cause different behavior in multiple agents
(inconsistencies). In addition, we do so without an a priori

definition of correct behavior and overcome the second chal-
lenge (crosschecking implementation behaviors). This phase
is separate from symbolic execution and does not require ac-
cess to source code. By this virtue, it addresses the third
aforementioned challenge.

3. We demonstrate the effectiveness of our approach by
applying it to the Reference Switch (55K LoC) and Open
vSwitch (80K LoC), the two publicly available OpenFlow
agent implementations. SOFT quickly finds several inconsis-
tencies between the two. Further, we demonstrate SOFT’s
effectiveness in finding manually injected differences.

The remainder of this paper is organized as follows. We
provide an overview of our approach in Section 2, and fol-
low it with the detailed description in Section 3. Section
4 contains the details of our prototype, and we proceed to
evaluate it in Section 5. We place our work in the context
of related work in Section 6 and conclude in Section 7.

266

2. OVERVIEW
In this section, we first give a brief introduction to sym-

bolic execution, the technique our approach is built on. Next,
we describe the kind of implementation inconsistencies we
target. We then use an example to guide an overview of our
approach and discuss the intended usage of SOFT.

2.1 Symbolic execution
Our approach is inspired by the successful use of sym-

bolic execution [18] in automated testing of systems soft-
ware [8–10, 12, 15]. The idea behind symbolic execution is
to exercise all possible paths in a given program. Therefore,
unlike normal execution which runs the program with con-
crete values, symbolic execution runs program code on sym-
bolic input variables, which are initially allowed to take any
value. During symbolic execution, code is executed normally
until it reaches a branch instruction where the conditional
expression expr depends (either directly or indirectly) on a
symbolic value. At this point, program execution is logically
forked into two executions—one path where the variables
involved in expr must be constrained to make expr true;
another path where expr must be false. Internally, the sym-
bolic execution engine invokes a constraint solver to verify
the feasibility of each path. Then, program execution re-
sumes and continues down all feasible paths. On each path,
the symbolic execution engine maintains a set of constraints,
called the path condition, which must hold for the execution
of that path. For every explored path, symbolic execution
passes the path condition to a constraint solver to create
a test case with the respective input values that led execu-
tion on that path. Since program state is (logically) copied
at each branch, the symbolic execution engine can explore
multiple paths simultaneously or independently.
Like others [19], we observe that, to deal with loops, sym-

bolic execution would potentially need to explore an un-
bounded number of paths. As described in Section 3.2, we
effectively side-step this problem by exploiting knowledge of
the OpenFlow message grammar to construct inputs that
ensure we explore a bounded number of paths.
Therefore, symbolic execution is a powerful program anal-

ysis technique—rather than having a linear execution where
concrete values are used, symbolic execution covers a tree
of executions where symbolic values are used. However, the
usefulness of symbolic execution is limited by its scalability
because the number of paths through a program generally
grows exponentially in the number of branches on symbolic
inputs. This problem is commonly known as the “path ex-
plosion” problem. The path explosion is exacerbated by the
fact that the program under test interacts with its environ-
ment, e.g., by invoking OS system calls and calls to various
library functions. External functions present an additional
problem if the symbolic execution engine does not have visi-
bility into their source code. A typical solution to this prob-
lem is to abstract away the complexity of the underlying
execution environment using models. These models are typ-
ically a simplified implementation of a certain subsystem
such as file system, network communication, etc.. Besides
using environment models to “scale” symbolic execution, it
is possible and often sufficiently practical to selectively mark
as symbolic only the inputs that are relevant for the current
analysis. As we show later in Section 3, carefully mixing
symbolic and concrete inputs is key to being able to sym-
bolically execute OpenFlow agents.

if (p == OFPP_CTRL) {

 send_to_ctrl()

} else if (p < 25) {

 send_to_port(p)

} else {

 error(BAD_PORT);

}

if (p < 25) {

 send_to_port(p);

} else {

 error(BAD_PORT);

}

FWD

ERR

ERR

FWD

CTRL

Agent 1 Agent 2

observed results

Figure 1: Example OpenFlow agents having different
PACKET OUT message implementations.

2.2 Defining inconsistencies
Switches that are capable of supporting the OpenFlow

Switch Specification [5] do so by running an OpenFlow agent.
This agent is a piece of software primarily responsible for
state management. It receives and processes control mes-
sages sent by OpenFlow controllers (e.g., Flow Mod, Packet
Out, etc.), and configures the switch forwarding tables ac-
cordingly to the given commands. In addition, the Open-
Flow agent may take part in packet forwarding itself—in a
hardware switch, for packets that are forwarded to the con-
troller; in a pure software implementation, for every packet.

As such, the execution of the OpenFlow agent is mainly
driven by external events (e.g., rule installation requests).
We call inputs the data reaching the agent as part of either

OpenFlow control messages or packets.

Intuitively, an inconsistency occurs when two (or more)
OpenFlow agents which are presented with the same input
sequence produce different results. Here, results refer to
both externally observable consequences when processing an
input (e.g., replying to a request for flow table statistics),
and internal state changes (e.g., updating the flow table with
a new entry).

To be able to identify inconsistencies, we assume the agents
support the OpenFlow interface and we check for inconsis-
tencies in operations at the interface level. To crosscheck
behaviors, we rely either on externally observable results or,
when necessary, on probe packets to infer the internal state.

Note that, in the case of hardware switches, we are not
interested to verify the underlying switching hardware cor-
rectness. In fact, such verification is typically already part of
the ASIC design process. However, we assume that there is
a way to execute the OpenFlow agent without the switching
hardware, e.g., through an emulation layer that is commonly
readily available for development and testing purposes.

2.3 Example
Our approach to automatically finding inconsistencies among

OpenFlow agent implementations is most easily introduced
through an example.

Consider an input sequence that only includes one control
message of type Packet Out. This message instructs the
OpenFlow agent to send out a packet on port p, where p

is a 16-bit unsigned integer that identifies a specific port or
is equal to one of several preset constants (e.g., flood the
packet or send to controller). For the sake of presentation,
we assume that only p is symbolic (i.e., p is the only part
of this input that varies) and we omit the case p = 0 (for
which an error message would be produced).

We first symbolically execute an OpenFlow agent imple-
mentation while feeding it with this input sequence. When
executing symbolically, we automatically partition the in-

267

6
5

5
3

3
(O

F
P
P
_
C

T
R

L
)

ERRFWD ERR

ERRFWD

Agent 1

Agent 2

port:

6
5

5
3

5

CTRL

6
5

5
3

4

65
53

2

2
51 2
4

Input partitions

... ...

Figure 2: Input space partitions & inconsistency check.

put space of p into several subspaces. Each subspace is an
equivalence class of inputs that, in this case, describes which
values of p follow the same code path. To make the point
more tangible, consider Agent 1 in Figure 1: if p ∈ [1, 24]
the program executes the code path that sends the packet
on port p; if p = OFPP_CTRL (the predefined controller port)
the program executes a different code path that encapsu-
lates the packet in a Packet In message and sends it to the
controller; and so on. Besides determining the input space
partition, we log the output results produced when execut-
ing each code path (e.g., we log what packet comes out from
which port). Therefore, for each input subspace there exists
a corresponding output trace.
Next, we symbolically execute a different OpenFlow agent

implementation (Agent 2 in Figure 1) and determine the par-
titions of input space of p. However, assume that this second
OpenFlow agent does not support the special port number
OFPP_CTRL. Instead, the program sends an error message to
the controller when it encounters this case. Likewise, we log
the output results produced when executing each code path.
At this point, we have two input space partitions (one

for each OpenFlow agent implementation), as depicted in
Figure 2. Within each partition, we then group the sub-
spaces by output result (illustrated with different colors in
Figure 2). That is, we merge together two subspaces (two
code paths), if they produce the same outputs. Such group-
ing results in two coarse-grained input space partitions–one
for each agent. Next, we consider the cross product of the
coarse-grained partitions (i.e., all pair-wise combinations of
subspaces between the two partitions). From the cross prod-
uct, we exclude pairs of subspaces that correspond to iden-
tical output results. Finally, we intersect the two subspaces
in every remaining pair. A non-empty intersection defines
a subspace of inputs that give different results for different
OpenFlow agents: this is an inconsistency. For each in-
consistency we discover, we construct a concrete test case
that reproduces the observed results. Relative to our cur-
rent example, we identify that one inconsistency exists and,
to reproduce it, we construct the example with input p =
OFPP_CTRL as illustrated in Figure 2.

2.4 Usage
OpenFlow switch vendors can use SOFT for interoper-

ability testing in two phases. In the first phase, each vendor
independently runs SOFT on its OpenFlow agent implemen-
tation to produce a set of intermediate results that contain
the input space partitions and the relative output results.

One benefit of this approach is that a vendor does not re-
quire access to the code of other vendors.

In the second phase, SOFT collects and crosschecks these
intermediate results to identify inconsistencies. This phase
can take place as a part of an inter-vendor agreement (e.g.,
under an NDA), or during wider interoperability events [3].
Alternatively, a third-party organization such as Open Net-
working Foundation (ONF) may conduct the tests.

While we focus the presentation of SOFT on interoper-
ability testing, we want to clarify that there exist other ap-
plications. For example, SOFT can automate performing
regression testing. In addition, it can be used to compare
against a well-known set of path conditions that are boot-
strapped from unit tests.

We observe that an OpenFlow agent is potentially a soft-
ware component of a hardware device. As such, some op-
erations can install state directly in the switching hardware
(e.g., forwarding rules), seemingly outside of SOFT’s reach.
We note, however, that vendors typically have a way of run-
ning their firmware inside a hardware emulator for testing
purposes. We only require that the hardware emulator is in-
tegrated with the symbolic execution engine. Previous work
(e.g., [12]) demonstrates that it is indeed possible to run
complex software systems live, including closed-source de-
vice drivers.

3. SYSTEMATIC OPENFLOW TESTING
Our goal is to enable systematic exploration of inconsis-

tencies across multiple OpenFlow agent implementations.
In other words, we want to find whether there exists any se-
quence of inputs under which one OpenFlow agent behaves
differently than another agent. To do this, we require a
way of (i) constructing sequences of test inputs that cover
all possible executions for each OpenFlow agent, and (ii)
comparing the output results that each input produces to
identify inconsistencies.

We accomplish the subgoal of finding test inputs by using
symbolic execution. The outcome of symbolic execution is
twofold: (i) a list of path conditions, each of which summa-
rizes the input constraints that must hold during the execu-
tion of a given path, and (ii) a log of the observed output
results for each path executed.

We then identify inconsistencies by grouping the path con-
ditions that share the same output results on a per-agent
basis and finding the input subspaces that satisfy the con-
junction of the path conditions. Figure 3 provides an illus-
tration of the operation of SOFT as described above. In the
remainder of this section, we discuss our approach in detail.
After a brief description of a strawman approach for utiliz-
ing symbolic execution in functional equivalence testing, we
analyze improvements required to apply it to complex soft-
ware such as OpenFlow agents. Finally, we discuss how we
solve the second problem, namely collecting and comparing
relevant outputs.

3.1 Automating equivalence testing
Our form of interoperability testing can be viewed as check-

ing the functional equivalence of different OpenFlow agents
at the interface level (i.e., the OpenFlow API). To under-
stand how we can use symbolic execution for this purpose,
let us first consider a simpler problem.
A strawman approach. Assume we have two functions
that implement the same algorithm differently and we want

268

Figure 3: SOFT overview.

to test if they are indeed functionally equivalent. To do
this, it is sufficient to symbolically execute both functions
by passing identical symbolic inputs to both of them and
checking whether they return the same value. If the results
differ, the symbolic execution engine can construct a test
case to exercise the problematic code path. In essence, sym-
bolic execution enables us to crosscheck the two functions’
results through all possible execution paths. This simple
approach is sound, i.e., it identifies all cases where results
differ, provided that symbolic execution can solve all con-
straints it encounters. It is also relatively straightforward
to extend this approach to crosscheck console utility pro-
grams by running with the same symbolic environment and
comparing the data printed to stdout, as shown in [9].
Challenges and approach. Scaling up this approach to
our target system is not an easy task. An OpenFlow agent
is a non-terminating, event-driven program that interacts
intensely with its environment. In this case, the environment
consists of the network data plane, other switch components
(e.g., FIB) and the controller.
The first challenge this raises is that the input space is

inherently infinite, thus making the problem of comparing
OpenFlow agents over unbounded inputs intractable. In-
stead, to make our problem tractable, we must limit the
length of any input sequence used for testing.
Secondly, crosschecking the results of different OpenFlow

agents is challenging because there exists no notion such as
“switch return value”. Furthermore, there does not exist
a universal stdout format that enables textual comparison
unlike console utilities. Instead, we must collect a trace of
switch output results that enables comparison using detailed
information from both the OpenFlow and the data plane
interfaces. In other words, we must for example capture
packets and OpenFlow messages emitted by the switch, and
maintain a non-ambiguous representation of these events.
Third, the approach above works by feeding both func-

tions with the same symbolic input. In turn, this requires
that both agents be locally available. However, we can-
not assume that SOFT will operate on different OpenFlow
agents at the same time. Instead, we make a conscious de-

sign choice to decouple the symbolic execution phase from
the crosschecking phase.

3.2 Creating symbolic inputs
An OpenFlow agent reacts to OpenFlow messages and

data plane packets it receives. Therefore, sequences of such
messages can be considered inputs to the agent. In this
subsection, we only consider the control channel inputs (the
messages sent by the controller) because our goal is to test
a switch at the OpenFlow interface (and not the data plane
interface).

3.2.1 Structuring inputs

Feeding unstructured inputs is ineffective. As the in-
put space containing sequences of arbitrary numbers of arbi-
trary messages is infinite, we need to enforce the maximum
length of the sequence. A straightforward way to limit the
input size would be to use N -byte symbolic inputs, with N

bounded. Unfortunately, this approach quickly hits the scal-
ability limits of exhaustive path exploration because these
inputs do not contain any information that is of either syn-
tactic or semantic value. As a result, symbolic execution
must consider all possible ways in which these symbolic in-
puts can be interpreted (most of which represent invalid in-
puts anyway) to exhaust all paths. As an example, consider
feeding an agent with the mentioned sequence of N symbolic
bytes. Since there exist different types of control messages,
some of which have variable lengths, this stream of N bytes
can be parsed (depending on its content) as: one message
of N bytes, or as any combination of two messages whose
lengths add up to N , or as combinations of three messages,
etc.

Moreover, two messages, Flow Mod and Packet Out, are
variable in length. This is because they both contain the
actions field which is a container type for possible combina-
tions of forwarding actions. The major issue arises as each
individual action is itself variable in length. As such, we are
again in the situation where symbolic execution is left to
explore all possible combinations in which it can interpret
N symbolic bytes as multiple action items. Although indi-
vidual lengths must be multiple of 8 bytes to be valid, the
combinatorial growth quickly becomes impractical.
Structuring the inputs improves scalability. We over-
come the aforementioned problems by using a finite number
of finite-size inputs. Most importantly, we construct inputs
that adhere to valid format boundaries of OpenFlow control
messages rather than leaving symbolic execution to guess
the correct sizes. This means that we feed the agent with
one symbolic control message at a time and pass the actual
message length as a concrete value in the appropriate header
field. In practice, we must also make the message type con-
crete before establishing a valid message length, as the latter
is essentially determined by the former. This is not an issue,
since every message must be identified by a valid code (at
present about 20 codes exist, all described in the protocol
specifications [5]). In a similar fashion, for messages that
have variable length actions, we predetermine the number
of action items and the relative lengths as concrete values.

3.2.2 Choosing the size of inputs

As we choose to limit the size of inputs, the immediate
question we face is up to what input size is it practical to
symbolically execute an OpenFlow agent, given today’s tech-

269

nology? Indeed, it is known that the scalability of symbolic
execution is limited by the path explosion problem: i.e., the
number of feasible paths can grow exponentially with the
size of the inputs and number of branches. On the other
hand, to make testing meaningful, the chosen inputs need
to provide satisfactory coverage of agent’s code and func-
tionality. In practice, we seek answers through empirical
observations. The input size varies along two dimensions:
(i) number of symbolic control messages, and (ii) number of
symbolic bytes in each message.
Covering the input space of each message is gener-

ally feasible. We first explore to what extent the number
of symbolic bytes in each message represents a hurdle to
our approach. As we discuss below, we find that the over-
head to exhaustively cover the input space of each message
is generally acceptable, given the current protocol specifica-
tions. We already mentioned that the message length de-
pends in the first place on the message type. It should also
be clear that the processing code and especially the process-
ing complexity varies across message types. For example, it
is trivial to symbolically execute a message of type Hello,
which contains no message body. On the other hand, the
Flow Mod message, which drives modifications to the flow
table, carries tens of data fields that need validation and
ultimately determine what actions the switch will perform.
Indeed, we observe through experimentation that the num-
ber of feasible paths varies significantly between different
message types (two orders of magnitude between Flow Mod

and Packet Out messages). Most importantly, symbolic ex-
ecution runs to completion in all cases when testing with the
reference OpenFlow implementation.2

Achieving good coverage requires just two symbolic

messages. However, the question remains about how many
symbolic control messages we should inject in practice. Again,
the answer depends on what type of messages one consid-
ers. We find that for complex messages we can at most
use a sequence of three messages. This number may seem
small, but it is worth noting that we do not need long mes-
sage sequences for the type of testing we target. In fact,
one symbolic message is already sufficient to cover all fea-
sible code paths involved in message processing. With the
subsequent message, we augment the coverage to include ad-
ditional paths that depend on parts of switch state that are
rendered symbolic as a result of running with the first sym-
bolic message. Effectively, the second message enables us to
explore the cross-interactions of message pairs. In addition,
such interactions exist only for a small fraction of possi-
ble message type combinations. For example, two Flow Mod

messages may affect the same part of the switch state; that
is not true for Echo Request followed by Flow Mod. As such,
the increase in instruction coverage due to the second mes-
sage is a fraction of what the first message covers. A third
message does not significantly improve coverage further as
shown in Figure 4. Thus, careful consideration of inputs
is key to successfully achieving our goals through symbolic
execution.

3.2.3 Defining relevant input sequences.

Exploiting domain specific knowledge is essential to con-
struct input sequences that target interesting uses of Open-
Flow messages to further reduce the testing overhead. First,
although the protocol specifications define about 20 mes-

2Our experimental setup is introduced in Section 5.

Figure 4: Reference switch code coverage as a function
of the number of symbolic messages.

sages, some of these are clearly more important than oth-
ers. For example, the Hello and Echo messages are simple
connection establishment and keep-alive messages, respec-
tively. We focus on complex messages such as Flow Mod,
Packet Out, Set Config that require validation and modify
the state of an agent. We also note that because these mes-
sages are meant to affect different functional aspects of the
agent, we find it unnecessarily time-consuming to check all
pair-wise combinations of these messages. Section 5 details
the actual sequences of messages we use for testing.

3.3 Collecting output results
So far we have shown how our approach uses exhaustive

path exploration to obtain the input space partitions (or
equivalence classes of inputs). However, we still need to
know what end result each partition produces because only
the results enable the comparison across different OpenFlow
agents.

As we feed a symbolic message to an OpenFlow agent, its
state might be updated. Additionally, there are two possi-
ble outcomes: (i) the agent outputs some data (i.e., mes-
sages back to the controller or data plane packets), or (ii)
the agent does not produce externally observable data. In
this work we treat only data explicitly returned by an agent
(OpenFlow messages and data plane packets) as an output.
Instead of directly fetching the internal state, we use addi-
tional packets and messages to infer the impact of the state
on agent’s behavior.
Capturing output data. To collect the outputs, we make
use of the OpenFlow and data plane interfaces to capture
data. Specifically, we log all OpenFlow messages and pack-
ets emitted by the agent. Note that the entire analysis runs
in software (the output data may even contain symbolic in-
puts); therefore, with data plane interface we simply mean
the socket API (or equivalent) that the agent uses to send
packets.
Using concrete packets for probing state. Regardless
of whether the agent does or does not output data, we can-
not immediately determine if the symbolic message caused
any internal state change (e.g., the Flow Mod message in-
stalls a new rule in the flow table). Differences in internal
state not necessarily result in differences in observed behav-
ior. Moreover, we want to avoid directly fetching an agent’s
internal state as this would require a dependency on the
specific implementation. As a solution, following any poten-

270

tially state changing symbolic message, we inject a concrete
packet through the data plane interface as a simple state
probe. The effect of this probe is that it enables symbolic
execution to exercise the code that matches incoming pack-
ets and the code that applies the forwarding actions. The
probe packet is then either forwarded (to a port or con-
troller), in which case we log it, or it is dropped, in which
case we log an empty probe response.
Normalizing results. Rather than saving the logs verba-
tim, we normalize the output results to remove certain data
from the results for which spurious differences are expected.
For example, the buffer identifiers used by different agents
may differ and such a difference should not be considered an
inconsistency.

3.4 Finding inconsistencies
In this phase, we seek to find inconsistencies between two

OpenFlow agents denoted A and B.
With respect to agent A, we denote with PCA the set of

path conditions (outcome of symbolic execution). For each
pc ∈ PCA, let resA(pc) be the normalized output result when
executing the path represented by pc. We denote the set of
distinct output results as RESA.
Grouping paths by output results. Our first step
is to group all different path conditions that produce the
same output result. Formally, ∀r ∈ RESA we set CA(r) =∨
{pc | pc ∈ PCA; resA(pc) = r} to be the disjunction of

all path conditions that share the same output result. PCB,
RESB, and CB are similarly defined.
Intersecting input subspaces. In our second and last
step, for each pair of different outputs of agents A and B, we
check if there exists at least one common input that leads
to these inconsistent outputs. For each pair (i, j) of results
i ∈ RESA, j ∈ RESB s.t. i 6= j, we query a satisfiability
solver (STP [14]) to obtain an example test case that satisfies
the condition CA(i)

∧
CB(j). If the solver can satisfy this

conjunction, then we have an inconsistency.
Discussion. It is easy to note that an upper bound of
the number of queries to the solver for our approach is
|RESA| · |RESB|. In addition, note that our approach pro-
duces only one inconsistency example per pair of different
output results. In other words, we do not provide one ex-
ample for each path that produces the inconsistency. If this
is desired, one can omit grouping all paths that share the
same output. However, doing so has an inherent overhead
cost because it increases the number of STP queries. In-
stead, our approach amortizes the start-up costs of a multi-
tude of solver invocations by using fewer larger queries and
enables the solver to apply built-in optimizations to handle
such larger queries.
As with any bug finding tool, it is important to know

whether our approach incurs in false positives/negatives. We
observe that SOFT does not produce false positives: each
identified inconsistency is evidence of divergent behavior.
Note this does not necessarily mean that one agent does
something in violation to the specifications. According to
our previous definition, an inconsistency is reported if the
tested agents perform different actions when exposed to the
same input. However, the tool might have false negatives
for two reasons. The first is that our path coverage may not
be complete. For instance, symbolic execution might not
cover all feasible paths due to path explosion. The second

is that all agent implementations under test might contain
the same bug, and therefore produce the same output.

4. SOFT PROTOTYPE
We built our SOFT prototype on top of the Cloud9 [8]

symbolic execution engine. SOFT consists of three major
components: (i) a test harness, which drives the testing of
OpenFlow agents, (ii) a grouping tool to group path condi-
tions that share output results, and (iii) a tool for finding
inconsistencies.

4.1 Test harness and Cloud9
To provide the necessary execution environment for the

OpenFlow agent, we build a test harness that emulates both
a remote controller and the underlying network. The emu-
lated controller is capable of injecting symbolic inputs.

As a symbolic execution engine, Cloud9 can symbolically
execute only a single binary. We therefore create a test
“driver” by linking the OpenFlow agent and our test harness
controller together. Upon startup, the test driver forks into
two processes, one of which runs the OpenFlow agent while
the second runs the test harness itself. The two processes
are connected via standard UNIX sockets. Upon startup,
the OpenFlow agent connects to the test harness. After the
connection setup and exchange of the initial Hellomessages,
the test harness injects a sequence of several symbolic Open-
Flow messages and/or probes, one at a time (we discuss the
input sequences in more details in Section 5). Upon con-
firming that the switch processed all messages and probes,
we kill the execution.

To use Cloud9 for our goal, we had to improve its envi-
ronment model. Cloud9 provides a symbolic model of the
POSIX environment. Such a model, most importantly, al-
lows us to efficiently use the socket API without accessing
the entire networking stack. As a result, all symbolic vari-
ables remain symbolic after being transferred as data in a
packet. However, such a model needs to provide all func-
tions used by the tested application. Notably, we needed
to implement the RAW socket API which was missing in
Cloud9 but is used by the OpenFlow agents in our tests.
Moreover, we replace or simplify some library functions as
described next.

We assume that the agents correctly use network versus
host byte ordering, and we change functions ntoh and hton

to simply return their argument unchanged. This simpli-
fies constraints by removing double-shuffling (first when the
test harness creates a message, second when the OpenFlow
agent parses the message). We also simplify checksum and
hash functions to return constants or identities, because they
cannot be reversed or it is computationally very expensive
to do so (this is a well-known issue in using a constraint
solver). The aforementioned modifications reduce complex-
ity and improve symbolic execution efficiency.

Finally, the symbolic execution engine may use several
search strategies that prioritize different goals while explor-
ing the program. We choose to use the default Cloud9 strat-
egy that is an interleaving of a random path choice and a
strategy that aims to improve coverage. However, the choice
of the search strategy has small impact on our tool. By con-
trolling the inputs we tend to exhaustively cover all possi-
ble execution paths, which in turn diminishes the impact of
choosing a particular search strategy. Moreover, SOFT is

271

capable of working with traces that are only partially cov-
ering agents’ code.

4.2 Tools
Apart from the test harness, we provide two tools for ma-

nipulating Cloud9 results. Both of these tools are written
in C++ and heavily reuse existing Cloud9 code for read-
ing, writing and manipulating path conditions. The tools
contain less than 200 lines of new code in total.
The group tool reads multiple files (results of Cloud9 ex-

ecution), identifies different output results and groups the
path conditions by result. To improve performance of fur-
ther constraint parsing, we group path conditions by build-
ing a balanced binary tree minimizing the depth of nested
expressions. The inconsistency finder tool expects two di-
rectories holding grouped results as its arguments. The tool
iterates over all combinations of different results and queries
the STP solver to check for inconsistencies. If there is an
inconsistency (the condition is satisfiable), the STP solver
provides an example set of variables that satisfy the con-
dition. This is a test case that can be used to understand
and trace the root cause of the inconsistency and verify if a
behavior is erroneous.

5. EVALUATION
We evaluate SOFT using two publicly available OpenFlow

agents compatible with the specifications in version 1.0. The
first one is a reference OpenFlow switch implementation
written in C released with version 1.0 of the specifications.
Its main purpose is to clarify the specifications and present
available features. Although the reference implementation
is not designed for high performance, it is expected to be
correct as others will build upon and test against it. We are
referring to this version as Reference Switch (55K LoC). The
second is Open vSwitch 1.0.0 [4] (80K LoC). It is a produc-
tion quality virtual switch written in C and used in several
commercial switches.3 OpenFlow is just one the supported
protocols. We also created a third OpenFlow agent by mod-
ifying the Reference Switch and introducing different corner
case behaviors (Modified Switch). This way we can tell how
efficiently SOFT finds the injected differences and which of
them remain unnoticed.
To evaluate SOFT we use the set of tests summarized

in Table 1. We run our experiments using a machine with
Linux 3.2.0 x86 64 that has 128 GB of RAM and a clock
speed of 2.4 GHz. Our implementation does not use multiple
cores for a single experiment.

5.1 Can SOFT identify inconsistencies?
In this section, we report and analyze the inconsistencies

SOFT detects. We apply a set of tests to all three OpenFlow
agents and compare Reference Switch with both Modified
Switch and Open vSwitch.

5.1.1 Modified Switch vs. Reference Switch

First, we look for differences between Reference Switch
and Modified Switch. Two team members who did not take
part in the tool’s implementation and test preparation were
designated to introduce a few modifications to the Refer-
ence Switch. The modifications were meant to affect the
externally visible behavior of the OpenFlow agent. Having

3For example, in Pica8 products: http://www.pica8.org/.

Test Description

Packet Out
A single Packet Out message containing a sym-
bolic action and a symbolic output action.

Stats Request
A single symbolic Stats Req. It covers all possible
statistics requests.

Set Config
A symbolic Set Config message followed by a
probing TCP packet.

FlowMod
A symbolic Flow Mod with 1 symbolic action and
a symbolic output action followed by a probing
TCP packet.

Eth FlowMod

Symbolic Flow Mod with 1 symbolic action and a
symbolic output action. Fields not related to Eth-
ernet are concretized. The message is followed by
a probing Ethernet packet.

CS FlowMods
2 Flow Mod. The fist one is concrete, the second is
symbolic.

Concrete
4 concrete 8-byte messages. These are the mes-
sages that do not have variable fields.

Short Symb
A 10-byte symbolic message. Only the OpenFlow
version field is concrete.

Table 1: Tests used in the evaluation.

purposefully injected changes, we set out to check how many
can be detected by SOFT.

SOFT is able to correctly pinpoint 5 out of 7 injected mod-
ifications. We further investigate the cases in which SOFT
failed to flag the effect of the differences. It turns out that
one of them concerns the Hello message received while es-
tablishing a connection to the controller. SOFT does not
recognize this problem because it establishes a correct con-
nection first and then performs the tests. The second missed
modification manifests itself only when a rule is deleted be-
cause of a timeout. This occurs because the symbolic exe-
cution engine is not able to trigger timers. As part of our
future work, we plan to extend our approach to deal with
time, e.g., similarly to MODIST [24].

5.1.2 Open vSwitch vs. Reference Switch

Knowing that SOFT is capable of finding inconsistencies,
we compare the Reference Switch with Open vSwitch to ver-
ify how useful SOFT is when applied to a production qual-
ity OpenFlow agent. The list of differences between the two
major software agents contains a few significant ones. In
the following, we present the observed inconsistencies and
analyze their root causes.
Packet dropped when action is invalid. This case
describes a Packet Out message containing a packet that
is silently dropped by Open vSwitch while the Reference
Switch forwards it. The inconsistency appears when the
Packet Out control message satisfies the following condi-
tions: (i) it contains the packet that the agent should for-
ward and (ii) one of the actions is setting the value of VLAN
or IP Type of Service field. Further investigation leads us to
the conclusion that Open vSwitch validates whether a new
VLAN value set by the action fits in 12 bits and similarly
whether the last two bits of the TOS value are equal to 0.
When an action specified in the message does not pass this
strict validation, Open vSwitch silently ignores the whole
message. Additional tests with Flow Mod messages reveal a
similar issue. These tests also show that the vlan_pcp field
undergoes additional validation in Open vSwitch. Reference
Switch does not validate values of the aforementioned fields,
but it automatically modifies them to fit the expected for-
mat.

The specifications do not state that the OpenFlow agent
should perform such a precise validation of any of the men-

272

Test
Message

count

Reference Switch Modified Switch Open vSwitch

CPU
time

Path
count

Constraints
CPU
time

Path
count

Constraints
CPU
time

Path
count

Constraints
avg max avg max avg max
size size size size size size

Packet Out 1 14s 49 71.57 96 24s 117 74.09 91 44s 241 63.48 79
Stats Request 1 44s 218 53.10 65 46s 218 53.10 65 186s 136 52.63 67
Set Config 2 446s 207 76.89 112 451s 207 76.89 112 569s 207 80.97 116

Eth FlowMod 2 40m 7680 101.12 132 83m 14280 106.62 136 198m 27682 98.56 127
FlowMod 2 373m 87828 109.77 161 >140h >356753 123.09 164 60h 181620 123.28 159

CS FlowMods 2 69m 29179 96.63 136 121m 51419 99.74 139 36h 462488 115.22 173
Concrete 4 6s 1 0 0 6s 1 0 0 8s 1 0 0

Short Symb 1 50s 31 27.9 69 50s 31 27.9 69 12s 14 27.5 50

Table 2: Symbolic execution statistics for selected tests for all 3 OpenFlow agents. We report time, number of explored
paths (input equivalence classes) and constraint size (average and maximum size).

tioned fields. Therefore, both implementations might be
considered correct. However, such a difference in behavior
might cause unexpected packet drops if the controller devel-
opers test their applications with switches that are different
from those deployed in the network.
Forwarding a packet to an invalid port. Here we de-
scribe a case in which the tested OpenFlow agents return
error messages concerning incorrect output ports in an in-
consistent fashion. According to the specifications, the agent
has to return an error message if the output port will never
be valid. However, if the port may become valid in the fu-
ture, the message might either be rejected with an error,
or the agent may drop packets intended for this port while
it is not valid. The differences in interpretation when the
port will be invalid forever lead to a few differences between
OpenFlow agents. First, when the ingress port in the match
is equal to the output port, the Reference Switch returns
an error, as no packets will ever be forwarded to this port.4

Open vSwitch accepts such a rule and drops all matching
packets. On the other hand, Open vSwitch immediately re-
turns an error when the action defines an output port greater
than a configurable maximum value. Reference Switch does
not validate ports this way.
Thus, if the controller application relies on error messages

received, it may misbehave when deployed with a different
agent than it was tested with. If the agent used in testing
considered a port valid but the other agent did not, the con-
troller would fail to install rules it was designed to install.
The opposite situation is equally unsafe. The rule installa-
tion that used to return an error succeeds, but all matching
packets get dropped. As a result, some packets will not to
be sent to the controller, although they were expected to be.
Moreover, such a rule may cover another, lower priority one.
Lack of error messages. We have already presented a
few cases when one of the agents silently drops the incorrect
message without returning an error. SOFT detects another
instance of such a problem in the Reference Switch while
testing with Packet Out and Flow Mod messages. When the
buffer_id field refers to a non-existent buffer, the Reference
Switch handles the message but does not apply actions to
any packet and does not report any error. Open vSwitch
replies with an error message, but installs the flow as well.
We analyzed the Reference Switch source code and discov-
ered that although the error is returned by the message han-
dler, it is not propagated further as an OpenFlow message.
OpenFlow agent terminates with an error. There are
three independent cases when the Reference Switch crashes.

4A special OFPP_IN_PORT port must be explicitly used to
forward packets back to the port they came from [5].

First, when the OpenFlow agent receives a Packet Out mes-
sage with output port set to OFPP_CTRL. This may be a rare
case (e.g., when the developer demands such behavior) but
it is not forbidden by the specifications. Second, when the
agent executes an action setting the vlan field in a Packet

Out message the same error appears and the agent crashes.
Finally, when the agent receives a queue configuration re-
quest for port number 0, it encounters a memory error. All
the aforementioned problems are not only inconsistencies,
but also major reliability problems in the OpenFlow agent.
Different order of message validation. In this case,
the order in which message fields should be validated is not
made explicit in the specifications. This vagueness results in
externally visible differences in agents’ behavior. The same
incorrect message may induce two different error messages,
or an error message and a lack of response in case of the
mentioned problem. We encountered such a situation for a
Packet Out message with an incorrect buffer id and output
port.
Statistics requests silently ignored. The Reference
Switch silently ignores requests for statistics to which it is
not able to respond. This behavior is a specific case of the
“Lack of error messages” problem. Even though the handler
returns an error it is not converted to an OpenFlow message.
The problem was detected because Open vSwitch sends an
error in response to an invalid or unknown request.
Missing features. SOFT is able to detect features that are
missing in one OpenFlow agent, but are present in the other.
We were able to automatically infer that Open vSwitch does
not support emergency flow entries that are defined in the
specifications. Secondly, Reference Switch being purely an
OpenFlow switch, does not support the traditional forward-
ing paths (OFPP_NORMAL).

5.2 What is the overhead of using SOFT?
In this section, we present the performance evaluation of

the two key stages of SOFT’s execution.
Symbolic execution. In the first stage, the OpenFlow
agent is symbolically executed with an input sequence and
SOFT gathers path constraints and corresponding outputs.
For all three OpenFlow agents we report the running time,
as well as the number and size (number of boolean opera-
tions in a path condition) of paths (equivalence classes of
inputs) in Table 2. These metrics are strongly variable and
depend not only on the input length but also on the message
type. Moreover, adding a second message or a probe packet
significantly increases complexity by orders of magnitude.
Additionally, Open vSwitch–the most complex of the tested
agents–is noticeably more challenging for symbolic execu-

273

Grouping results Inconsist.

Test Reference Switch Open vSwitch checking

time #res time #res time #
Packet Out 0.038s 6 0.090s 10 26s 14

Stats Request 0.116s 8 0.061s 9 10s 7
Set Config 0.141s 69 0.43s 69 236s 0

Eth FlowMod 8s 12 23s 31 23m 58
CS FlowMods 79s 4 344m 6 >28h ≥8
Short Symb 0.039s 9 0.01s 7 6s 4

Table 3: Time needed to find overlapping input sub-
spaces and number of created test cases. Each test
case represents one intersection of overlapping input sub-
spaces. Additionally, time needed to group constraints
by the output and a number of distinct outputs for Ref-
erence Switch and Open vSwitch.

tion (we note that it is possible to use even partial results of
symbolic execution to look for inconsistencies). As a result
of multiple additional validations, the test input space for
Open vSwitch is partitioned into 3-15 times more subspaces
than for the Reference Switch.
Subspaces intersections. We distinguish between two
sub-stages of the second stage: (i) grouping input subspaces
by the same output, (ii) intersecting subspaces correspond-
ing to potential inconsistencies.
For the first sub-stage we report the time required to

group and the number of distinct outputs. As presented
in Table 3, this part requires orders of magnitude less time
than symbolic execution. Grouping constraints dramatically
reduces the number of expressions that need to be checked
for satisfiability, as there are only up to 30 distinct outputs
(a 1-5 orders of magnitude reduction compared to the initial
number of equivalence classes).
The search for overlapping subspaces depends on the com-

plexity of constraints and usually finishes within a couple of
minutes. There is one exceptional case in which the STP
solver is unable to solve the merged constraints in one day.
In the future we plan to investigate grouping constraints into
smaller groups for such cases.
The achieved results in finding inconsistencies confirm our

expectations. Usually one difference manifests itself mul-
tiple times and affects many subspaces of inputs. In the
extreme example, although there are 58 reported inconsis-
tencies, manual analysis reveals only 6 distinct root causes
of differences.

5.3 How relevant is input sequence selection?
To quantify the relevance of chosen tests, we measure the

instruction and branch coverage provided by Cloud9. The
instruction/branch reached at least once in the execution
is considered covered, regardless of its arguments. We con-
sider only the sections of OpenFlow agent’s code relevant to
OpenFlow processing. The initialization that is repeated for
each test covers 12% of instructions and 8% of branches. The
test specific results, shown in Table 4, are spread between 20
and 40%. To verify that the low reported coverage is a re-
sult of the fact that each test targets a few specific message
handlers, we manually analyze cumulative coverage of all
tests. We observe that SOFT covers approximately 75% of
the code and that the remaining instructions belong mostly
to code that is not accessible in standard execution (e.g.,
command line configuration, dead code, cleanup functions,
logging functions).
The importance of concretizing inputs. Due to time

Reference Switch Open vSwitch

Test Inst.(%) Branch(%) Inst.(%) Branch(%)
No Message 12.21 8.27 19.03 13.34
Packet Out 26.23 19.31 25.68 17.28

Stats Request 30.27 24.15 24.31 16.75
Set Config 26.23 19.31 23.98 16.16

Eth FlowMod 41.74 34.65 38.15 25.49
FlowMod 42.65 34.25 38.24 26.27
Concrete 17.13 11.42 20.16 13.62

Short Symb 19.92 13.39 21.60 14.34

Table 4: Instruction and branch coverage for selected
tests for Reference Switch and Open vSwitch.

Test Time Paths Coverage

Fully Symbolic 31h 226224 42.93%
Concrete Match 12m 2634 40.60%
Concrete Action 193m 30396 37.32%

Concrete Probe 48m 9216 41.6%
Symbolic Probe 172m 33168 43.9%

Table 5: Effects of concretizing on execution time, gen-
erated paths and instruction coverage.

and memory constraints it is often convenient to concretize
selected fields in the message. We evaluate the benefits and
drawbacks of using the domain knowledge to reduce the in-
put space. As a baseline, we choose a test where a single
symbolic Flow Mod message containing 2 symbolic actions
and 2 symbolic output actions is followed by a TCP probe
packet. We then compare the results of: (i) the baseline, (ii)
a version of the baseline with a concrete match (wildcard),
and (iii) a version of the baseline with a single concrete ac-
tion instead of 4 symbolic ones. All values are summarized
in the upper part of Table 5. While the drop in the coverage
percentage is only 2-5% in comparison to the baseline test,
the difference in time and path count is noticeable. Specifi-
cally, the tests finish 10 to 50 times quicker, while generating
1 to 2 orders of magnitude less paths.

To verify how much coverage we lose by not using symbolic
probes, we create a separate test. This test first installs a
partially symbolic Flow Mod that applies actions to Ethernet
packets. It then sends a short probe packet that is concrete
or symbolic depending on the test version. Results in the
lower part of Table 5 show that a symbolic probe adds just
2% to the coverage. The cost is 3.5 times longer running
time and 3.5 times more paths.

To summarize, concretizing parts of the inputs signifi-
cantly reduces the time needed to conduct the test at the
cost of leaving small portion of additional instructions un-
covered. Therefore, it is possible to use the concretized
inputs to conduct regular tests more often. When com-
bined with careful choice of concrete fields, the coverage is
marginally affected. The fully symbolic messages can be
used just for the final checks before a major release when
the best coverage possible is required, and testing time is
less of an issue.

6. RELATED WORK
We present in the following generic techniques that can

be applied to testing OpenFlow switches, as well controller
applications and networks in general.

6.1 Testing OpenFlow switches
There are multiple testing approaches applicable to Open-

Flow switches. The approaches differ in terms of the scope

274

and type of problems they aim for, as well as the process in
which the test cases are created. As an exhaustive review
is beyond the scope of this paper, we briefly describe a few
relevant to our discussion.
System testing. System-level testing is concerned with
an integrated system such as an OpenFlow switch. This ap-
proach treats the device under test as a black box. To ensure
that the tested device does not depend on external factors,
the interactions with the controller and other network el-
ements are commonly emulated by the testing framework.
This approach typically requires a large number of test cases
to achieve high coverage. Each test case is carefully de-
signed to target a specific feature and checks the correctness
of simple functionalities. A developer, using tools such as
OFTest [2] or the default OpenFlow Perl testing framework,
has to manually provide a step by step execution scenario
containing the inputs and expected outputs. This process
is time-consuming and additionally makes designing non-
trivial and complex test cases complicated.
Symbolic and concolic execution. Others have success-
fully applied symbolic execution [9] and selective symbolic
execution [12] to testing of systems code. As we already
mentioned, blindly applying symbolic execution results in
an exponential explosion of code paths. It also requires ex-
cessive human effort to specify correct behavior. SOFT ef-
fectively overcomes these issues. With these issues resolved,
one could use symbolic execution for crosschecking switch
behaviors, but it results in excessive, time-consuming over-
head. SOFT goes one step further in that eliminates this
step by coalescing constraints that result in the same out-
put, and using the constraint solver to identify inconsistent
behaviors.
Others have considered the problem of manipulating in-

puts to conform to an input grammar, in the form of white-
box “fuzz” testing [16]. By doing so, the symbolic execution
engine can quickly pass over the validation checks to try to
reach deeper in the code. The problem that SOFT addresses
is even harder, as we need to be careful about the number
and type of messages, as well as the nature of individual
fields. In addition, we address the problem of observing in-
ternal state.
Canini et al. [10] use a variant of symbolic execution called

concolic execution to identify faults in federated, heteroge-
neous distributed systems. Their system, called DiCE, tests
the impact of feeding various inputs to participating nodes
(e.g., BGP routers) in isolation. DiCE and SOFT differ in
several ways. DiCE is an online technique, whereas SOFT is
used for interoperability testing prior to deployment. More-
over, SOFT’s goal is crosschecking of different implemen-
tations. Finally, SOFT does not require the definition of
correct behavior to be specified. Complementary to SOFT,
Kothari et al. [19] use symbolic execution to identify pro-
tocol manipulation attacks. The goal here is for a node to
try to determine harmful behavior induced upon itself by re-
ceived messages from other participants. In contrast, SOFT
systematically determines and compares the input subspaces
of multiple implementations to find inconsistencies, without
prior knowledge of correct behavior.
Performance testing. Performance tests are a subset
of system tests used to determine device’s capability under
high load. Not only is this type of tests able to detect perfor-
mance problems such as slow packet forwarding or control
plane communication, but can also be successfully applied

to find correctness problems that may not appear in other
scenarios. As shown in OFLOPS [22], a continuous packet
stream may be used to check the consistency between data
plane and control plane in case of the OpenFlow barrier
commands. Moreover, this method is able to discover tim-
ing issues that require multiple events occurring with a spe-
cific time correlation. On the other hand, it may potentially
miss functional errors and classify them as correct behavior
in some circumstances. Finally, performance testing requires
that, while under test, the system works under realistic con-
ditions. Packets, for example, need to be injected to the
device at the rate and times defined in the scenario. Conse-
quently, in addition to the usual setup time, the tests need
to be run in real time and cannot be sped up.

6.2 Testing OpenFlow controllers
NICE [11] is a tool for testing unmodified OpenFlow con-

troller applications. It combines model checking and con-
colic execution in order to systematically explore the be-
havior of the network under a variety of possible event or-
derings. The tool starts with the network topology model
containing the controller, switches and end hosts, and ex-
ercises sequences of state transitions on these network el-
ements. NICE and SOFT target fundamentally different
parts of the network: controller vs. switches. In NICE,
only the controller is running the unmodified application,
while other elements (switches, end hosts) are replaced with
simplified models. In contrast, SOFT finds inconsistencies
among the implementations of OpenFlow agents that run in
the switches.

Further, SOFT does not require the specification of cor-
rect behavior for the tested software, while NICE uses cor-
rectness properties provided by developers or testers.

6.3 Trace-based debugging of a network
OFRewind [23] is a tool that enables temporary consistent

network event trace recording in a running system, as well
as replaying it later. Despite available mechanisms allowing
operators to filter recorded events, the debugging process is
still manual. Neither problem detection, nor its root cause
localization and analysis is automatic and needs supervision.
The operator has to first realize that there is an issue in the
network, and then find the root cause by replaying subsets
of the recorded trace. Although the tool is directed toward
debugging, it should be possible to use a similar technique
to create test inputs based on previously recorded traces.
The efficiency of using pre-recorded traces for future net-
work testing is limited, as the traces explore only one spe-
cific execution path (set of network events) and might miss
important corner cases.

6.4 Other approaches
Approaches exist for statically analyzing network configu-

rations. For example, RCC [13] identifies misconfigurations
in intradomain BGP routers. Anteater [20] uncovers prob-
lems in the data plane due to forwarding misconfigurations.
Header Space Analysis (HSA) [17] checks the network con-
figurations to identify network configuration problems. Au-
tomatic Test Packet Generation (ATPG) [25] is a solution
based on HSA that creates a minimum set of test packets
required to cover all links or rules in the network. Then,
ATPG uses these packets to detect and localize failures.
We consider these approaches orthogonal to ours as they fo-

275

cus on testing the network from the data plane perspective
whereas we test switch behaviors as driven by the OpenFlow
interface.

7. CONCLUSIONS
Software Defined Networking, and its OpenFlow incarna-

tion in particular, stands a real chance of enabling cheap and
easy extensibility in networks. OpenFlow owes its increas-
ing adoption to the relatively simple changes that enable
control over the way packets are forwarded by the Open-
Flow switches. With little attention on ensuring reliability
of OpenFlow switches, danger exists that failures in produc-
tion networks could erode trust in this new technology. In
particular, the OpenFlow specification changes rapidly, and
allows for different interpretations. As a result, switches
from multiple vendors can behave differently and cause an
inconsistency in the network.
In this paper, we have described a tool that automates the

task of identifying such deviations in behavior among differ-
ent switches. We demonstrate the effectiveness of our tool by
using it to identify several inconsistencies involving the Ref-
erence OpenFlow switch and the Open vSwitch. While the
work centered around the specific details of OpenFlow, we
posit our approach could find more general application with
other router software and heterogeneous networked systems.

8. ACKNOWLEDGMENTS
We thank our shepherd Christos Gkantsidis and the anony-

mous reviewers who provided excellent feedback. We are
grateful to Stefan Bucur for supporting us with using Cloud9
and Jennifer Rexford for useful discussions and comments
on earlier drafts of this work. The research leading to these
results has received funding from the European Research
Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013) / ERC grant agreement 259110.

9. REFERENCES

[1] Going With the Flow: Google’s Secret Switch to the
Next Wave of Networking.
http://www.wired.com/wiredenterprise/2012/04/

going-with-the-flow-google/all/1.

[2] OFTest. http://oftest.openflowhub.org.

[3] ONF Holds Its First Test Event.
https://www.opennetworking.org/?p=249&option=

com_wordpress&Itemid=72.

[4] Open vSwitch: An Open Virtual Switch.
http://openvswitch.org.

[5] OpenFlow Switch Specification.
http://www.openflow.org/documents/

openflow-spec-v1.0.0.pdf.

[6] Research experiment disrupts Internet, for some.
http:

//www.computerworld.com/s/article/9182558/

Research_experiment_disrupts_Internet_for_some.

[7] Staring Into The Gorge: Router Exploits.
http://www.renesys.com/blog/2009/08/

staring-into-the-gorge.shtml.

[8] S. Bucur, V. Ureche, C. Zamfir, and G. Candea.
Parallel Symbolic Execution for Automated
Real-World Software Testing. In EuroSys, 2011.

[9] C. Cadar, D. Dunbar, and D. R. Engler. KLEE:
Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs.
In OSDI, 2008.

[10] M. Canini, V. Jovanović, D. Venzano, B. Spasojević,
O. Crameri, and D. Kostić. Toward Online Testing of
Federated and Heterogeneous Distributed Systems. In
USENIX Annual Technical Conference, 2011.

[11] M. Canini, D. Venzano, P. Pereš́ıni, D. Kostić, and
J. Rexford. A NICE Way to Test OpenFlow
Applications. In NSDI, 2012.

[12] V. Chipounov, V. Kuznetsov, and G. Candea. The
S2E Platform: Design, Implementation, and
Applications. ACM Transactions on Computer

Systems, 30(1):1–49, 2012.

[13] N. Feamster and H. Balakrishnan. Detecting BGP
Configuration Faults with Static Analysis. In NSDI,
2005.

[14] V. Ganesh and D. L. Dill. A Decision Procedure for
Bit-Vectors and Arrays. In CAV, 2007.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed Automated Random Testing. In PLDI, 2005.

[16] P. Godefroid, M. Y. Levin, and D. A. Molnar.
Automated Whitebox Fuzz Testing. In NDSS, 2008.

[17] P. Kazemian, G. Varghese, and N. McKeown. Header
Space Analysis: Static Checking for Networks. In
NSDI, 2012.

[18] J. C. King. A new approach to program testing. In
Proceedings of the international conference on Reliable

software, 1975.

[19] N. Kothari, R. Mahajan, T. Millstein, R. Govindan,
and M. Musuvathi. Finding Protocol Manipulation
Attacks. In SIGCOMM, 2011.

[20] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the Data Plane
with Anteater. In SIGCOMM, 2011.

[21] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM Comput. Commun. Rev.,
38:69–74, March 2008.

[22] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and
A. W. Moore. Oflops: An open framework for
openflow switch evaluation. In PAM, 2012.

[23] A. Wundsam, D. Levin, S. Seetharaman, and
A. Feldmann. OFRewind: Enabling Record and
Replay Troubleshooting for Networks. In USENIX

ATC, 2011.

[24] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin,
M. Yang, F. Long, L. Zhang, and L. Zhou. MODIST:
Transparent Model Checking of Unmodified
Distributed Systems. In NSDI, 2009.

[25] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic Test Packet Generation. In CoNEXT, 2012.

276

