Towards TCAM-based Scalable Virtual Routers

Layong Luo*f, Gaogang Xie", Steve Uhlig?,
Laurent Mathy?, Kavé Salamatian¥, and Yingke Xie"

“Institute of Computing Technology, Chinese Academy of Sciences (CAS), China
fUniversity of CAS, China, *Queen Mary, University of London, UK
SUniversity of Liége, Belgium, YUniversity of Savoie, France
{luolayong, xie, ykxie}@ict.ac.cn, steve@eecs.gmul.ac.uk,
laurent.mathy@ulg.ac.be, kave.salamatian@univ-savoie.fr

ABSTRACT

As the key building block for enabling network virtualiza-
tion, virtual routers have attracted much attention recently.
In a virtual router platform, multiple virtual router instances
coexist, each with its own FIB (Forwarding Information
Base). The small amount of high-speed memory in a physi-
cal router platform severely limits the number of FIBs sup-
ported, which leads to a scalability challenge. In this paper,
we present a method towards TCAM (Ternary Content Ad-
dressable Memory) based scalable virtual routers, through
a merged data structure that enables the sharing of prefixes
from several FIBs in TCAMs. Based on this data struc-
ture, we propose two approaches to merge multiple FIBs in
TCAMs, paving the way for scalable virtual routers. Ex-
perimental results show that, by using the two approaches
for storing 14 full IPv4 FIBs, the TCAM memory require-
ment can be reduced by about 92% and 82% respectively,
compared with the conventional approach of treating FIBs
as independent entities.

Categories and Subject Descriptors
C.2.6 [Internetworking]: Routers

General Terms

Algorithms, Design, Experimentation, Performance

Keywords
Virtual routers, TCAM, FIB completion, FIB splitting

1. INTRODUCTION

Network virtualization [5] is a promising way to achieve
cost-efficient utilization of networking resources, to support
customized routing, e.g., for application-specific forwarding,
customer-based routing, and to enable experimentation and
deployment of new network protocols, e.g., CCN, without

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CoNEXT’12, December 10-13, 2012, Nice, France.

Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

73

interrupting normal network operations. Indeed, network
virtualization allows multiple virtual networks to coexist on
an underlying shared substrate, in isolation from each other.

As the key building block for enabling network virtual-
ization, virtual routers have attracted much attention in re-
cent years [4,6-10, 18,19, 22]. When multiple virtual router
instances are supported on the same physical equipment,
we will use the term wvirtual router platform. In a virtual
router platform, multiple virtual router instances coexist
and each has its own FIB (Forwarding Information Base).
To achieve high forwarding performance, these FIBs are
preferably stored in high-speed memory, such as TCAMs
(Ternary Content Addressable Memory) or SRAMs (Static
Random Access Memory). However, due to physical limita-
tions (e.g., cost, power, and board space), high-speed mem-
ory turns out to be a scarce resource, and its size is limited.

On the other hand, with the growing demand for virtual
routers, the number of virtual router instances supported
in a virtual router platform is expected to keep increasing,
with the size of each FIB also expected to grow. This cre-
ates a high requirement for large high-speed memory. The
gap between the high demand and the limited memory size
will create a scalability issue on the virtual router platform.
That is, the small amount of high-speed memory severely
limits the number of virtual router instances supported. For
example, a very large TCAM on today’s market has up to
1M entries [2], while a full IPv4 FIB contains about 400K
prefixes currently [1], which means that only two FIBs can
be stored in such a device.

Efforts in two areas can be made to improve the scalability
of a virtual router platform. First, the size of the high-speed
memory can be increased to support as many virtual router
instances as possible. However, this effort usually results in
high power consumption and high cost, which makes it un-
sustainable in the long term. Second, the amount of memory
required for storing multiple FIBs can be reduced by merg-
ing and compressing FIBs, so that more FIBs can fit in a
given memory size, without the needs to increase system
power and cost. We believe this latter approach to be more
viable.

In the last few years, the scalability challenge brought
by virtual routers has created interest from the research
community, and previous work [7—10, 18] mainly focused on
SRAM-based scalable virtual routers. Tree-based (e.g., trie
or 2-3 tree) algorithms have been proposed to merge mul-
tiple FIBs into a single tree, and thereby many FIBs can
be efficiently stored in the SRAMs. However, none of the

previous work was targeted towards using TCAMs to build
scalable virtual routers.

TCAMSs are popular and promising devices to build TP
lookup engines, thanks to their deterministic high perfor-
mance and simplicity [12,25]. TCAMs always guarantee
a deterministic high lookup throughput of one lookup per
clock cycle. Although an SRAM may run at a higher clock
frequency than a TCAM (thus requiring less time for each
memory access), SRAM-based solutions usually have vari-
able lookup performance, and require multiple memory ac-
cesses for one lookup in the worst case [16]. TCAMs have
traditionally exhibited higher power consumption and lower
densities than SRAMSs, although as semiconductor technol-
ogy improves and demand increases, high-capacity, very high-
speed TCAMs have become available. For example, the
NL9000 family TCAMs [2] from NetLogic Microsystems,
which contain up to 1 million 40-bit entries, can perform
up to 1200 million decisions per second. All this suggests
that TCAMs should also be a viable option to build virtual
routers.

In this paper, we propose a merged data structure to share
prefixes from individual FIBs in TCAMs. We propose two
approaches based on this data structure to build TCAM-
based scalable virtual routers. The first approach called FIB
completion, merges the prefixes from all the FIBs into one
TCAM. This approach exhibits the best scalability, but a
large worst-case update overhead. The second approach,
called FIB splitting, mixes the advantages of merged and
non-shared data structures by splitting the prefixes into two
prefix sets. This approach also yields very good scalability,
with a much more reasonable worst-case update overhead.
We provide experimental results showing that, for 14 full
IPv4 FIBs, the proposed approaches can achieve a TCAM
memory reduction of 92% and 82%, respectively, compared
with a non-shared approach. This suggests that VPNs (Vir-
tual Private Network) and experimental network testbeds
can also benefit from our approaches.

The rest of the paper is organized as follows. In Section 2,
we discuss the background on TCAM-based lookup engines
and describe the non-shared approach for TCAM-based vir-
tual routers. In Section 3, we describe the merged data
structure that is the basis of this work. In Sections 4 and 5,
we present two approaches based on the merged data struc-
ture. We evaluate the two approaches and compare them
with the non-shared approach in Section 6. We discuss the
related work in Section 7 and conclude in Section 8.

2. BACKGROUND

A TCAM is a fully associative memory, in which each bit
of an entry can be specified in one of three states: ‘07, ‘1’
and ‘X’ meaning “do not care”, also called wildcard bits.
Thanks to the wildcard bits, the TCAM is very suited for
storing IP prefixes in IP lookup engines. Given a destination
IP address, all the prefixes stored in the TCAM can be com-
pared with the IP address simultaneously. Indeed, multiple
prefixes may match the TP address, and the matched prefix
at the lowest address will be selected as the only matching
result, as the TCAM entries have an intrinsic priority, .e.,
an entry at a lower address has a higher priority. Although
some TCAMs may have different priority logics, we assume
in this paper that the TCAMs we use hereafter implement
the above priority. After the matching result is determined,
the TCAM returns the address of the matched prefix. The

74

FIB 0 FIB 1
prefix [next hop prefix [next hop
0* A1 0* B1
1* A2 1* B2
00* A3 11* B3
100* A4 100* B4
101* A5 101* B5
111* A6 111* B6

(a) (b)

Figure 1: Two sample FIBs

prefix next-hop pointer
100* F—» A4
101* —{ A5 complete next hop
information
000 111* — A6 Ai NH addr. + out intf| next
00* —»{ A3 ‘ P
A very small
0* > A1 SRAM
1* F--» A2
TCAM SRAM

Figure 2: A TCAM-based IP lookup engine

TCAM usually completes an TP lookup every clock cycle,
resulting in consistent very high lookup speed.

2.1 Traditional TCAM-based IP Lookup

To fix ideas, let us start by considering a traditional router,
which is a platform hosting a single router instance, with
only one FIB. Each entry in the FIB is comprised of an
IP prefix and its corresponding next hop (NH). Figure 1(a)
shows a sample FIB.

In a typical TCAM-based IP lookup engine, the IP pre-
fixes are stored in the TCAM in decreasing prefix-length or-
der for correct longest prefix matching (LPM) [17]. The NH
pointers are stored in an associated SRAM, and the complete
NH information is stored in another very small SRAM. Fig-
ure 2 shows a TCAM-based IP lookup engine containing the
FIB shown in Figure 1(a). Generally, a complete NH consists
of the IP address of the NH and the output interface, con-
suming about 5 bytes per NH. The number of unique NHs
is small due to the limited number of interfaces in a router.
One can assume that this number is less than 256 [7], so
that a 1-byte NH pointer can represent the NH. Therefore,
storing the NH pointers in the associated SRAM instead of
the complete NHs consumes much less memory. The com-
plete NHs can be stored in another very small SRAM, and
the NH pointers are used to locate the final complete NHs
(see Figure 2). The total size of the complete NHs is the
same for all approaches, and is so small that we will ignore
it in the remainder of the paper. Hereafter, for simplicity,
we will use the term “NH” to mean “NH pointer”, and focus
our attention only on the TCAM and its associated SRAM
storing NH pointers in the TCAM-based IP lookup engine.

In the TCAM-based IP lookup engine shown in Figure 2,
given destination IP address 000 to lookup, the two pre-
fixes 00* and 0* are matches, and the address of prefix 00*

prefix_[next hop
0100* A4
0101* A5
0111* A6
000* A3
00* A1
01* A2
1100* B4
1101* B5
1111* B6
111* B3
10* B1
11* B2
TCAM SRAM

Figure 3: A non-shared approach for virtual routers

will be returned by the TCAM, because it is stored at a
lower TCAM address (i.e., a higher priority). Then, this
address is used to find the corresponding NH pointer A3 in
the associated SRAM. Finally, the complete NH is obtained
in another SRAM through pointer A3, and the packet is
forwarded towards this NH.

2.2 Naive Approach for Virtual Routers

In the context of virtual routers, multiple FIBs are hosted
in a physical platform. One way to arrange prefix sets from
several FIBs in one TCAM is to put each prefix set in a
separate region. We will call this approach the “non-shared
approach”; as identical prefixes from different FIBs are not
shared. We use the two FIBs shown in Figure 1 to illustrate
this non-shared approach for TCAM-based virtual routers.

In a virtual router platform, a Virtual router ID (VID)
identifies each router and its FIB. Assume that VID 0 is
assigned to FIB 0 and VID 1 is assigned to FIB 1 in Fig-
ure 1. Before storing the two FIBs in the TCAM, the VID
is prepended to each prefix to form a virtual prefix. For ex-
ample, the virtual prefix for prefix 0* in FIB 0 is 00*, while
the corresponding virtual prefix is 10* for the same prefix in
FIB 1. After virtual prefixes are formed, the virtual prefix
sets from different FIBs can be directly stored in a TCAM
without interfering with each other, as the VID for each FIB
is unique. Then, their corresponding NHs are stored in an
associated SRAM. Figure 3 illustrates one way of storing
FIB 0 and FIB 1 using this approach.

In the non-shared approach, the IP lookup process is as
follows. For an incoming packet, the destination IP is ex-
tracted from the packet header and the VID is determined
from contextual information (e.g., packet header, virtual in-
terface). A Virtual IP address (VIP) is formed by prepend-
ing the VID to the destination IP address. Then, the VIP is
sent to the TCAM for lookup. For example, given destina-
tion IP 000 and VID 1, VIP 1000 is looked up in the TCAM
shown in Figure 3, and the virtual prefix 10* is matched.
Then, the corresponding NH B1 is found in the associated
SRAM. Note that the lookup process in the non-shared ap-
proach is similar to that in traditional routers, except for
the use of the VIP for TCAM search.

The main issue with the non-shared approach is the TCAM
memory requirement, which increases significantly as the
number of FIBs increases. For example, in Figure 1, there
are 6 entries in each of the two FIBs, and the total number
of TCAM entries in the non-shared approach (see Figure 3)
is 12, which is the sum of the number of entries in the indi-
vidual FIBs.

75

[P | NHO |

[prefix [next hop] :Dl prefix | next-hop array

[P [NA1 | [P [NHO] NAT] - [NHn-1]
TCAM SRAM

Figure 4: The merged data structure

prefix next hop prefix next hop
100* Ad B4 100* A4 B4
101* A5 B5 101* A5 BS
111* A6 B6 111* A6 B6
00* A3 0 00* A3 B1
11* 0 B3 11* A2 B3
0* A1 B1 0* A1 B1
1* A2 B2 1* A2 B2
TCAM SRAM TCAM SRAM
(@) (b)
Figure 5: (a) The basic merged FIB, and (b) its

completed version

3. MERGED DATA STRUCTURE

In the non-shared approach, the total memory space re-
quired in the TCAM increases significantly as the number
of FIBs increases, and thus the number of virtual router
instances supported cannot scale well.

We argue that the prefix similarity among different FIBs
can be exploited to significantly reduce the TCAM memory
requirement. A key observation is that, if two entries from
different FIBs share the same prefix, they can be merged into
a single entry in the TCAM-based lookup engines. For ex-
ample, an entry <P, NHO> in FIB 0 and an entry <P, NH1>
in FIB 1 can be merged into a single entry <P, [NHO, NH1]>.
The prefix P is stored in the TCAM, and its corresponding
NH array [NHO, NH1] is stored in the associated SRAM.

Figure 4 shows the merged data structure for n FIBs in
TCAM-based lookup engines. If there is a common prefix
P in n FIBs, these n entries can be merged into a single
entry, with prefix P associated with a NH array containing
n NHs. In the NH array, the i'" next hop (NHi) is the one
associated with prefix P in the i*" FIB.

Based on the merged data structure, the two FIBs shown
in Figure 1 can be represented by the merged FIB in Fig-
ure 5(a). The prefix set in the merged FIB consists of the
union of the prefixes in the individual FIBs, and is hence-
forth called the Union Prefix Set (UPS). To get the UPS
from multiple FIBs, we adopt the trie merging approach
proposed in [7].

Initially, an auxiliary 1-bit trie is built from each individ-
ual FIB. Figure 6 shows two 1-bit tries, which are built from
the two sample FIBs in Figure 1, respectively. In these tries
(we will use the terms “1-bit trie” and “trie” interchangeably
hereafter), a prefix which does not correspond to any NH in
the FIB is associated with an invalid NH (represented as 0).
After all the tries are built, they are merged into a merged
trie using the strawman approach in [7]. The nodes corre-
sponding to a same prefix in different tries can be merged,

A A
pe @
Figure 6: Auxiliary tries for the two FIBs in Figure 1

@ # &

Figure 7: (a) The merged trie, and (b) its completed
version

and the NHs for all virtual routers are stored in the merged
node. Using this approach, the two tries shown in Figure 6
can be merged into the merged trie depicted in Figure 7(a).

The prefix set represented by the merged trie is the UPS.
Note, however, that prefixes represented by merged trie nodes
that contain only invalid NHs are not in the UPS, as they
do not appear in any of the merged FIBs (e.g., this is the
case for prefix 10* in the merged trie in Figure 7(a)).

To clearly show the difference between the merged FIB
and the non-shared FIB, we take prefix 100* as an exam-
ple. We have an entry <100*, A4> in FIB 0 and an entry
<100*, B4> in FIB 1. In the non-shared approach (see Fig-
ure 3), two separate entries are needed. In the merged FIB,
we have a single entry <100%*, [A4, B4]>, which denotes that
prefix 100* is a prefix in both FIBs, with a corresponding
NH A4 for FIB 0, and B4 for FIB 1.

However, a prefix in the UPS does not always exist in all
FIBs. For example, prefix 00* exists in FIB 0 but not in FIB
1. In this case, we introduce an invalid NH 0 (null NH). A
NH is null when the prefix does not exist in the correspond-
ing individual FIB. For example, prefix 00* does not exist in
FIB 1, and therefore the second NH associated with prefix
00* in the merged FIB is denoted as 0 in Figure 5(a).

Using the merged data structure, the number of entries in
the merged FIB is significantly lower than the sum of the
number of entries in the individual FIBs, which dramatically
reduces the TCAM memory requirement. In our example,
the number of TCAM entries needed to store the prefixes
in the merged FIB (i.e., the UPS) in Figure 5(a) is 7, down
from 12 in the non-shared approach shown in Figure 3.

The IP lookup process based on this merged data struc-
ture works as follows. The destination IP address is used
as the key to be searched in the TCAM. After the search
terminates, the address of the matched prefix is used to lo-
cate the NH array containing the corresponding n NHs in

76

the associated SRAM. Then, the VID is used as an offset to
find the corresponding NH in the NH array. For example, in
Figure 5(a), given IP address 100 and VID 1, the first entry
in the TCAM will match the IP address, and [A4, B4] is the
corresponding NH array. VID 1 is then used as the offset to
yield NH B4.

In essence, the proposed method looks up an IP address
in all the FIBs simultaneously, and the VID is used to se-
lect the relevant NH. While this approach is, at first glance,
straightforward, it does introduce inconsistencies and results
in incorrect lookups in some cases. For example, given 1P
address 000 and VID 1, the correct NH should be B1 (see
Figure 1(b)). However, if this lookup is performed in the
merged FIB shown in Figure 5(a), the NH is 0, which indi-
cates an invalid NH. The reason for this is that the TCAM
always returns the first matching result (i.e., the address of
the longest matching prefix), while the matched prefix 00*
does not exist in FIB 1.

The fundamental issue is that the merged data structure
yields a merged FIB that contains all the prefixes appearing
in at least one of the individual FIBs (i.e., prefixes from the
UPS). This can result in the “artificial” insertion of prefixes
in individual FIBs (e.g., insertion of prefix 00* with NH 0
in FIB 1 in Figure 5(a)), while those “added” prefixes can
in turn “mask” correct, but shorter-length entries during the
matching process (e.g., given IP address 000 and VID 1, the
“added” prefix 00* masks the valid prefix 0% in FIB 1 in
Figure 5(a)). Note that this issue is specific to FIB merging
in a TCAM environment, because of the intrinsic priority
matching service provided by such components.

To ensure correct prefix matching, TCAM-based virtual
router FIB management methods must avoid incorrect match-
ing, resulting from the masking of a shorter prefix in an in-
dividual FIB by a longer prefix in the merged FIB.

In the following sections, we present two TCAM FIB merg-
ing approaches that avoid the prefix masking issue.

4. FIB COMPLETION

4.1 Completion Approach

Our first TCAM FIB merging approach, called FIB com-
pletion, addresses the prefix masking issue described in the
previous section in a direct way: whenever a prefix from the
UPS does not appear in a given individual FIB, we simply
associate it with a valid NH in this FIB. The valid NH is the
one associated with the longest ancestor prefix in the same
FIB. In other words, each null NH entry described in Section
3 is replaced by the first valid NH entry encountered when
going up the corresponding trie branch towards the root.

Figure 7(b) shows the merged trie in FIB completion ver-
sion, which corresponds to the original merged trie shown
in Figure 7(a). For example, in Figure 7(a), prefix 11* from
the UPS does not appear in FIB 0. In this case, we asso-
ciate prefix 11* with NH A2, copied from the NH associ-
ated with its longest ancestor prefix in the same FIB (i.e.,
prefix 1* in FIB 0). Therefore, entry <11* [0, B3]> is
replaced by <11* [A2, B3]>, as A2 is the correct NH ac-
cording to the LPM rule. Note that this copied NH A2 is
drawn in gray in Figure 7(b), which denotes that it is a com-
pleted NH, as opposed to a NH originally associated with the
corresponding prefix (which we call original NH). Likewise,
<00%*, [A3, B1]> results from the completion process, so that
the longer prefix 00*, not present in FIB 1 and masking the

valid prefix 0%, yields the expected NH B1l. Note that as
prefix 10* does not appear in any of the original individual
FIBs (i.e., prefix 10* does not exist in the UPS), this prefix
will not be included in the TCAM. We dash the nodes cor-
responding to prefixes not in the UPS in Figure 7(b). For
those prefixes not in the UPS, completion is also performed
(e.g., see <10*, [A2, B2]> in Figure 7(b)) to simplify the
update process.

Using the FIB completion approach, the merged FIB shown
in Figure 5(a) is transformed into the one shown in Fig-
ure 5(b). The TCAM-based lookup engine with FIB com-
pletion is the same as that described in Section 3. When
compared with the merged FIB shown in Figure 5(a), the
only difference is that the null NHs in the associated SRAM
are replaced by entries yielding correct lookup results.

4.2 Lookup and Update Process

The IP lookup process in the FIB completion approach is
exactly the same as the one described in Section 3. However,
the update process is different.

For merged trie maintenance purposes, the FIB comple-
tion algorithm must keep track of which NH entry exists
in the corresponding individual FIB (i.e., original NH), and
which NH is an entry resulting from masking (i.e., completed
NH).

When an update occurs in a node of the trie, some com-
pleted NHs in the sub-trie rooted at that node will have
to be updated to reflect correct matching. This downward
propagation in the trie, which we call “masking prefix correc-
tion”, stops as soon as nodes containing original NH entries
are encountered. This process ensures that all the masking
prefixes (i.e., prefixes that are not present in the individ-
ual FIB but are present in the merged FIB) that are direct
descendants of a masked prefix (i.e., a prefix present in the
individual FIB), all yield the same NH as the masked prefix.
This ensures the correct lookup result.

In the following, we show the update process in detail and
illustrate the typical update scenarios in Figure 8. Note that
we will use NH Ai in FIB 0, and NH Bi in FIB 1, and that
the background colour of the NH denotes the entry type,
with white for original NHs, and gray for completed NHs.
The original merged trie shown in Figure 8(a) is used as the
starting point for each update scenario.

When a new prefix is inserted in an individual FIB, three
cases are possible, see Figure 8(b). First, when the pre-
fix already exists in the UPS, the corresponding NH is up-
dated and this NH is flagged as original and the masking
prefix correction process is applied from the children of the
modified node. For example, if <11*, A8> is inserted into
the original merged trie, the corresponding entry becomes
<11%*, [A8, B3]>, and the masking prefix correction is per-
formed on the sub-trie rooted at <11*, [A8, B3]>. Second,
when the prefix (e.g., prefix 010*) corresponds to a new leaf
node of the merged trie, the corresponding branch of the trie
is extended as required by duplicating the closest ancestor
node (e.g., the node <0*, [A1l, B1]>) as many times as nec-
essary, but with all entries in the NH array flagged as com-
pleted, as those trie nodes correspond to prefixes that are not
in the UPS. For example, all NHs in node <01*, [A1, B1]>
are flagged as completed. The NH array in the new leaf is
identical to that in the nearest ancestor node but for the
inserted NH flagged as original in the appropriate FIB (the
new leaf is thus added to the UPS). Third, when the prefix

77

h d iE 3
d b b &6 b b

(a) An original merged trie (b) Insertion:
in FIB completion <10*%, A7>, <11*, A8>, <010*, B7>

Q"b
g b b

(d) Modification:
change <1*, A2> to <1*, A7>

H

& b B

(c) Deletion:
<11*, B3>, <101*, A5>

Figure 8: Update scenarios in FIB completion

corresponds to a non-leaf node and this prefix is not in the
UPS (e.g., prefix 10*), this prefix is added in the UPS, and
the corresponding NH is updated and flagged as original
(e.g., <10*, A7>). Besides, the masking prefix correction
process is applied on the sub-trie rooted at this node.

When a prefix is deleted from a FIB (e.g., see the deletion
of <101*, A5> in Figure 8(c)), the corresponding entry in
the NH array in the node where the update occurs is flagged
as completed. The NH of this node’s closest ancestor (e.g.,
<10*, A2>) is then determined, and used in the masking
prefix correction process applied from the modified node.
Note that if the deleted prefix corresponds to the last orig-
inal entry in the NH array of the node, the prefix will be
removed from the UPS. For example, following the deletion
of <11*, B3>, prefix 11* will be removed from the UPS, as
B3 is the last original NH in the corresponding NH array.

When the NH for an existing prefix is modified, the cor-
responding NH entry in the appropriate node of the merged
trie is also modified, and the masking prefix correction pro-
cess is applied from the children of the modified node. For
example, if we modify <1*, A2> into <1*, A7>, the corre-
sponding NH A2 is replaced by A7. Besides, the completed
NHs in the sub-trie rooted at node <1*, [A7, B2]> are up-
dated (e.g., see the NHs in gray associated with prefix 10*
and prefix 11* in Figure 8(d)).

Once these update procedures have been applied to the
merged trie, all modifications to nodes representing pre-
fixes in the UPS must then be reflected in the TCAM-based
lookup engine.

The masking prefix correction process only changes the
NHs, not the prefixes, so that for one FIB update, at most
one TCAM update should be affected. In the worst case, for
one FIB update, the masking prefix correction may traverse
the whole trie, and modify a NH in each node. Therefore,

2W+1 _ 1 NHs should be modified in the associated SRAM
for one update in the worst case, where W is the length of
the IP address. We expect the worst case to be unlikely to
happen in practice and the average update overhead to be
much less costly, as shown in Section 6.

S. FIB SPLITTING

The main drawback of FIB completion is the high worst-
case update overhead, which is caused by the masking prefix
correction process. Masking prefix correction is required in
FIB completion as masking prefixes and their corresponding
masked prefix coexist in the same TCAM. A key observation
is that, if only disjoint prefixes are merged in the TCAM,
the prefix masking issue does not exist any longer, as at
most one prefix in a disjoint prefix set can match a given
IP address. Previous work [13] has shown that about 90%
of prefixes in the tries built from real FIBs are leaf prefixes,
which are, by definition, naturally disjoint. This property
will also be true for the merged trie built from such FIBs.
Based on the above observations, we propose the following
approach, which we call FIB splitting.

1. The disjoint leaf prefixes in the merged trie are stored
in one TCAM based on the basic merged data struc-
ture described in Section 3.

2. The remaining prefixes in the merged trie are stored
in another TCAM using the non-shared approach.

As disjoint prefixes are merged in their own TCAM, mask-
ing prefix correction can be totally avoided. The remaining
overlapping prefixes (i.e., they are not necessarily disjoint
with each other') [13] are stored in another TCAM, where
the prefix masking issue still exists if TCAM FIB merging
is performed. However, experiments show that the num-
ber of remaining prefixes is very small. Therefore, the non-
shared approach is used to manage the remaining prefixes in
this second TCAM. By giving priority to matches from the
TCAM storing the disjoint leaf prefix set (which necessarily
are LPMs), this yields correct lookup results, while keeping
good memory scalability as most of prefixes are merged. Ad-
ditionally, this approach has a more reasonable upper bound
on the worst-case update overhead, as masking prefix cor-
rection is totally avoided.

5.1 Splitting Approach

In FIB splitting, the first step is to split the prefix set into
two sets: a disjoint leaf prefix set and the remaining prefix
set (i.e., an overlapping prefix set).

All the FIBs should first be merged, and then the merged
prefix set is partitioned. We use the same approach as de-
scribed in Section 3 for trie merging. Then, the merged trie
is split as follows. For a given merged trie, its root node is
first checked. If it is a non-leaf node and its corresponding
prefix is a valid prefix, this prefix belongs to the overlapping
prefix set; if it is a leaf node, its corresponding prefix must
be a valid prefix, which belongs to the disjoint leaf prefix
set. Then, the left child and right child of the current node
are checked recursively.

For example, if the merged trie shown in Figure 7(a)
is partitioned, the disjoint leaf prefix set is shown in Fig-
ure 9(a). Note that prefixes in this part are merged in one

IPrefix overlapping may exist in the remaining set.

78

prefix next hop prefix |next hop
00* A3 0 00* A1
100* A4 B4 01* A2
101* A5 B5 111* B3
111* A6 B6 10* B1
11* B2

(a) (b)

Figure 9: (a) The merged disjoint prefix set, and (b)
the non-shared overlapping prefix set

TCAM1 SRAM1

prefix | Addr[NH1 | NH2 |~~~ - [NHn
IP »
VD r Prio.rity

(1) the merged lookup path Arbiter
virtual prefix NH
vip Addr|
TCAM2 SRAM2

(2) the non-shared lookup path

Figure 10: The lookup engine architecture in FIB
splitting

TCAM based on the merged data structure shown in Fig-
ure 4. The remaining prefixes are overlapping, and we use
the non-shared approach to manage them. As in the non-
shared approach only prefixes associated with valid NH en-
tries need to be considered, the issue of masking prefixes is
avoided altogether in this set, see Figure 9(b).

5.2 Lookup Engine Architecture

The lookup engine architecture is depicted in Figure 10.
It consists of two TCAM-based IP lookup paths. The first
lookup path (TCAM1/SRAM1) stores the disjoint leaf pre-
fix set (e.g., see Figure 9(a)) as a merged data structure.
Note that this disjoint prefix set can be stored in the TCAM
without any order constraint. The NH arrays are stored in
the associated SRAM. This lookup engine path will be re-
ferred to as “the merged lookup path”.

The second lookup path (TCAM2/SRAM?2) stores the
overlapping prefix set (e.g., see Figure 9(b)) using the non-
shared approach. The virtual overlapping prefix set, which
is formed by prepending VIDs to prefixes in the overlap-
ping prefix set, is stored in the TCAM in decreasing prefix-
length order. More precisely, only the prefixes with the same
VID should be stored in order of relative decreasing prefix
lengths. For each entry of the virtual prefix, its associated
NH is stored in the SRAM. This lookup engine path will be
referred to as “the mon-shared lookup path”.

For an incoming packet, the IP address and the VID are
sent to both lookup paths to search in parallel. After both
lookups complete, at most two valid NHs are obtained. The
priority arbiter module chooses the final NH, based on the
observation that if both NHs are valid, the one generated by
the merged lookup path always has a higher priority, since
the length of the matched prefix in the disjoint prefix set is
by design longer than that in the overlapping prefix set.

S & b
®
&

(d) Insert prefix <1000*, B7>

®
J @
8 o b

(a) Insert prefix <11*, A7>

2
@ B
& bg &

$ 6 b

(c) Insert prefix <01*, A7>

Figure 11: Some insertion scenarios in FIB splitting

5.3 Update Process

One route update involves two phases. First, the update
is performed in the auxiliary merged trie in software, and
changes in both prefix sets are found; second, according to
these changes, update operations are effected in each indi-
vidual lookup path.

A route update falls into three categories: insertion of a
new prefix, deletion of an existing prefix, and modification of
an existing prefix. Due to limited space, we only show four
typical insertion scenarios in detail. All the other kinds of
updates are performed in a similar way. Note, in Figure 11,
we will only use NH Ai in FIB 0, and NH Bi in FIB 1, and
use the original merged trie shown in Figure 7(a) as the basis
from which the updates occur.

Figure 11(a) shows the insertion of a non-leaf prefix 11*
with NH A7. This insertion causes the addition of the prefix
into the overlapping prefix set for FIB 0. Therefore, virtual
prefix 011* and its NH A7 (i.e., entry <011*, A7>) should
be inserted in the non-shared lookup path.

Figure 11(b) depicts the insertion of a leaf prefix 00* with
NH B7. Prefix 00* already exists in the disjoint prefix set,
and thus this insertion only leads to a modification of the
corresponding NH array in the SRAM of the merged lookup
path. That is, the NH array corresponding to prefix 00* is
changed from [A3, 0] to [A3, B7].

Figure 11(c) gives an example of inserting a leaf prefix
01* with NH A7. Since prefix 01* does not already exist in
the disjoint prefix set, a new entry <01*, [A7, 0]> should
be inserted in the merged lookup path.

Figure 11(d) shows the scenario of inserting a leaf prefix
1000* with NH B7. This insertion turns the prefix 100* from
a leaf prefix into a non-leaf prefix, as the prefix 1000* gets in-
serted as a leaf. As a result, the insertion in this case leads to
three changes: (1) entry <1000*, [0, B7]> must be inserted

79

in the merged lookup path; (2) entry <100*, [A4, B4]>
should be deleted from the merged lookup path; and (3)
entry <0100*, A4> and <1100*, B4> (note that 0100*
and 1100* are virtual prefixes) must be inserted in the non-
shared lookup path. Changes (1) and (2) can be merged into
one write operation by just overwriting entry <100%*, [A4, B4]>
with entry <1000*, [0, B7]>.

Note that, in software, we do not need to partition the
merged trie each time a new route update occurs to find the
changes in both prefix sets. Instead, we can find the changes
by just performing the update in the merged trie as shown
in Figure 11, with time complexity of O(l), where [is the
length of the prefix to be updated.

After changes are found in software, update operations
must be performed in the lookup paths. We have shown in
our previous work [13] that, one route update in the trie al-
ways affects at most one leaf prefix and one non-leaf prefix.
However, there are some subtle differences in FIB splitting
due to the simultaneous existance of multiple FIBs. Chang-
ing one leaf prefix leads to at most one write operation in
the TCAM of the merged lookup path. Additionally, all the
individual NHs associated with this prefix should be writ-
ten into the associated SRAM. On the other hand, changing
one non-leaf prefix triggers the update of at most N virtual
prefixes (where N is the number of FIBs) in the TCAM of
the non-shared lookup path (e.g., see prefix 100* in Fig-
ure 11(d)), as well as N NHs in the associated SRAM.

6. PERFORMANCE EVALUATION

In this section, we evaluate and compare the non-shared
approach, FIB completion, and FIB splitting in terms of
TCAM size, SRAM size, total cost of the system, and lookup
and update performance.

To perform the evaluation, we rely on publicly available
BGP routing tables. While these may not be representative
of the future routing tables of virtual routers, they provide
a reasonable reference point for future research in the area.
We collected the 14 full BGP routing tables from the RIPE
RIS Project [3], on September 29, 2011. These routing ta-
bles were collected from a wide range of locations around the
world. In Table 1, we provide the RIPE collector from which
each routing table was obtained, the location of the collec-
tor, as well as the number of unique IPv4 and IPv6 prefixes
in each routing table. The unique prefixes in each rout-
ing table are extracted as the prefixes of the corresponding
FIB. Note that there are 14 IPv4 FIBs and 13 IPv6 FIBs. In
our performance evaluation, we assume that a virtual router
platform will host a given number of these FIBs.

6.1 TCAM Size

The TCAM size is determined by the TCAM entry size
and the number of entries.

For IPv4 FIBs, the largest prefix length is 32 bits. As
we can only get a maximum of 14 IPv4 FIBs for the eval-
uation, a 4-bit VID is enough to identify them. Therefore,
the largest length of a virtual prefix, which is used in the
non-shared approach, is 36 bits. Both the lengths of prefix
and virtual prefix are under 40 bits, and thus they all fit in
TCAMSs with 40-bit entry size [2]. As a result, the number
of TCAM entries can be used as the only metric to compare
TCAM memory requirements in the three approaches.

Figure 12 shows the comparison results of TCAM entry
requirements for IPv4 FIBs. In the non-shared approach,

Table 1: Routing tables (2011.09.29, 08:00)

Routing Location # of IPv4 # of IPv6
Tables prefixes Prefixes
rrc00 Amsterdam 399,439 7,218
rrc01 London 375,751 7,294
rrc03 Amsterdam 373,306 7,225
rrc04 Geneva 382,122 5,541
rrc05 Vienna 375,196 7,186

rrc06 Otemachi 367,984 0
rrc07 Stockholm 379,788 7,098
rrcl0 Milan 373,024 7,185
rrcll New York 379,166 7,208
rrcl2 Frankfurt 386,924 7,469
rrcl3 Moscow 381,561 7,352
rrcl4 Palo Alto 380,048 7,280
rrclb Sao Paulo 392,537 7,137
rrcl6 Miami 382,552 6,968
6.0E+06 -
——Non-shared

o 5-0E+06 | —B-FIB completion

',E —4—FIB splitting

S 4.0E+06 -

=

<

© 3.0E+06 -

s

2 2.0E+06 -

£

>

Z 1.0E+06 | ::

0.0E+00

2 34567 8 9101121314
Number of IPv4 virtual routers (i.e., IPv4 FIBs)

Figure 12: Comparison of TCAM size for IPv4 FIBs

the total number of TCAM entries is the sum of the number
of entries in each FIB. Therefore, the TCAM entry require-
ment increases linearly with the number of virtual routers.
When 14 FIBs are stored, 5,329,398 TCAM entries are re-
quired in the non-shared approach. In FIB completion, the
total number of TCAM entries is equal to the total number
of unique prefixes across all FIBs. As the similarity of FIBs
is fully exploited (i.e., all the common prefixes are merged in
the TCAM), this approach shows the best TCAM memory
scalability. With 14 IPv4 FIBs, about 439,467 TCAM en-
tries are required, corresponding to a significant memory re-
duction of 92% when compared to the non-shared approach.
In FIB splitting, most of the prefixes are also merged in the
TCAM, and thus good memory scalability is also achieved.
For 14 IPv4 FIBs, about 950,722 TCAM entries are required,
which corresponds to a memory reduction of 82% when com-
pared to the non-shared approach.

For TPv6 FIBs, the longest prefix is 128 bits. Given a
4-bit VID, the longest virtual prefix is 132 bits. Therefore,
the TCAM should be configured to hold 160-bit entries [2]
to store the prefixes or virtual prefixes. Again, all prefixes
fit in the same TCAM entry size and the number of TCAM
entries can be used as the comparison metric. With 13 IPv6
FIBs, the non-shared approach requires 92,161 TCAM en-
tries, while only 7,880 TCAM entries are needed in FIB
completion, and 15,783 TCAM entries are needed in FIB

80

7.0E+06 -
=4—=Non-shared

=#-FIB completion
=4—FIB splitting

6.0E+06 -

5.0E+06 -

hop pointers

2 4.0E+06 -

3.0E+06 -

2.0E+06 -

Number of next

1.0E+06 -

0.0E+00 — T T
2 345617 8 91011121314
Number of IPv4 virtual routers (i.e., IPv4 FIBs)

Figure 13: Comparison of SRAM size for IPv4 FIBs

splitting, which corresponds to a memory reduction of 91%
and 83%, respectively. The growth trends for IPv6 FIBs
are similar to those shown in Figure 12, and the proposed
two approaches are also more scalable than the non-shared
approach in the case of IPv6.

6.2 SRAM Size

Storing NH pointers instead of the complete NHs in the
associated SRAM saves memory. Therefore, the number of
NH pointers can be used as the metric to evaluate SRAM
footprint. In the non-shared approach, the number of NH
pointers is equal to the number of TCAM entries. In FIB
completion, each prefix is associated with a NH array, which
contains N (i.e., the number of FIBs) NH pointers. There-
fore, the total number of NH pointers is N times the num-
ber of TCAM entries. In FIB splitting, the number of NH
pointers in the non-shared lookup path is equal to the num-
ber of TCAM entries, and the number of NH pointers in
the merged lookup path is N times the number of TCAM
entries.

Obviously, as a NH array must be associated with each
prefix in the merged FIB, the SRAM usage for FIB com-
pletion and FIB splitting are expected greater than that for
non-shared approach. This is confirmed in Figure 13, for
IPv4 FIBs. When the number of IPv4 FIBs is 14, the non-
shared approach only needs to store 5,329,398 NH point-
ers, against 6,152,538 NH pointers for FIB completion, and
6,103,129 NH pointers for FIB splitting. This inflation of
roughly 15% in SRAM footprint is in stark contrast with
the reduction of over 80% in TCAM footprint, given the
much cheaper cost per MB for SRAMs.

To estimate the corresponding SRAM size, we assume that
the NH pointer is 8-bit long, as mentioned in Section 2.1.
For 14 TPv4 FIBs, the resulting SRAM size would be 40.7Mb
in the non-shared approach, 46.9Mb in FIB completion, and
46.6Mb in FIB splitting. The proposed two approaches thus
lead to reasonable SRAM requirements, well below what is
available on current line cards. Indeed, the size of a large
SRAM on a modern line card is around 72Mb and can go
up to 144Mb.

For 13 IPv6 FIBs, the non-shared approach requires 92,161
NH pointers, against 102,440 NH pointers for FIB comple-
tion, and 101,991 NH pointers for FIB splitting (about 11%
increase). As a result, the SRAM size is 720.0Kb in the non-
shared approach, 800.3Kb in FIB completion, and 796.8Kb
in FIB splitting.

Table 2: Reference prices of TCAMs and SRAMs

Table 4: Cost of the three approaches for IPv6 FIBs

6.3 Total Cost of the System

We now quantify the cost-effectiveness of the trade-off be-
tween the reduction in TCAM and the increase in SRAM
footprints, as achieved by our proposed FIB merging meth-
ods.

To evaluate the cost of the system, we rely on reference
prices at the time of writing, see Table 2. The TCAM
NL9512 from NetLogic Microsystems contains 512K 40-bit
entries, and costs about 390 dollars per chip. The SRAM
CY7C1525 from Cypress Semiconductor contains 8M 9-bit
entries, and the quoted price is about 90 dollars per chip.
Although the actual prices may vary depending on the quan-
tity ordered, the prices shown in Table 2 are representative
of the magnitude of the cost.

In our IPv4 scenario, when the number of FIBs is 14,
the non-shared approach needs to store 5,329,398 prefixes
and 5,329,398 NH pointers, requiring 11 TCAM chips and
1 SRAM chip, for a total cost of about 4350 dollars. In
FIB completion, there are 439,467 prefixes and 6,152,538
NH pointers, requiring 1 TCAM and 1 SRAM, for a total
cost of about 480 dollars. In FIB splitting, there are two
TCAM-based lookup paths. In the merged lookup path,
there are 396,339 prefixes and 5,548,746 NH pointers, re-
quiring 1 TCAM and 1 SRAM. In the non-shared lookup
path, there are 554,383 prefixes and 554,383 NH pointers,
requiring 2 TCAMs and 1 SRAM. Therefore, 3 TCAMs and
2 SRAMs are needed, and the total cost is about 1340 dol-
lars.

Table 3 summarizes the cost of the system for IPv4 FIBs.
When compared to the non-shared approach, the total cost
can be reduced by 89% in FIB completion, and by 69%
in FIB splitting. This result shows that our proposed ap-
proaches are cost-effective.

We repeat our cost calculation for the IPv6 scenario. How-
ever, the TCAM entry size should be changed to 160 bits
for IPv6 prefixes and virtual prefixes. Therefore, the TCAM
shown in Table 2 should be configured into the following or-
ganization: 128K x 160 bit, which is supported by the NL9512
TCAM |[2]. Table 4 summarizes the cost of the system for
the 13 IPv6 FIBs shown in Table 1.

In the non-shared approach, there are 92,161 prefixes and
92,161 NH pointers, which requires 1 TCAM and 1 SRAM.
Therefore, the total cost is about 480 dollars. In FIB com-
pletion, there are 7,880 prefixes and 102,440 NH pointers,
which requires 1 TCAM and 1 SRAM, for a total cost of

2This cost is calculated when using a small TCAM
75P42100.

81

| Memory | Part No. | Capacity | Speed | Price | # of # of Total
TCAM | NL9512 | 512Kx40bit | 250MHz | $387.2 TCAMs | SRAMs Cost
SRAM | CY7C1525 8M x 9bit 250MHz | $89.7 Non-shared 1 1 $476.9
FIB completion 1 1 $476.9
$189.0°
Table 3: Cost of the three approaches for IPv4 FIBs FIB splitting 2 2 $953.8
of # of Total $378.0%
TCAMs SRAMs Cost
Non-shared 11 1 $4348.9 .
FIB completion 1 1 $176.9 Table 5: Theoretical worst-case lookup performance
FIB splitting 5 $1341 and update overhead

| | Lookup | Update |

Non-shared O(1) W/2
FIB completion O(1) 2
FIB splitting o) NW/2

about 480 dollars. In FIB splitting, there are 7,184 pre-
fixes and 93,392 NH pointers in the merged lookup path,
and 8,599 prefixes and 8,599 NH pointers in the non-shared
lookup path. Therefore, 2 TCAMs and 2 SRAMs are needed
in FIB splitting, and the total cost is about 950 dollars. FIB
splitting costs more than the other two approaches, as it con-
tains two lookup paths, consisting of at least 2 TCAMs and
2 SRAMs irrespective of the size of the prefix sets.

However, it is very important to note that, the TCAM
shown in Table 2 is too large for the IPv6 prefix sets in
FIB completion and FIB splitting, as the utilization of each
TCAM is below 7%. Obviously, smaller and cheaper TCAMs
could be used in such a case. For example, the smaller
TCAM 75P42100 from NetLogic with 16K 144-bit entries
could be used instead. This small TCAM costs only 99.3
dollars per chip. If using this TCAM for the 13 IPv6 FIBs,
the cost of FIB completion is about 190 dollars and the cost
of FIB splitting is about 380 dollars, both of which are much
lower than the cost of the non-shared approach.

6.4 Lookup and Update Performance

We now turn to the lookup and update performance of
the three approaches, in terms of theoretical analysis and
experimental evaluation.

Table 5 summarizes the theoretical worst-case lookup and
update performance. The lookup performance of the three
approaches is the same, with O(1) time complexity even in
the worst case, thanks to the ability of TCAMs to deliver a
deterministic high throughput of one lookup per clock cycle.
When using the TCAM and the SRAM shown in Table 2,
the lookup throughput can be up to 250 million lookups
per second. Considering 64-byte minimum size packets, this
lookup rate would sustain well in excess of 100Gbps.

For update performance, we consider the update overhead
in the data plane (i.e., in the TCAM-based lookup engines),
as updates in the data plane actually affect the packet for-
warding process and are therefore critical. Generally, in
TCAM-based lookup engines, both the TCAM and its as-
sociated SRAM can be updated simultaneously. We assume
that, in a TCAM-based lookup engine, a TCAM write oper-
ation and an SRAM write operation take the same amount
of time, as the TCAM and its associated SRAM are usually
driven by the same clock, and both of them usually take
just one clock cycle to complete a write operation. In this

case, the larger number of memory write accesses in either
part can be used as the metric to evaluate the update over-
head. Additionally, in the following update evaluation, we
refer to the PLO_OPT approach [17] to manage prefixes in
the TCAM. That is, when needed, all the prefixes are stored
in the TCAM in order of decreasing prefix lengths, and free
TCAM space is reserved in the middle of the TCAM.

In the non-shared approach, PLO_OPT requires at most
W/2 TCAM memory accesses per route update, where W
is the length of the IP address. Therefore, the number of
write operations per update is upper bounded by W/2 in
the worst case.

In FIB completion, the number of write operations per
update is upper bounded by 2"*! — 1 in the worst case, as
one route update may cause at most 21 — 1 NH pointers
to be modified in the associated SRAM, due to the masking
prefix correction process.

In FIB splitting, one prefix change in the disjoint prefix set
requires at most one write operation in the merged lookup
path, as it only contains disjoint prefixes and prefix order
constraint can be avoided [13]. However, one prefix change
in the overlapping prefix set leads to at most N virtual prefix
changes in the TCAM of the non-shared lookup path, which
causes NW /2 write operations in the worst case when using
PLO_OPT [17].

As mentioned before, we expect the worst-case update
overhead in our approaches is unlikely to happen in prac-
tice. In order to evaluate the actual update overhead, we
collected 12 hours’ worth of route updates that happened
on the 14 IPv4 routing tables shown in Table 1 from the
RIPE RIS Project [3]. These update traces contain a to-
tal of 22,765,563 prefix announcements and 3,694,904 prefix
withdrawals. We replayed these updates in the order of their
timestamp, and evaluated the actual update overhead in FIB
completion and FIB splitting.

We present in Figure 14, the complementary cumulative
distribution of the update overhead over the 12 hours, in FIB
completion (Figure 14(a)) and FIB splitting (Figure 14(b)).
We observe that in both FIB completion and FIB splitting,
most of route updates cost only 1 write access per update,
and route updates rarely lead to large number of write ac-
cesses in the TCAM-based lookup engines. For example, the
percentage of updates costing more than 100 write accesses
per update (we call these updates the big updates) is only
0.004% in FIB completion, and only 0.003% in FIB split-
ting. To fix ideas, we take an approximate calculation: one
big update happens roughly every 40s on average (0.004%
of updates over 12 hours). If we assume only big updates
cause significant packet drop, and every big update needs
100 write accesses (i.e., 400ns total for the chips we con-
sider), the total amount of dropped data is about 5KB, out
of a possible 500GB per 40s in a 100Gbps network. The
disruption caused by big updates is thus negligible.

Table 6 summarizes the actual update overhead. In FIB
completion, the average update overhead in practice is only
1.22 write accesses per update, which is very small and close
to the minimum update overhead. This is expected, as we
find by experiment, that most updates don’t cause any prefix
changes in the UPS, and the masking prefix correction often
stops quickly in practice. The worst-case update overhead
in FIB completion is 2,206 write accesses per update, which
is much smaller than what is predicted by the theoretical
worst case. In FIB splitting, the average update overhead is

82

Table 6: Update overhead in practice
| | Maximum | Average | Minimum |
2206 1.22 1
112 1.05 1

FIB completion
FIB splitting

only 1.05 write access per update, and the worst-case update
overhead is 112 write accesses per update.

We also evaluate the pre-processing overhead of the up-
dates in software, that does not affect the packet forwarding
process. We find by experiment that the average number of
trie node accesses per update is about 23 in FIB completion,
and about 22 in FIB splitting. We assume that one node ac-
cess requires one memory reference, which takes 60ns with
a cache miss. In this case, we can pre-process over 700K
updates per second in software, which exceeds largely the
peak update frequency of morden routers [1].

7. RELATED WORK

The use of TCAMs to build high-speed lookup engines has
been investigated in the past. Previous work mainly focused
on addressing the challenges of memory consumption [11,14,
15], power dissipation [23], and update overhead [17,21], in
the context of traditional routers, not virtual routers.

In the context of virtual routers, memory scalability is
one of the major challenges. Previous work mainly focused
on the scalability of SRAM-based virtual routers. Fu et
al. [7] propose a small, shared data structure to merge mul-
tiple tries built from FIBs of virtual routers. The similarity
between multiple tries is exploited and many trie nodes are
shared during merging, leading to a significantly smaller trie.
However, this scheme works well only when the original tries
are similar. To address this issue, Song et al. [18] propose
trie braiding, which enables each trie node to swap its left
and right sub-tries freely. Hence, the shape of dissimilar
tries can be adjusted and these tries can become as similar
as possible. Ganegedara et al. [8] argue that, for provider
edge router virtualization, even the trie braiding approach is
not sufficient since prefix sets belonging to different provider
edge routers have different common portions. Therefore,
they propose to merge the tries of different provider virtual
routers at the split nodes instead of the root nodes. Le et
al. [10] propose a 2-3 tree-based approach to merge multiple
FIBs. A unique virtual ID is attached in front of every prefix
in the individual FIB, so that all the FIBs can be merged
into a single one directly. Then, a trie is built from the
merged FIB, and two disjoint prefix sets are generated by
partitioning the trie. Finally, two 2-3 tree-based pipelines
are built for the two disjoint prefix sets.

Another related area to ours is FIB aggregation [20, 24],
which aims to reduce the size of the FIB. In the context of
virtual routers, this approach can be used to compress each
FIB separately, and then the compressed FIBs can be put
together using the non-shared approach.

8. CONCLUSION

In a virtual router platform, our solutions work best when
the prefix sets of different FIBs are similar (i.e., they have
a substantial share of common prefixes). Nowadays, private
IP addresses are widely used in campus and enterprise net-
works. It is therefore reasonable to expect virtual routers

100 e —

FIB completion

0.1 F

T

0.01 E

CCDF (%)

0.001 F

0.0001 F
1e-005 F

1e-006 -
1 10

100

1000

Update overhead (# of write accesses per update)

(a)

100 T T LN S

[FIB splitting)

10 E

g 1 = E
=]
a]
3 0.1 F .
0.01 “‘L| 1
- i

1 10

Update overhead (# of write accesses per update)

(b)

Figure 14: Complementary cumulative distribution function of update overhead in (a) FIB completion and

(b) FIB splitting

will likely contain many private addresses in their FIBs,
which will have a lot of addresses in common, as the ad-
dress range of private IP addresses is very limited. In that
case, our approaches will be useful.

However, if future virtual routers contain very dissimilar
FIBs, merging them directly based on our approaches is not
a good idea. For very different FIBs, there will be two pos-
sible directions for future work.

First, if dissimilar prefix sets of different FIBs can be
transformed into similar ones, our solutions will be useful
after the transformation. However, transforming very dif-
ferent prefix sets into similar ones is a major challenge for
TCAM-based scalable virtual routers, as it depends largely
on the still unknown properties of future FIBs in virtual
routers.

Second, if portions of prefix sets are similar, we can merge
these portions in TCAMs. If different FIBs do not have a
substantial share of common prefixes, but there is similarity
among different portions of prefix sets, some solutions, such
as multiroot [8], can be adopted in our approaches to merge
VPN FIBs in TCAMs. Indeed, multiroot has been proposed
to address the dissimilarity problem for VPN FIBs.

However, if the forwarding entries of FIBs are totally dif-
ferent (e.g., name strings for CCN, and IP addresses for
IPv4), it is not a good idea to merge these FIBs together
using our approaches, as there is little similarity to exploit.
A more viable way is to partition all these FIBs into several
groups, each group containing the same kind of forwarding
entries. For example, one group is for [Pv4 FIBs, one group
is for IPv6 FIBs, and another group is for CCN FIBs. Then,
similarity can be exploited, and merging is performed in each
individual group, respectively.

Nevertheless, our proposed approaches have been shown
to be very effective when the various FIBs exhibit enough
similarity:

1. For large or densely populated FIBs, such as in the
case of [Pv4, the proposed two approaches exhibit very
good scalability. Indeed, the TCAM size requirements
are much lower, at the cost of marginally larger SRAM
requirements, which is very cost-effective.

2. For small or sparsely populated FIBs, as currently in
IPv6, our approaches also exhibit very good scalabil-

83

ity. However, if FIB size is not so important, the non-
shared approach might be a good choice as it guaran-
tees a low upper bound on the update overhead.

3. Both FIB completion and FIB splitting perform well in
terms of lookup and update performance. The lookup
performance is up to 1 lookup per clock cycle, and the
average update overhead is as low as around 1 write
access per update. Although the theoretical worst-case
update overhead is high, it is a loose bound unlikely
to happen in practice.

In many practical settings, our proposed merged data
structure is therefore effective at reducing TCAM footprint
in virtual routers, and our proposed algorithms are efficient,
at resolving the prefix masking issue encountered in TCAM
FIB merging.

As far as we know, our work is the first to exploit the
possibility of using TCAMs to build scalable virtual routers.
In future work, we will implement our approaches on our
PEARL platform [22], and address the remaining challenges,
such as power consumption and dissimilar FIBs.

9. ACKNOWLEDGMENTS

We thank our shepherd Patrick Crowley and the anony-
mous reviewers for their valuable comments on the paper.

This work was supported in part by National Basic Re-
search Program of China with Grant 2012CB315801, Na-
tional Natural Science Foundation of China (NSFC) with
Grants 61133015 and 61061130562, Strategic Priority Re-
search Program of the Chinese Academy of Sciences with
Grant XDA06010303, and National Science and Technol-
ogy Major Project of Ministry of Science and Technology of
China with Grant 20117ZX03002-005-02.

10. REFERENCES

[1] BGP Reports. http://bgp.potaroo.net/.

[2] NetLogic NL9000 Family. http://www.
netlogicmicro.com/Products/Layer4/index.asp.

[3] RIPE RIS Raw Data. http://www.ripe.net/

data-tools/stats/ris/ris-raw-data.

M. B. Anwer, M. Motiwala, M. b. Tariq, and

N. Feamster. Switchblade: a platform for rapid

[4]

deployment of network protocols on programmable
hardware. In Proc. ACM SIGCOMM, pages 183-194,
2010.

N. M. M. K. Chowdhury and R. Boutaba. A survey of
network virtualization. Computer Networks,
54(5):862-876, 2010.

N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt,

F. Huici, and L. Mathy. Towards high performance
virtual routers on commodity hardware. In Proc.
ACM CoNEXT, pages 1-12, 2008.

J. Fu and J. Rexford. Efficient IP-address lookup with
a shared forwarding table for multiple virtual routers.
In Proc. ACM CoNEXT, pages 1-12, 2008.

T. Ganegedara, W. Jiang, and V. Prasanna.
Multiroot: Towards memory-efficient router
virtualization. In Proc. IEEE ICC, pages 1-5, 2011.
T. Ganegedara, H. Le, and V. K. Prasanna. Towards
on-the-fly incremental updates for virtualized routers
on FPGA. In Proc. International Conference on Field
Programmable Logic and Applications (FPL), pages
213-218, 2011.

H. Le, T. Ganegedara, and V. K. Prasanna.
Memory-efficient and scalable virtual routers using
FPGA. In Proc. ACM/SIGDA FPGA, pages 257266,
2011.

H. Liu. Routing table compaction in ternary CAM.
IEEE Micro, 22(1):58-64, 2002.

W. Lu and S. Sahni. Low-power TCAMs for very large
forwarding tables. IEEE/ACM Transactions on
Networking, 18(3):948-959, 2010.

L. Luo, G. Xie, Y. Xie, L. Mathy, and K. Salamatian.
A hybrid IP lookup architecture with fast updates. In
Proc. IEEE INFOCOM, pages 24352443, 2012.

V. Ravikumar and R. N. Mahapatra. TCAM
architecture for IP lookup using prefix properties.
IEEE Micro, 24(2):60-69, 2004.

V. Ravikumar, R. N. Mahapatra, and L. N. Bhuyan.
EaseCAM: an energy and storage efficient
TCAM-based router architecture for IP lookup. IEEE
Transactions on Computers, 54(5):521-533, 2005.

84

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

25]

M. A. Ruiz-Sanchez, E. W. Biersack, and

W. Dabbous. Survey and taxonomy of IP address
lookup algorithms. IEEE Network, 15(2):8-23, 2001.
D. Shah and P. Gupta. Fast updating algorithms for
TCAMs. IEEE Micro, 21(1):36-47, 2001.

H. Song, M. Kodialam, F. Hao, and T. Lakshman.
Building scalable virtual routers with trie braiding. In
Proc. IEEE INFOCOM, pages 1-9, 2010.

J. S. Turner, P. Crowley, J. DeHart, A. Freestone,
B. Heller, F. Kuhns, S. Kumar, J. Lockwood, J. Lu,
M. Wilson, C. Wiseman, and D. Zar. Supercharging
planetlab: a high performance, multi-application,
overlay network platform. In Proc. ACM SIGCOMM,
pages 85-96, 2007.

7. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen,
A. Shaikh, J. Wang, and P. Francis. SMALTA:
practical and near-optimal FIB aggregation. In Proc.
ACM CoNEXT, pages 1-12, 2011.

B. Vamanan and T. N. Vijaykumar. TreeCAM:
decoupling updates and lookups in packet
classification. In Proc. ACM CoNEXT, pages 1-12,
2011.

G. Xie, P. He, H. Guan, Z. Li, Y. Xie, L. Luo,

J. Zhang, Y. Wang, and K. Salamatian. PEARL: a
programmable virtual router platform. IEEE
Communications Magazine, 49(7):71-77, 2011.

F. Zane, G. Narlikar, and A. Basu. CoolCAMs:
power-efficient TCAMs for forwarding engines. In
Proc. IEEE INFOCOM, pages 42-52 vol.1, 2003.

X. Zhao, Y. Liu, L. Wang, and B. Zhang. On the
aggregatability of router forwarding tables. In Proc.
IEEE INFOCOM, 2010.

K. Zheng, C. Hu, H. Lu, and B. Liu. A TCAM-based
distributed parallel TP lookup scheme and
performance analysis. IEEE/ACM Transactions on
Networking, 14(4):863-875, 2006.

