Actors and Publish/Subscribe: An Efficient Approach to
Scalable Distribution in Data Centers

Dominik Charousset
HAW Hamburg

dcharousset@acm.org

ABSTRACT

Data center applications are required to be fault-tolerant
and self-healing, and at the same time to scale dynamically
with the number of available hardware resources. Highly
efficient task distribution is crucial for such services that
require low latency and high availability. This paper in-
troduces pub/sub actors as a paradigm to build distributed
data center applications without a single point of failure.
Our approach does not actively distribute tasks, but uses
group communication and an orchestration protocol. Re-
quests are received by a group of potential servers, but only
processed by one of them. We present a key-value store
using libcppa as a case study of promising performance.

Categories and Subject Descriptors

C.2.4 [Computer-communication networks|: Distributed

Systems — Distributed databases; D.3.3 [Programming lan-
guages]: Language Constructs and Features—Concurrent
programming structures

Keywords

actor model, C++, key-value store

INTRODUCTION

The traditional actor model [3] defines a message-oriented
programming paradigm which allows for a strong coupling
of (sub) systems by link states. This approach naturally fits
to master-slave relationships and has proven useful in prac-
tice to build fault-tolerant, hierarchical distributed systems.
Erlang-like failure models for actors has been used for reli-
able, highly available, and self-healing applications. It may
be seen as a natural candidate for in-data center develop-
ment. However, strictly hierarchical systems exhibit limited
flexibility and high communication overhead in distributing
tasks by a master to its slaves. Seamless call delegation and
a contacting of unknowns are not covered by this model.

Loosely coupled systems can have a significant advantages
in low-latency applications, if they rely on orchestration and

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CoNEXT Student’12, December 10, 2012, Nice, France.

Copyright 2012 ACM 978-1-4503-1779-5/12/12 ...$15.00.

Thomas C. Schmidt
HAW Hamburg

t.schmidt@ieee.org

53

Matthias Wéahlisch

Freie Universitat Berlin
waehlisch@ieee.org

scalable network facilities rather than centralised task man-
agement. By using publish/subscribe, one can forgo central
task management and avoid most of its communication over-
head. However, the traditional actor model does not provide
a publish/subscribe semantic.

In this paper, we present a loosely coupled actor paradigm
as an enhanced approach to data center programming (§ 2).
Our work is based on libcppa (http://libcppa.org), a
C++ library for actors that extends the basic model by a
publish/subscribe communication layer. This software in-
frastructure is evaluated in the context of psaDB, a proto-
typic key-value store for data centers (§ 3).

2. psaDB: A KEY-VALUE STORE

As a characteristic data center application, we present
psaDB (publish/subscribe & actors DataBase), a key-value
store that serves requests from a distributed server pool.
The traditional actor model defines only a one-to-one send
primitive using actor addresses. We have enhanced this
model to allow for one-to-many communication in libcppa,
an open source implementation of the actor model for C++.
It allows actors to join and leave groups, as well as send
messages to and receive from (joined) groups. This paves
the path to new use cases, such as low-latency applications
without central task management.

psaDB delegates each request to a group of servers from
a large server infrastructure. We have separated this del-
egation process into a static, “off-line” step and a dynamic
adaptation to runtime configuration. Initially, the system
is divided into a predefined number of groups. Each group
serves a fixed key range and can be transparently addressed
by a group address g.

Each client receives a list of all group identifiers at configu-
ration time. At each request, the client independently maps
the key to a the corresponding group using a hash function.
This first step delegates a call to a subsystem without any
communication overhead.

Each group of servers consists of an (undisclosed) mas-
ter that internally assures consistency and coordination, as
well as any number of replicas. For a specific deployment
scenario, the master partitions the key space of its group
evenly among all replicas and itself. This is the second step
of the call delegation. Only the server that is currently re-
sponsible for a given key responds to a request. For write
requests, each replica performs the write operation, but only
the currently responsible replica acknowledges the message.
psaDB assumes a reliable, FIFO-ordered multicast transport.
Whenever a new replica joins or an existing replica fails, the
master redistributes the key space. If the master fails, the

http://libcppa.org

replicas start an election of a new master. To detect fail-
ing servers, each replica (actor) monitors each other replica
(actor) in its group.

psaDB scales in two ways, (a) the database can configure
many groups to divide data as well as workload across many
subsystems, and (b) administrators can add replicas to sub-
systems at runtime to narrow the key range each server has
to respond to. As shown in Figure 1, put and get operation
always need exactly two messages, a request message that
is sent from the client to the subsystem (group of servers),
and a response/acknowledge message that is returned. Since
this approach uses group messages of a specific anycast-style
communication, it assumes an efficient group communica-
tion layer in order to scale up to a large number of replicas.

Figure 1: Distribution Concept of psaDB

This paradigm of direct group access can be generalized to
any stateless request/response protocol such as HT'TP and
can be applied to distributed computing on clusters, e.g.,
Map/Reduce, as well.

3. PROTOTYPE AND EVALUATION

We have implemented psaDB, a proof-of-concept key/value
store. It supports get, put, and scan operations and is writ-
ten in C++ with the actor library libcppa.

On the client side, psaDB is represented by a single, local
actor that forwards all requests transparently to the corre-
sponding groups. On the server side, the actor model pro-
vides all tools necessary to build reliable systems based on
actor monitoring. The complexity during development is
minimized, since the subsystems remain isolated.

For early testing and evaluation, we have deployed our
prototype on three groups consisting of one master and two
replicas each connected via a 1GB/s switched Ethernet net-
work. The group service convergence layer was native IP
Multicast. To evaluate the performance of our setup, we
have used workloads A-E of the Yahoo! Cloud Serving
Benchmark (YCSB) [1], an industry-standard benchmark-
ing tool. Workload D uses a “latest” read pattern, i.e., it ac-
cesses the last inserted or updated values, whereas all other
workloads use a Zipfian access pattern.

Table 1 shows the average latency as well as the 95 and 99
Percentile for the benchmark. The database was preloaded
with 100,000 elements for each workload. Each element con-
sists of ten 1 kB sized values. The benchmark illustrates the
bare overhead of psaDB itself, as our prototype uses only
in-memory storage with O(log n) complexity for accessing
elements. Therefore, read and write operations performed
at almost identical speed. The latency is likely to increase

54

Operations Average 95% 99 %
A 50 % Read 748 us lms 2ms
50 % Update 725pus 1ms 1ms
B 95 % Read 738us lms 2ms
5% Update 713us 1lms 1ms
C 100 % Read 760pus 1ms 2ms
D 95 % Read * 731us 1lms 2ms
5% Insert 1055 us 2ms 2ms
E 95 % Scan 24969 us 32 ms 36 ms
5% Insert 10857 us 16 ms 19 ms

* D has a latest read pattern, default is Zipfian

Table 1: psaDB performance for several workloads

slightly, when data access involves IO operations on the
physical hard drive.

DB 9B5% A 95% B 95%E
HyperDex 3ms 3ms 5ms
MongoDB 4 ms 6 ms 120 ms
Cassandra 16 ms 20 ms 80 ms

Table 2: Benchmark results of Escriva et al. [2] for
YCSB workloads A, B, and E

For comparison we show the benchmark results of Escriva
et al. [2] in Table 2 from their work on HyperDex in a 14
nodes setup. The Percentiles show the maximum time for all
operations in a certain workload. MongoDB and Cassandra
are freely available, open source database implementations.
Note that Escriva et al. did not show detailed results for
workloads C and D. However, results for workloads C and
D should correspond to the results of workload B.

Despite the limited compatibility of measurements, we di-
agnose that our early prototype runs on the same timescale
as mature systems. psaDB’s only flaw in performance com-
pared to HyperDex is its scan performance, as psaDB does
not have a coordinator that manages a global state. Due to
the fully distributed architecture of psaDB, a client request-
ing a key K and its next z successors (workload E, usage
example: threaded conversations) has to send its query to
all groups and then to combine and truncate the individual
results. In following a fully distributed approach, psaDB ad-
mits much higher flexibility in deployment, omits any single
point of failure, and — without data state at a controller —
avoids inconsistency by design.

4. REFERENCES

[1] COOPER, B. F., SILBERSTEIN, A., Tam, E.,
RAMAKRISHNAN, R., AND SEARS, R. Benchmarking
Cloud Serving Systems with YCSB. In Proc. of the 1st
ACM SoCC (New York, NY, USA, 2010), ACM,

pp. 143-154.

Escriva, R., WonNG, B., AND SIRER, E. G. HyperDex:
A Distributed, Searchable Key-Value Store. In Proc. of
the ACM SIGCOMM (New York, NY, USA, 2012),
ACM, pp. 25-36.

HewitT, C., BIsHOP, P., AND STEIGER, R. A
Universal Modular ACTOR, Formalism for Artificial
Intelligence. In Proc. of the 8rd IJCAI (San Francisco,
CA, USA, 1973), Morgan Kaufmann Publishers Inc.,
pp. 235-245.

	1 Introduction
	2 psaDB: A key-value store
	3 Prototype and Evaluation
	4 References

