
MAClets
Active MAC protocols over hard-coded devices

Giuseppe Bianchi, Pierluigi Gallo, Domenico Garlisi,
Fabrizio Giuliano, Francesco Gringoli, Ilenia Tinnirello

CNIT (Univ. Roma Tor Vergata, Palermo, Brescia)

 From STA
management via
parameter
settings…

AP

 Use CW=63, AIFS=2, TXOP=5.2
 Configure via 802.11v params

 To STA
management via
full MAC stack
reprogramming!

AP

  Install and run this MAC protocol

Whole MAC protocol stack as a sort of JAVA applet?

 Flexibily Adapt Access Protocol to
scenario/context
 Dynamic spectrum access
 Niche scenario optimization

 home, industrial, …
 Context/application-specific protocol design
 Faster paper-to-field deployment
 Improved support for PHY enhancements

 Virtualization
 Each operator can design its own resource management

 frame forging, scheduling, timing, channel switching,
PHY selection, …

 Different MAC coexisting on same AP/net

  Lower MAC protocol ops are real time!
  O(us): TX, RX, slot times, set IFS, set timers, etc
  Driver to NIC interface: too slow  MUST run on NIC

  Vendors will HARDLY give us open source, fully
programmable, NICs
  SDR is 20 years old but…

 …still no real world commodity SDR NICs
  NIC design extensively leveraging HW

 non programmable, unless FPGA NICs…
 Your commodity card is NOT an FPGA!

  Why a vendor should renounce to its internal Intellectual Property??

  But even if stack gets opened…which programmability model?
  Current practice (in most cases):

 patch/hack existing SW/FW/HW code base
 Huge skills/experience, low level languages, slow development, inter-module

dependencies

 Exploiting a new abstraction model for
run-time MAC protocol reconfigurations!
 based on the Wireless MAC Processor (WMP)

 INFOCOM 2012

 Enabling active MAC protocols and remote
MAC injection
 Ultra-fast (below ms) reconfiguration
 MAC multi-threading
 Virtualization

 1: Instruction sets
perform elementary tasks on the platform

 A-priori given by the platform
 Can be VERY rich in special purpose computing platforms

»  Crypto accelerators, GPUs, DSPs, etc

 2: Programming languages
sequence of such instructions + conditions
 Convey desired platform’s operation or algorithm

 3: Central Processing Unit (CPU)
execute program over the platform
 Unaware of what the program specifically does
 Fetch/invoke instructions, update registers, etc

Clear decoupling between:
 - platform’s vendor  implements (closed source!) instruction set & CPU
 - programmer  produces SW code in given language

 ACTIONS
 frame management, radio control, time scheduling

 TX frame, set PHY params, RX frame,
set timer, freeze counter, build header,
forge frame, switch channel, etc

 EVENTS
 available HW/SW signals/interrupts

 Busy channel signal, RX indication,
inqueued frame, end timer, etc

 CONDITIONS
 boolean/arithmetic tests on available registers/info

 Frame address == X, queue length >0,
ACK received, power level < P, etc

 Convenient “language”: XFSM
eXtended Finite State Machines
 Compact way for composing available acts/ev/cond

to form a custom MAC protocol logic

Origin
state Destination

state
config action()

Destination
state

EVENT
(condition)
Action()

Destination
state

 MAC engine: specialized XFSM
executor (unaware of MAC logic)
 Fetch state
 Receive events
 Verify conditions
 Perform actions and state transition

 Once-for-all “vendor”-implemented
in NIC (no need for open source)
 “close” to radio resources = straightforward real-

time handling

 MAC description:
 XFSM

 XFSM  tables

 Transitions
 «byte»-code event, condition, action

 Portable over different vendors’
devices, as long as API is the same!!

 Pack & optimize in WMP «machine-
language» bytecode

A

C

B

T(A,B)
T(B,C)

T(C,A) T(C,B)

A
B
C

A B C

T(A,B)
T(B,C)
T(C,A) T(C,B)

A
B
C

MAC protocol specification:
XFSM design

(e.g. Eclipse GMF)

Machine-readable code

Custom language compiler

Code injection
in radio HW platform

MAC Engine

MAC Bytecode

 The MAC Engine does not
need to know to which MAC
program a new fetched state
belongs!
 Code switching can be easily

supported by moving to a state in a
different transition table

  It is enough to:
 Define Meta State Machines for

programming code switching
 Verify MAC switching events from

each state of the program under
execution

 Re-load system configuration
registers at MAC transitions

switching events

 Upload MAC program on NIC from remote
 While another MAC is running
 Embed code in ordinary packets

  WMP Control
Primitives
  load(XFSM)
  run(XFSM)
  verify(XFSM)
  switch(XFSM1, XFSM2, ev,

cond)
  Further primitives

  Distribution protocol (run by
the MAClet Manager

  Synchro support for
distributed start of same
MAC operation)

“Bios” state machine: DEFAULT protocol (e.g. wifi) which all terminals understand

 An entire MAC program can
be coded in a single frame!
 our abstractions and machine codes

allow to code DCF in about 500 bytes
 Other fields:

  type (distribution protocol and action messages)

 destination IDs
  initial state
 command (load, run, switch..)
 activation event

TYPE ID ID ID CMD STATE TABLE EVENT
CODE

MACLET

 Defined for allow the AP to remotely access the WMP
control interface of the associated nodes
 Binding MAClet Managers of each node to the AP MAClet Controller

 Notification of activation/de-activation, ID assignment

 Transporting Action Messages coding WMP commands (load/run/switch)
and MAC programs

 When to switch to a new MAC protocol?
 Mechansims available, but final solutions left to the MAClet programmers

 Triggering events and signals
 No trigger: asynchronous activation
 Control frames sent by the AP
 Expiration of relative or absolute timer

 Absolute timers built on top of the time-synchronization function included in DCF

 1-way or 3-way handshakes

switch at
next bcn!

 From a configuration to another..
 From a program to another!

 (with latency of about 1 microsecond)

Reference platform: broadcom Airforce54g 4311/4318
 WMP:

  replace both Broadcom and openFWWF firmware with
 Implementation of actions, events, conditions
 MAC engine: XFSM executor

 Develop “machine language” for MAC engine
 Custom made “bytecode” specified and implemented

 WMP Control Architecture:
 At firmare level:

 WMP Control Interface

 At the application level:
 MAClet Manager: receive/transmit MAClets and other messages of the MAClet

Distribution Protocol
 MAClet Controller: Intelligent part of the system, dealing with network-level

decisions
 Current implementation based on classical client-server model!

 Two operators on same
AP/infrastructure
 A: wants TDM, fixed rate
 B: wants best effort DCF

 Trivial with MAClets!
 Customers of A/B download

respective TDM/DCF MAClets!
  Isolation via MAClet design

 Time slicing DESIGNED INTO the MAClets! (static or dynamic)

DCF SUSPEND

Timer expiration

Beacon reception & conversely

 Heterogeneous applications at home
 E.g. Video streaming and web browsing

 Trivial with MAClets!
 The Smart TV is not expected to implement any

specific standard amendment
 DLS protocol can be loaded when necessary
 The network owner can push further optimizations:

 additional channel for direct link channel, without
losing association

 Additional channel for direct link with greedy backoff

 Experiment with a periodic switching from DLS++ to DCF
 For testing multithreading and synchronization mechanisms

 New vision:
 MAC no more an all-size-fits-all protocol
 Can be made context-dependent
 Complex scenarios (e.g. virtualization) become trivial!

 Very simple and viable model
 Byte-coded XFSM injection
 Does NOT require open source NICs!

 Next steps
 We focused on the «act» phase; what about the decision and

cognitive plane using such new weapons?
  can we think to networks which «self-program» themselves?

 Not too far, as it just suffices to generate and inject a state
machine…

  Supported by the FLAVIA EU FP7 project
  http://www.ict-flavia.eu/

  general coordinator: giuseppe.bianchi@uniroma2.it
  Technical coordinator: ilenia.tinnirello@tti.unipa.it

  Public domain release in alpha version
  https://github.com/ict-flavia/Wireless-MAC-Processor.git
  Developer team:

  ilenia.tinnirello@tti.unipa.it
  domenico.garlisi@dieet.unipa.it
  fabrizio.giuliano@dieet.unipa.it
  francesco.gringoli@ing.unibs.it

  Released distribution:
  Binary image for WMP
  Source code for MAClet Manager
  You DO NOT need it open source!

Remember the “hard-coded” device philosophy…
  Conveniently mounted and run on Linksis or Alix

  Source code for everything else
  Manual & documentation, sample programs

  MAC Engine: XFSM executor
  Memory blocks: data, prog
  Registers: save system state

(conditions);
  Interrupts block passing HW

signals to Engine (events);
  Operations invoked by the

engine for driving the
hardware (actions)

The MAC engine works as a
Virtual MAC Machine

Actions:
set_timer, stop_timer,
set_backoff,
resume_backoff,
update_cw,
switch_TX, TX_start

Events:
END_TIMER,
QUEUE_OUT_UP,
CH_DOWN, CH_UP,
END_BK,
MED_DATA_CONF

Conditions:
medium, backoff,
queue

