(@Y)

CInLt

consarzie nazicnale
interuniversiiang
per le telecomunicozior
I—
SEVENTH FRAMEWORK
PROGRAMME

MAClets

Active MAC protocols over hard-coded devices

Giuseppe Bianchi, Pierluigi Gallo, Domenico Garlisi,
Fabrizio Giuliano, Francesco Gringoli, llenia Tinnirello

CNIT (Univ. Roma Tor Vergata, Palermo, Brescia)

— R MAClet
MAClet MAClet € — — = = - ——— - ' Distribution
- 1 2
y = = Tirun(i) ! Logic
A ! 1! High-level logic
g —1 ' e g g
DATA SAP (| D) M C i) XESM SAP
. T A4 N
Registers 1 1
L o oo oo
N 1 -+ '(2) Incoming bytecode
Data Memory . | xFsm
1 | engine 1) Running bytecode
1 ! Micro-Instruction Memory
1 1 Wireless MAC Processor
1 T Py
T 4
[Reception | | Transmission |
— T

=t

—— v P T T e o — ———————————— " T 1 o ————————————

The WMP architecture permits the design MAC once, run everywhere paradigm and
the decoupling between the platform and the MAC protocol logic.

MAC k - Bytecode Multiple MAC
programs X
loaded on the MAC j - Bytecode
MAC Engine Brand

The same
bytecode can
run on cards
from different
vendors

v 2
= U4
MAC 1
Pl
- PR

- -

MAC j - Bytecode

MAC 1 - Bytecode

MAC 1 - Bytecode
same card

=7

-
——

Bytecode

=2>From STA
management via

parameter
settings...
& Use CW=63, AIFS=2, TXOP=5.2
< Configure via 802.11v params
=>To STA

management via
full MAC stack
reprogramming! <

< Install and run this MAC protocol

Whole MAC protocol stack as a sort of JAVA applet?

...more opportunities...

= Flexibily Adapt Access Protocol to
scenario/context

= Dynamic spectrum access

= Niche scenario optimization
—home, industrial, ...

= Context/application-specific protocol design

= Faster paper-to-field deployment

= Improved support for PHY enhancements
= Virtualization

= Each operator can design its own resource management

—>frame forging, scheduling, timing, channel switching,
PHY selection, ...

= Different MAC coexisting on same AP/net

Real world blockers

= Lower MAC protocol ops are real time!
= O(us): TX, RX, slot times, set IFS, set timers, etc
= Driver to NIC interface: too slow = MUST run on NIC

= Vendors will HARDLY give us open source, fully
programmable, NICs

= SDRis 20 years old but...
—> ...still no real world commodity SDR NICs

= NIC design extensively leveraging HW
—> non programmable, unless FPGA NICs...
= Your commodity card is NOT an FPGA!

= Why a vendor should renounce to its internal Intellectual Property??

= But even if stack gets opened...which programmability model?

= Current practice (in most cases):
—> patch/hack existing SW/FW/HW code base

—> Huge skills/experience, low level languages, slow development, inter-module
dependencies

Our contribution

= Exploiting a new abstraction model for
run-time MAC protocol reconfigurations!

=based on the Wireless MAC Processor (WMP)
—->INFOCOM 2012

= Enabling active MAC protocols and remote
MAC injection

= Ultra-fast (below ms) reconfiguration
=MAC multi-threading
= Virtualization

Learn from computing systems?

=> 1: Instruction sets
perform elementary tasks on the platform

—> A-priori given by the platform

—> Can be VERY rich in special purpose computing platforms
» Crypto accelerators, GPUs, DSPs, etc

= 2: Programming languages
sequence of such instructions + conditions

= Convey desired platform’s operation or algorithm

= 3: Central Processing Unit (CPU)
execute program over the platform

= Unaware of what the program specifically does
= Fetch/invoke instructions, update registers, etc

Clear decoupling between:

- platform’s vendor -> implements (closed source!) instruction set & CPU
- programmer -> produces SW code in given language

1: Which elementary MAC tasks?

(“our” instruction set!)

= ACTIONS
= frame management, radio control, time scheduling

2> TX frame, set PHY params, RX frame,
set timer, freeze counter, build header,
forge frame, switch channel, etc

= EVENTS

= available HW/SW signals/interrupts

- Busy channel signal, RX indication,
inqueued frame, end timer, etc

= CONDITIONS
= boolean/arithmetic tests on available registers/info

- Frame address == X, queue length >0,
ACK received, power level <P, etc

2: How to compose MAC tasks?

(“our” programming language!)

= Convenient “language”: XFSM

eXtended Finite State Machines

= Compact way for composing available acts/ev/cond
to form a custom MAC protocol logic

(condition)

Action()

Destination

state
config action()

Destination
state

~N

J

Destination
state

XFSM formal notation

meaning

J

S | symbolic states MAC protocol states

[| input symbols Events

O | output symbols MAC actions

D | n-dimensional all possible settings of n
linear space configuration registers
Dy x - x Dy,

I | set of enabling func- Conditions to be veri-
tions fi : D — fied on the configuration
{0,1} registers

U [set of update func- Configuration com-
tions u; : D — D mands, update regis-

ters’ content

T | transition relation Target state., actions

T : Sx FxI —
SxUxO

and configuration com-
mands associated to
each transition

3: How to run a MAC program?
(MAC engine — XFSM onboard executor - our CPU!)

=>MAC engine: specialized XFSM
executor (unaware of MAC logic)
= Fetch state
= Receive events
= Verify conditions
= Perform actions and state transition

= Once-for-all “vendor”’-implemented
in NIC (no need for open source)

=“close” to radio resources = straightforward real-
time handling

MAC Bytecode

=> MAC description:

= XFSM ‘l MAC protocol specification:
G XFSM design

(e.g. Eclipse GMF)

A B C 7

=2 XFSM - tables

A T(AB) Machine-readable code
B T(B.C)
C T(CA) | T(CB) Custom language compiler
= Transitions
= «byten-code event, condition, action Code injection
—>Portable over different vendors’ in radio HW platform

devices, as long as API is the same!!

= Pack & optimize in WMP «machine- MAC Bytecode
language» bytecode

A | TAB) MAC Engine

B | T(B,C)
C | T(cA) | T(CB)

Multi-Thread Support

= The MAC Engine does not
need to know to which MAC
program a new fetched state
belongs!

= Code switching can be easily
supported by moving to a state in a
different transition table

=> It is enough to:

= Define Meta State Machines for
programming code switching

= Verify MAC switching events from
each state of the program under
execution

= Re-load system configuration
registers at MAC transitions

From MAC Programs to MAClets

=>Upload MAC program on NIC from remote
= While another MAC is running
= Embed code in ordinary packets

= WMP Control
Primitives
= load(XFSM)
= run(XFSM)

= verify(XFSM)

= switch(XFSM1, XFSM2, ey,
cond)

= Further primitives

= Distribution protocol (run by
the MAClet Manager

= Synchro support for

distributed start of same
MAC operation)

load()
S MAClet |. ~~~~~—~—77 I MAClet
Aot €-=-======= ! Controller
repository Manager - == =1 run(i) : .
A I ! High-level logic
i 1 TR g g
DATASAP (7 1) 1 (|1)XFSMSAP
— v —~t
Registers I ! Y
[.
. : : -+ '(2) Incoming bytecode

ata Memory ngs
I | XFS'M BIOS —\ .
I I'| engine - (1) Running bytecode

Interrupts | ! verify(i) Jio)
I ! bootstrap(i)] = | Micro-Instruction Memory

Operations | ! Wireless MAC Processor
1 !
1 Y

Reception Transmission

Platform

L] -

————— ~=-=>
“Bios” state machine: DEFAULT protocol (e.g. wifi) which all terminals understand

MAClets

Memory Memory Deszcription

=> An entire MAC program can
be coded in a single frame!

= our abstractions and machine codes

Coded state machine

70100 0100 0100 04010108 0508 1CO1 0108
) 0200 ¥FFF 5101 010E 03
OF C100 0302 0602 E100 01

Outgoing transitions

allow to code DCF in about 500 bytes = 55 S T S SR

FPFF

F 5F01 010F O
00 0102 QAD2

Y

Transition 1
0401 = evemt pointar

= Other fields:

]

= type (distribution protocol and action messages) ugm
= destination IDs

State 01
= transitions ofizet (9 bits)
E = FFFF delimiter

= |nitial state
= command (load, run, switch..)
= activation event

TYPE |ID |ID |ID {CMD

MACLET

MAClet Distribution Protocol

=> Defined for allow the AP to remotely access the WMP
control interface of the associated nodes

= Binding MAClet Managers of each node to the AP MAClet Controller

—> Notification of activation/de-activation, ID assignment

= Transporting Action Messages coding WMP commands (load/run/switch)
and MAC proarams

stall AP sta02
MAClet | 802.11 association > 802.11 association .| MAClet
Manager ON == == Manager ON
announce announce
< ack h ack >
ID=001|¢ maclet_id_assignment maclet_id_assignment ID=002
ack > e ack

send(ID={002},cmd="load x",maclet="DCF")
ack

={001},cmd="load y", maclet="TDMA")
ack -

send(l

AC

Synchronization Primitives

= When to switch to a new MAC protocol?
= Mechansims available, but final solutions left to the MAClet programmers
= Triggering events and signals

= No trigger: asynchronous activation

= Control frames sent by the AP
= Expiration of relative or absolute timer

—> Absolute timers built on top of the time-synchronization function included in DCF

= 1-way or 3-way handshakes

|
send(ID={002},cmd=

"load x",maclet="DCF")

>

ack

<€

send(ID={001},cmd="load y", maclet="TDMA")
<€

ack

>

send(ID={001,002},cmd="activate {x, y},en=1",recv_bcn)

< k
ac)(ack
d(ID={001,002}%,
< send({0 }.en) >
ack)I(aCk

switch at
next ben!

Switching Operation

= From a configuration to another..
= From a program to another!

= (with latencv of about 1 microsecond)

MACIst switching

Implementation at a glance

(on commodity hardware!)

Reference platform: broadcom Airforce54g 4311/4318
= WMP:
= replace both Broadcom and openFWWF firmware with

—> Implementation of actions, events, conditions
= MAC engine: XFSM executor

= Develop “machine language” for MAC engine
—> Custom made “bytecode” specified and implemented

= WMP Control Architecture:

= At firmare level;
- WMP Control Interface

= At the application level:

- MAClet Manager: receive/transmit MAClets and other messages of the MAClet
Distribution Protocol

- MACIet Controller: Intelligent part of the system, dealing with network-level
decisions

—> Current implementation based on classical client-server model!

Application Examples

RSS! [¢Bm]

AP Virtualization with MAClets

= Two operators on same
AP/infrastructure

= A: wants TDM, fixed rate
= B: wants best effort DCF Timer expiration
=» Trivial with MAClets!
= Customers of A/B download ¢@
respective TDM/DCF MAClets!

=> Isolation via MAClet design
= Time slicing DESIGNED INTO the MAClets! (static or dynamic)

MAClet = Network Virtualization
OP . . OP.. . P : . .

Beacon reception & conversely

; 0] SRR JUPRRR: Ak N or o R UCSR DOCOPPRRURO] SRR IO I
R : R : : SN :

40 50 60 70 g0 80 100 110 120 130

Throughput Performance

3 FIXED stations @ 0.63 Mbps vs. S BEST stations @ 1Mbps

thoughput [Kbps]

Aggregate Throughput DCF vs TDM
|

- DCF

TDM
w = == DCF

DYN WIN

| | |] | L | |

30 60 90 120 150 180 210 240 270 300

time [sec)

Home Networks with MAClets

= Heterogeneous applications at home
= E.g. Video streaming and web browsing
=>» Trivial with MAClets!

= The Smart TV is not expected to implement any
specific standard amendment

= DLS protocol can be loaded when necessary R Bch P scugouLse
= The network owner can push further optimizations:

- additional channel for direct link channel, without
losing association

—> Additional channel for direct link with greedy backoff

TETT
_——

. § 5 8 B H B EEEEH

>
t

Throughput Performance

= Experiment with a periodic switching from DLS++ to DCF
= For testing multithreading and synchronization mechanisms

MAClet SetUp Compairson

60 T l | | | |
w —— DLS —— DLS-CH DLS-CH-NO-BK
.8_ ' ' ' ' '
2 40 ...
H
N —

N
g’ || e J‘(M mp N'" ’T ‘WM}
c - v‘ﬁ“"' n W'n" ¢ %”, | Tan‘abll
‘E 'wq" &(ﬂ\”‘h ,.o# f "I“"\-’ﬂj 11 r'ﬁr J”
0 | | |
0 1 2 3 4 5 6 7

time [min]

Conclusions

= New vision:

= MAC no more an all-size-fits-all protocol

= Can be made context-dependent

= Complex scenarios (e.g. virtualization) become frivial!
=> Very simple and viable model

= Byte-coded XFSM injection

= Does NOT require open source NICs!

=> Next steps

= We focused on the «act» phase; what about the decision and
cognitive plane using such new weapons?

= can we think to networks which «self-program» themselves?

—>Not too far, as it just suffices to generate and inject a state
machine...

=

Public-domain Platform

= Supported by the FLAVIA EU FP7 project

http://www.ict-flavia.eu/

—> general coordinator: iuseppe.bianchi@uniromaz2.it

- Technical coordinator: ilenia.tinnirello@tti.unipa.it

= Public domain release in alpha version

=
=

https://github.com/ict-flavia/Wireless-MAC-Processor.qgit
Developer team:
—> ilenia.tinnirello@tti.unipa.it

- domenico.garlisi@dieet.unipa.it
—> fabrizio.giuliano@dieet.unipa.it

- francesco.gringoli@ing.unibs.it

= Released distribution:

=
=
=

43

Binary image for WMP
Source code for MAClet Manager

You DO NOT need it open source!
Remember the “hard-coded” device philosophy...

—> Conveniently mounted and run on Linksis or Alix
Source code for everything else
Manual & documentation, sample programs

(@Y

———

SEVENTH FRAMEWORK
PROGRAMME

WMP Overall architecture

from protocol-specific hard-coded device to protocol executor

,1\ MAC SAP MLME SAP 4\

W ¥

LowerMAC SAP
Upper MAC A

XFSMEAP

XFSM Builder

XESMAPI

Micro-Instruction
Memory

m
Wireless Processor
A A A
m<
W N/ v

PHY SAP TX MLME.PLMESAP PHY SAPRX

MAC Engine: XFSM executor
Memory blocks: data, prog

Registers: save system state
(conditions);

Interrupts block passing HW
signals to Engine (events);

N N

Operations invoked by the
engine for driving the

hardware (actions)

The MAC engine works as a
Virtual MAC Machine

XFSM example: legacy DCF

simplified for graphical convenience

MED_DATA_CONF
WAIT_ACK 3 ™
set_tmerfACK_TIMEOUT)

END_TIMER
OR
RCV_OTHER

upaare_cw()

WAIT_DIFS_BK

CH_UP
Stop_timer()

CH_DOWN

END_TIMER
[b3cKofT = 0]
resume_backof)

Switch_RX

END_TIMER
DICKON == O]
set_backofm))

CH_UP
freeze_b{)

END_BK
[queue '= empty]

QUEUE_OUT_UP
[medium == busy)

BACKOFF

END_BK
[queue == empty]

CH_UP

END_TIMER
switch_TX()
TX_start])

IDLE
"-\.\
QUEUE_OUT_UP

[medium = busy]
set_fimenDIFS)

Stop_timer()

\

Actions:

set_timer, stop_timer,
set_backoff,
resume_backoff,
update_cw,
switch_TX, TX_ start

Events:

END TIMER,
QUEUE_OUT _UP,
CH_DOWN, CH_UP,
END_BK,

MED_ DATA_CONF

Conditions:
medium, backoff,

(" j queue
WAIT_DIFS_NO_B

