Traffic-Aware Techniques to Reduce 3G/LTE Energy Consumption

Shuo Deng, Hari Balakrishnan MIT CSAIL

Problem: 3G/LTE is a battery hog

"Up to 14 hours on 2G" => "Up to 6.5 hours on 3G"

Goal: Reduce Energy Consumption

Context: Radio Resource Control

Power Consumption

Fast Dormancy

Challenges

- Switching between states takes time(1~3 seconds), and consumes energy
- Signaling overhead

Contributions

- A traffic-aware design to control radio state transitions to reduce energy consumption
 - MakeIdle: when to switch to Idle
 - MakeActive: when to switch to Active

- Experimental evaluation on real usage data
 - Energy reduction up to 75% across different carriers

System Design

If *IAT* > *threshold*, should switch to Idle mode.

MakeIdle Algorithm

- Predict whether the IAT will be greater than threshold
- Wait for a short period of time t_{wait} , if no packet comes, then put the radio to Idle mode
- Why: the longer the network is idle, the longer it is likely to remain idle

Makeldle: Picking t_{wait}

P(IAT>t+threshold | IAT>t)

$$E(Energy_{state_switch} - Energy_{no_state_switch})_{12}$$

MakeActive
Active Idle

MakeActive Algorithm

 Reduce the number of state switches by introducing a small delay when the radio is in Idle mode and data transmission requests come from the mobile device side

- How much delay for each request?
 - Fixed delay bound
 - Learning algorithm

Evaluation Setup

- Energy profiling
 - Power consumption profiles for 4 US major carriers: AT&T, Verizon, T-Mobile, Sprint
- Trace driven simulation
 - Tcpdump traces for real usage data, collected from 9 users, 28 days in total

Evaluation: MakeIdle

Evaluation: MakeIdle

Active Idle MakeIdle

Evaluation: Different Carriers

Related Work

- Inactivity timer reconfiguration
 - Statistical method [Falaki et al, 2010]: 95 percentile packet inter arrival time
- Applications-Involved Design
 - *TailEnder* [Balasubramanian et al, 2009]: each application specifies its delay tolerance
 - *TOP* [Qian et al, 2010]: application predict the gap between its own traffic transmissions
 - *TailTheft* [Liu et al, 2011]: application specifies delay tolerance and predicts transmission duration

Conclusion

- A traffic-aware design to control state transitions of 3G/LTE radio to reduce energy consumption on mobile devices
- Require no modifications of the applications

Save 3G/LTE energy consumption by up to 75% across

different carriers

