Architecting for Edge Diversity: Supporting Rich Services over an Unbundled Transport

Fahad R. Dogar, MSR Peter Steenkiste, CMU

Outline

- What's wrong with today's transport?
- How we propose to fix it?
 - → Overview of Tapa
- Three new transport services
 - → Three diverse case studies

Tapa - Architecture

Synthesizes these concepts in a new transport architecture

Session-> specific application semantics (e.g., reliability, integrity)

Xfer Layer -> E2E Data Delivery

Segment Layer -> best effort data delivery across a segment

Tapa – Identifiers and Addresses

- Hosts
 - Self-Certified Identifiers (similar to AIP, XIA, etc)
 - Also have separate "locators" that define network attachment point – changes over time
 - Use existing mechanisms for routing
- Data
 - Tapa layers work at the granularity of ADUs
 - Segment layer transfers segments across segment
 - ADUs are identified using their hash value
 - · Facilitates use of data oriented optimizations

Tapa -- Services

- TAPs can support various services
 - E.g., Caching, Traffic Shaping, Transcoding, etc
 - Implemented at the transfer layer
 - May change session or high layer semantics
- Case Studies
 - Catnap Traffic Shaping to Improve Energy Efficiency
 - Vigilante Content Distribution for OSNs
 - Swift Mobile and Wireless Optimizations

Bandwidth Discrepancy in End-to-end Transfers

- Catnap combines short idle times to save energy
- TAP buffers incoming packets while client sleeps
- Scheduler schedules burst transfer to maximize energy savings while avoiding increase in e-e delay
 - Estimates bandwidth in wired and wireless segments

4

Vigilante

- Content Distribution for OSNs
 - Today's client-server design requires high cost; performance is still often poor
- Idea: Use TAPs of social networking users as opportunistic caches
 - Downloading from nearby friends can reduce latency
 - Reduces burden on the server

Tapa and the eXpressive Internet Architecture

- XIA offers native support for communication with content and services, besides hosts
- Tapa transport architecture carries over naturally
- Tapa content support can be pushed "into the network"
 - XIA does caching of chunks
 (ADUs) based on content IDs
- Applications can use service
 IDs for edge services

21

Related Work

- Lots of work on middleboxes
 - Mostly focus on hidden middleboxes
 - Flow versus network layer visible middleboxes
- Unbundling of the transport for middleboxes
 - Tapa more general and operates at ADU level
- Overlays: Tapa has constrained but dynamic topology, network diversity, ...
- DTN: Tapa has more constrained topologies, but supports push/pull and service insertion
- Shares features with some future internet proposals

Why should I read the paper?

- Prototype Implementation and Evaluation
- How we ported a legacy application (Firefox)?
- Use of various segment protocols
 - Porting existing ones (e.g., HOP)
 - new protocols (UDP-Blast, a Lightweight UDP based protocol for WiFi)

Summary

- Increasing diversity calls for rethinking today's transport architecture
 - Really about rethinking how to modularize
- Tapa synthesizes two concepts:
 Unbundling and visible services
- Three diverse case studies demonstrate the flexibility and performance of Tapa