Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design

A. García-Saavedra1, P. Serrano1, A. Banchs1,2, G. Bianchi3

1: Universidad Carlos III de Madrid
2: Institute IMDEA Networks
3: CNIT / Università Tor Vergata
What we wanted

- To design an energy efficient comm. protocols we need to understand the power consumption
- Previous experimental work
 - Per-packet analysis of the wireless interface

Rantala et al. “Modeling energy efficiency in wireless internet communication”, ACM Mobiheld, 2009

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
What we wanted

- To design an energy efficient comm. protocols we need to understand the power consumption

- Previous experimental work
 - Per-packet analysis of the wireless interface
 - Per-state measurements of the device

A.Rice, S. Hay “Measuring mobile phone energy consumption for 802.11 wireless networking”, PMC. 2010

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
What we found

- Non-card can dominate the consumption
- Questions previous schemes
 - E.g. relaying in multihop
- Enables new designs
 - E.g. packet batching

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
Energy Consumption Anatomy

- **Hardware used**

<table>
<thead>
<tr>
<th>Device</th>
<th>WiFi chipset</th>
<th>CPU</th>
<th>Memory</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soekris net4826-48</td>
<td>Atheros AR5414 (11a/b/g)</td>
<td>233 MHz AMD SC1100</td>
<td>128 MB SDRAM</td>
<td>Gentoo 10.0 Kernel 2.6.24 / OpenBSD 5.1</td>
</tr>
<tr>
<td>Alix 2d2</td>
<td>Broadcom BCM4319 (11b/g)</td>
<td>500 MHz AMD LX800</td>
<td>256 MB SDRAM</td>
<td>Ubuntu 10.04 Kernel 2.6.29</td>
</tr>
<tr>
<td>Linksys WRT54GL</td>
<td>Broadcom BM4320 (11b/g)</td>
<td>200 MHz BCM5352</td>
<td>16 MB RAM</td>
<td>OpenWrt Backfire Kernel 2.6.32</td>
</tr>
</tbody>
</table>

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
Methodology

- With one device
 - Results are not very precise (e.g. ~6%)
 - We added more devices (~2%)

<table>
<thead>
<tr>
<th>Config.</th>
<th>Description</th>
<th>Cons. (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o card</td>
<td>no NIC connected</td>
<td>2.29 ± 2.2%</td>
</tr>
<tr>
<td>WiFi off</td>
<td>NIC connected driver not loaded</td>
<td>2.58 ± 2.0% (+0.29)</td>
</tr>
<tr>
<td>Idle (ρ_{id})</td>
<td>NIC activated+associated to AP no RX/TX besides beacons</td>
<td>3.56 ± 1.7% (+0.98)</td>
</tr>
</tbody>
</table>

Baseline power consumption

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
Power consumption: Transmission

- Varying frame length -> Airtime = $T_{plcp} + (H+L)/R$

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
Power consumption: Transmission

\[P = P_{\text{base}} + P(\text{fps}) + P_{\text{tx}}(\text{MCS}, \text{power}) \times \text{Airtime} \]

- 24Mbps, 1200fps, 15dBm
- UDP, no ACKs, no retx.
- 24Mbps, 400fps, 15dBm
- 6Mbps, 400fps, 15dBm
- 6Mbps, 400fps, 5dBm

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
Per-Packet “energy toll”

Soekris: 0.93 mJ/frame (Linux), 1.27 mJ/frame (OpenBSD)
Linksys: 0.46 mJ/frame
Alix: 0.11 mJ/frame

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
Energy Consumption Anatomy

“Cross-Factor”
- User space
 - mgen
- Kernel space
 - TCP/IP
 - Driver
- Transmission
 - Wireless NIC
 - ASIC
 - PA

- (a) App.: disc. before the OS
- (b) TCP/IP: disc. before driver
- (c) Driver: disc. after driver
- Total

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
Anatomy Results

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
The Cross Factor

- Energy toll to handle a frame
 - Independent of frame size
 - Total power > base power + card power

- Energy split:

<table>
<thead>
<tr>
<th></th>
<th>App</th>
<th>TCP/IP</th>
<th>Driver</th>
<th>NIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>24%</td>
<td>33%</td>
<td>21%</td>
<td>22%</td>
<td></td>
</tr>
</tbody>
</table>

- **Very far from negligible (vs. Tx Power)**
 - Previous slide: 37% ~ 97% energy/frame
Retransmissions (and control frames)

- E.g. 2 retries, but only 1 cross factor

Diagram:
- User space: mgen
- Kernel space: TCP/IP → Driver
- Wireless NIC: ASIC → PA

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
Retransmissions

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
Model for the power consumption

- Similar results for reception.
- Model: \(P = \rho_{id} \) Baseline
 + \(\rho_{tx}(\tau_{tx}) \) TX airtime
 + \(\rho_{rx}(\tau_{rx}) \) RX airtime
 + \(\gamma_{gx} \lambda_{g} + \gamma_{xr} \lambda_{r} \) Packet processing

- Parametrization for the Soekris, Linksys, Alix

<table>
<thead>
<tr>
<th>MCS</th>
<th>6 Mbps</th>
<th>12 Mbps</th>
<th>24 Mbps</th>
<th>48 Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_{rx} (W))</td>
<td>0.24 ± 4.2%</td>
<td>0.27 ± 3.7%</td>
<td>0.31 ± 6.4%</td>
<td>0.44 ± 6.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MCS</th>
<th>6 Mbps</th>
<th>12 Mbps</th>
<th>24 Mbps</th>
<th>48 Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_{tx} (W))</td>
<td>0.19 ± 5.3%</td>
<td>0.29 ± 3.4%</td>
<td>0.53 ± 2.3%</td>
<td>0.74 ± 4.4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MCS</th>
<th>6 Mbps</th>
<th>12 Mbps</th>
<th>24 Mbps</th>
<th>48 Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_{tx} (W))</td>
<td>0.16 ± 8%</td>
<td>0.27 ± 5.6%</td>
<td>0.6 ± 11%</td>
<td>1.14 ± 3.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MCS</th>
<th>6 dBm</th>
<th>9 dBm</th>
<th>12 dBm</th>
<th>15 dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_{tx} (W))</td>
<td>0.52 ± 3.1%</td>
<td>0.57 ± 2.1%</td>
<td>0.70 ± 1.7%</td>
<td>0.86 ± 2.2%</td>
</tr>
</tbody>
</table>

\(\rho_{id} (W) \) 3.56 ± 1.7% \(\gamma_{gx} \) (mJ) 0.93 ± 1.2% \(\gamma_{xr} \) (mJ) 0.93 ± 2.2%

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
Validation of the model

- General scenarios

![Graph showing energy consumption versus rate for different scenarios. The graph includes lines and markers for different data points.](image)

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
Ok, but...

• Does it matter?

• What are the implications?

1. Revisit old proposals based on the classical model

2. Design of new schemes building on the detailed anatomy

Cross factor:
37% ~ 97% △ energy / frame
Old: Packet relays

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
Old: Packet relays

![Diagram showing packet relays between AP, STA 1, and STA 2 with power consumption graph.]

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
New: Packet batching

- Group n packets before they transverse the protocol stack
 - Fixed energy cost per bundle
 - Same information over the medium
New: Packet batching

- Substantial savings (~80%)
- No savings according to the classical model

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design
Other implications

- Data compression in multihop
 - Old model: savings
 - New model: not

- Directed Multicast
 - Where to generate frames

- Use of raw sockets
 - E.g., skipping TCP/IP: 0.2 mJ/frame
Summary

• Per-packet analysis of the energy consumption of a wireless device
 – Parametrized for various devices

• Characterization of the cross factor

• Two-fold impact
 – Revisit previous schemes
 – Enable new designs
Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design

Thanks!