Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design

A. García-Saavedra¹, **P. Serrano**¹, A. Banchs^{1,2}, G. Bianchi³

1: Universidad Carlos III de Madrid
 2: Institute IMDEA Networks
 3: CNIT / Università Tor Vergata

What we wanted

- To design an energy efficient comm. protocols we need to understand the power consumption
- Previous experimental work
 - Per-packet analysis of the wireless interface

Rantala et al. "Modeling energy efficiency in wireless internet communication", ACM Mobiheld, 2009

What we wanted

- To design an energy efficient comm. protocols we need to understand the power consumption
- Previous experimental work
 - Per-packet analysis of the wireless interface
 - Per-state measurements of the device

What we found

- Non-card can dominate the consumption
- Questions previous schemes
 - E.g. relaying in multihop
- Enables new designs
 - E.g. packet batching

Energy Consumption Anatomy

Hardware used

Protek 3033B

PCE PA-6000

Device running controlled experiments

Device	WiFi chipset	CPU	Memory	Software
Soekris net4826-48	Atheros AR5414 (11a/b/g)	233 MHz AMD SC1100	128 MB SDRAM	Gentoo 10.0 Kernel 2.6.24 / OpenBSD 5.1
Alix 2d2	Broadcom	500 MHz	256 MB	Ubuntu 10.04
	BCM4319 (11b/g)	AMD LX800	SDRAM	Kernel 2.6.29
Linksys	Broadcom	200 MHz	16 MB RAM	OpenWrt Backfire
WRT54GL	BM4320 (11b/g)	BCM5352		Kernel 2.6.32

Methodology

- With one device
 - Results are not very precise (e.g. ~6%)

We added more devices (~2%)

		Config.	Description	Cons. (W)
Baseline		w/o card	no NIC connected	$2.29\pm2.2\%$
power		WiFi off	NIC connected driver not loaded	$2.58 \pm 2.0\% \ (+0.29)$
consumption		$\mathbf{Idle}\;(\rho_{id})$	NIC activated+associated to AP no RX/TX besides beacons	$3.56 \pm 1.7\% \ (+0.98)$

Power consumption: Transmission

Power consumption: Transmission

Per-Packet "energy toll"

Soekris: 0.93 mJ/frame (Linux), 1.27 mJ/frame (OpenBSD)Linksys: 0.46 mJ/frameAlix: 0.11 mJ/frame

Energy Consumption Anatomy

Anatomy Results

The Cross Factor

- Energy toll to handle a frame
 - Independent of frame size
 - Total power > base power + card power
- Energy split:

Арр	TCP/IP	Driver	NIC
24%	33%	21%	22%

<u>Very far</u> from negligible (vs. Tx Power)
 – Previous slide: 37% ~ 97% energy/frame

Retransmissions (and control frames)

• E.g. 2 retries, but only 1 cross factor

Retransmissions

Model for the power consumption

- Similar results for reception.
- Model: $\mathbf{P} = \rho_{id}$ Baseline + $\rho_{tx}(\tau_{tx})$ TX airtime + $\rho_{rx}(\tau_{rx})$ RX airtime + $\gamma_{xg}\lambda_g + \gamma_{xr}\lambda_r$ Packet processing
- Parametrization for the Soekris, Linksys, Alix

MCS		6 Mb	ps 12 Mb	ops 24 M	lbps 48 M	lbps	
ρ_{rx} (W)		0.24 ± 4.2	$\% \mid 0.27 \pm 3.2$	7% 0.31 \pm 6	$.4\% \mid 0.44 \pm 6$.8%	
	MCS 6 Mbps 12 Mbps 24 Mbps 48 Mbps						e]
$ ho_{tx}$ (W)	ρ_{rx} (W)		$0.19 \pm 5.3\%$			-	
						-	
ρ_{id} (W)	$ ho_{tx}$ (W)	MCS		6 Mbps	12 Mbps	24 Mbps	48 Mbps
		ρ_{rx} (W)		$0.16\pm8\%$	$0.27\pm5.6\%$	$0.6\pm11\%$	$1.14\pm3.5\%$
			6 dBm	$0.52\pm3.1\%$	$0.55\pm4.6\%$	$0.81\pm5.3\%$	$1.2\pm1.6\%$
	ρ_{id} (W)	ρ_{tx} (W)	9 dBm	$0.57\pm2.1\%$	$0.59 \pm 1.8\%$	$0.88\pm2.3\%$	$1.24\pm2.7\%$
			12 dBm	$0.70\pm1.7\%$	$0.73\pm2.2\%$	$1.02\pm2.8\%$	$1.37 \pm 3.1\%$
			15 dBm	$0.86\pm2.2\%$	$0.89\pm2.3\%$	$1.17\pm2.5\%$	$1.58\pm3.3\%$
		ρ_{id} (W)	$3.56 \pm 1.7\%$	$\gamma_{xg}~({ m mJ})$	$0.93 \pm 1.2\%$	$\gamma_{xr}~({ m mJ})$	$0.93 \pm 2.2\%$

Validation of the model

Ok, but...

- Does it matter?
- What are the implications?

Cross factor: $37\% \sim 97\% \triangle$ energy / frame

- 1. Revisit old proposals based on the classical model
- 2. Design of new schemes building on the detailed anatomy

Old: Packet relays

Old: Packet relays

New: Packet batching

- Group n packets before they transverse the protocol stack
 - Fixed energy cost per bundle
 - Same information over the medium

New: Packet batching

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design

Other implications

- Data compression in multihop

 Old model: savings
 New model: not
- Directed Multicast
 - Where to generate frames
- Use of *raw* sockets

 E.g., *skipping* TCP/IP: 0.2 mJ/frame

Summary

- Per-packet analysis of the energy consumption of a wireless device
 Parametrized for various devices
- Characterization of the cross factor
- Two-fold impact
 - Revisit previous schemes
 - Enable new designs

Energy Consumption Anatomy of 802.11 Devices and its Implication on Modeling and Design

Thanks!

