

Towards TCAM-based

Scalable Virtual Routers

Layong Luo, Gaogang Xie (ICT, CAS)
Steve Uhlig (QMUL)

Laurent Mathy (U. of Liège/Lancaster U)
Kavé Salamatian (U. of Savoie)

Yingke Xie (ICT, CAS)

 Virtual routers (VRs)
key building blocks for enabling network virtualization
VPN, network testbeds …

Memory scalability issue
The number of FIBs, and the size of each FIB, are expected to

increase continuously
FIBs are preferably stored in high-speed memory (SRAMs or

TCAMs) with limited size

Motivation

2

How to support as many FIBs as possible in the
limited high-speed memory?

 SRAM-based scalable virtual routers
Trie overlap, CoNEXT 2008
Trie braiding, INFOCOM 2010
Multiroot, ICC 2011
…

 None of previous work has exploited the possibility of

using TCAMs to build scalable virtual routers

Related work

3

 Traditional TCAM-based IP lookup engine

 Non-shared approach for TCAM-based virtual routers

Background

4

prefix next hop

1*
0*

A2
A1

FIB 0

00* A3
100* A4
101* A5
111* A6

prefix next hop

1*
0*

B2
B1

FIB 1

100* B4
101* B5
111* B6

(a) (b)

11* B3

prefix next hop
0100*
0101*
0111*

A4
A5

01*
1100*

A1
A2
B4

A6
A3

TCAM SRAM

000*
00*

1101* B5
1111* B6
111* B3
10* B1
11* B2 1

i
i

n
SS

=
∑=

Poor scalability:

VID 0 VID 1

one lookup per clock cycle
in any case!

000 A3 3

TCAM SRAM

Merged data structure

5

prefix next hop

1*
0*

A2
A1

FIB 0

00* A3
100* A4
101* A5
111* A6

prefix next hop

1*
0*

B2
B1

FIB 1

100* B4
101* B5
111* B6

(a) (b)

11* B3

prefix next hop

1*
0*

A2
A1

00* A3

100* A4
101* A5
111* A6

B4
B5
B6
0

B1
B2

TCAM SRAM

11* 0 B3

An example:

(c)

The merged FIB

Merge

 Total 12 TCAM entries vs. Only 7 TCAM entries

 Example 1: IP 100, VID 0 (correct lookup)
 Example 2: IP 000, VID 1 (incorrect lookup)

 Prefix masking issue
 Incorrect matching, resulting from the masking of a shorter

prefix (e.g., <0*, B1>) in an original FIB, by a longer prefix (e.g.,
<00*, 0>) in the merged FIB, must be avoided

Lookup issue

6

prefix next hop

1*
0*

A2
A1

FIB 0

00* A3
100* A4
101* A5
111* A6

prefix next hop

1*
0*

B2
B1

FIB 1

100* B4
101* B5
111* B6

(a) (b)

11* B3

prefix next hop

1*
0*

A2
A1

00* A3

100* A4
101* A5
111* A6

B4
B5
B6
0

B1
B2

TCAM SRAM

11* 0 B3
NH is 0 ???

NH is A4

???

VID 0 VID 1

 Two TCAM FIB merging approaches
 FIB Completion
 FIB Splitting

Solutions

7

 Basic idea
Whenever a prefix from the merged FIB doesn’t appear in a

given individual FIB, we simply associate it with a valid NH in this
FIB according to the LPM rule

FIB completion

8

Fig. 1. (a) The basic merged FIB, and (b) its completed version

Fill in the “0” holes
with valid NHs

 Auxiliary tries in software help the completion process

Completion process

9

Fig. 1. two tries built from the two
sample FIBs

Fig. 2. (a) a merged trie using trie
overlap[1] , and (b) its completed version

[1] J. Fu and J. Rexford, Efficient IP-address lookup with a shared forwarding table for multiple
virtual routers, CoNEXT 2008

 Three steps
Update the auxiliary merged trie [in software]
Perform masking prefix correction [in software]
Modify the prefixes and NHs in the lookup engine [in hardware]
 An example: modify <1*, A2> with <1*, A7>

Update process

10

A7

A7 A7

The main drawback:
High update overhead

in the worst case!

 Naturally disjoint leaf prefixes, which are about 90% of
the total prefixes, are merged in one TCAM
 The remaining small overlapping prefix set is stored in

another TCAM using the non-shared approach

FIB splitting

11

(a)

prefix next hop

111* A6

00* A3
100* A4
101* A5

0
B4
B5
B6

prefix next hop

01*
00*

A2
A1

11* B2

111* B3
10* B1

(b)

Fig. 2 (a) The merged disjoint prefix set, and
(b) the non-shared overlapping prefix set Fig. 1. A merged trie

Prefix masking issue cannot
exist in a disjoint prefix set

Layong Luo, Gaogang Xie, Yingke Xie, Laurent Mathy and Kave Salamatian, A hybrid IP lookup
architecture with fast updates, INFOCOM 2012

Lookup engine in FIB splitting

12

For a lookup
(1)If a valid NH is got

from path 1, it is the
correct LPM result.
(e.g., IP 000, VID 0)

(2)If a valid NH is not
got from path 1, the
LPM result must be
found in path 2.
(e.g., IP 000, VID 1)

LPM result!

LPM result!

 Three steps
Update the auxiliary merged trie [in software]
Find changes in both prefix sets [in software]
Modify the prefixes and NHs in both lookup paths [in hardware]

When compared to FIB completion
Prefix masking correction is totally avoided in FIB splitting

Update process

13

A more reasonable worst-case update overhead
in FIB splitting!

 Routing tables and update traces
14 full routing tables from core routers [RIPE RIS Project]
12 hours’ update traces on these tables

 Comparison of the non-shared approach, FIB

completion, and FIB splitting
TCAM size
SRAM size
Total cost of the system
Lookup and update performance

Performance evaluation

14

Metric: the number of TCAM entries

TCAM size

15

For 14 IPv4 FIBs (each ~ 370 K – 400K entries):
Non-shared: 5 M TCAM entries
FIB completion: 429 K TCAM entries (reduce by 92%)
FIB splitting: 928 K TCAM entries (reduce by 82%)

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

2 3 4 5 6 7 8 9 10 11 12 13 14

N
um

be
r o

f T
C

AM
 e

nt
rie

s

Number of IPv4 virtual routers (i.e., IPv4 FIBs)

Non-shared
FIB completion
FIB splitting

SRAM size

16

For 14 IPv4 FIBs:
Non-shared: 40.7 Mb
FIB completion: 46.9 Mb (increase by 15%)
FIB splitting: 46.6 Mb (increase by 14%)

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

2 3 4 5 6 7 8 9 10 11 12 13 14

N
um

be
r o

f n
ex

t-h
op

 p
oi

nt
er

s

Number of IPv4 virtual routers (i.e., IPv4 FIBs)

Non-shared

FIB completion

FIB splitting

Metric: the number of next hop pointers

Total cost of the system

17

 A cost-effective tradeoff
Memory reduction of over 80% in expensive TCAMs
Memory Increase of roughly 15% in cheaper SRAMs

reduce by 89%
reduce by 69%

Lookup & update performance

18

W: the length of the IP address
N: the number of virtual routers

Metric
Lookup performance: the number of clock cycles per lookup
Update overhead: the number of write accesses per update

 Theoretical analysis

 Actual update overhead
12 hours’ update traces from RIPE RIS Project

Lookup & update performance

19

Most updates cost only 1 write access per update, and
large-overhead updates rarely happen in practice

Main contributions
The first work to exploit the possibility of using TCAMs to build

scalable virtual routers
Merged data structure and prefix masking issue
Two approaches with different tradeoffs
 FIB completion: best scalability but high worst-case update overhead

 FIB splitting: good scalability with a more reasonable upper bound on the
worst-case update overhead

 Future work
 Implementation on PEARL 2.0 platform [IEEE Commun. Mag.

2011]
Dissimilar FIBs

Conclusions

20

 Thank you!

Acknowledgment

pFlower Project Granted by NSFC-ANR
SOFIA (Future Internet Architecture) Project Granted by MOST

More information: http://fi.ict.ac.cn

luolayong@ict.ac.cn

http://fi.ict.ac.cn/
http://fi.ict.ac.cn/

	�Towards TCAM-based �Scalable Virtual Routers
	Motivation
	Related work
	Background
	Merged data structure
	Lookup issue
	Solutions
	FIB completion
	Completion process
	Update process
	FIB splitting
	Lookup engine in FIB splitting
	Update process
	Performance evaluation
	TCAM size
	SRAM size
	Total cost of the system
	Lookup & update performance
	Lookup & update performance
	Conclusions
	 Thank you!��

