

Weeble: Enabling Low-Power Nodes to Coexist with High-Power Nodes in White Space Networks

Božidar Radunović, Ranveer Chandra, and Dinan Gunawardena Microsoft Research

- 1. Introduction
- 2. Weeble MAC
- 3. Weeble PHY
- 4. Evaluation
- 5. Summary

White-spaces

- TV White spaces (TVWS)
 - Analogue TV frequencies free after digital swover
 - Good propagation characteristics
- Parts offered for unlicensed use
 - FCC (US), Ofcom (UK), Canada, more to follow
 - Application
 - Cheap/free access (cellular offload, home)
 - Long-distance (rural, M2M)
- Standards: 802.22 (centr.), 802.11af (CSMA)

Coexistence in 802.11af (CSMA)

- Two types of transmitters
 - 4W fixed base-stations (HP)
 - 100mW mobile terminals (LP)

- Carrier sense does not work
- How to prevent starvation?

Throughput measured in our indoor white-space test-bed

Frequency Division?

- Centralized algorithm for frequency assignments:
 - Global and dynamic
 - Account for varying population and mobility
 - Static can be very inefficient
 - Now flow-level multiplexing
- Unlicensed networks:
 - No global coordinator to mandate assignments?

Weeble

- Distributed MAC protocol for coexistence
- Goals:
 - 1. Avoid starvations
 - 2. Avoid performance degradations of long links
 - 3. Increase total throughput
- Overview:
 - PHY: adaptive preamble detection at low SNR
 - MAC: Recover CSMA using PHY detector

- 1. Introduction
- 2. Weeble MAC
- 3. Weeble PHY
- 4. Evaluation
- 5. Summary

Weeble MAC Overview

Algorithm to adapt preamble length

- What preamble length to choose?
 - Too short: collisions
 - Too long: low spatial reuse
- Observation:
 - Consecutive losses at LP likely only when a hidden
 HP transmits concurrently
- Idea:
 - AIMD Adaptive algorithm based on the number of consecutive losses

- 1. Introduction
- 2. Weeble MAC
- 3. Weeble PHY
- 4. Evaluation
- 5. Summary

Weeble PHY Overview

- Detection requirements: ~-16dB
 - -4W / 100mW = 16dB
- Probability of detection = O(sqrt(preamb. size))
 - Meet requirements by increasing preamble size
- Problems:
 - Detection wall (due to internal noise)
 - Long preambles large overhead/complexity
 - Long preambles low spatial reuse adaptation
 - False positives from ordinary HP transmissions

Repetitive preambles

Only detection, no time synchronization

- K #repetition of mini preamble Q (K arbitrary)
- Low complexity

Adaptive Preamble Length

- Correlator does not need to know K apriori
 - 4 parallel detector for K = $\{2, 6, 10, 14\}$
 - Signal detected if any of 4 output detects
- Example: K = 6

- 1. Introduction
- 2. Weeble MAC
- 3. Weeble PHY
- 4. Evaluation
- 5. Summary

Evaluation

- Implemented on Lyrtech SDR
 - MAC in DSP, PHY in FPGA
- Large-scale simulation in Qualnet
- Test-bed:
 - Across 3 floors
 - 2 HP nodes
 - 2 LP nodes (different locations)

PHY Measurements

- Measure probability of misdetection of packet batch at different locations
- Plot CDF across locations

Weeble in Action

Fairness vs. Efficiency

Starved flow = TCP flow with rate ≤ 100 kbps

- 1. Introduction
- 2. Weeble MAC
- 3. Weeble PHY
- 4. Evaluation
- 5. Summary

Weeble Summary

- We consider coexistence problem in 802.11af
- Weeble PHY:
 - Little extra logic/silicon
 - Use adaptive preambles to avoid starvation while maximizing spatial reuse and minimizing overhead
 - Use L and H preamble to avoid false positives
- Weeble MAC:
 - Distributed, contention based MAC
 - Algorithm for adapting preamble lengths

THANK YOU!