PAST

Scalable Ethernet for Data Centers

Brent Stephens † , Alan Cox † , Wes Felter ‡ , Colin Dixon ‡ , and John Carter ‡

†Rice University ‡IBM Research

December 11th, 2012

PAST ...

• ... is a large flat L2 network for using arbitrary topologies

• . . . is implementable on existing Ethernet switch hardware and unmodified host network stacks

• ... meets or exceeds the performance of the state of the art

Data Center Network Requirements

- Host mobility
- Effective use of bandwidth
- Autonomous
- Scalability

Additional Design Requirements

 No hardware changes

Respects Layering

Topology Independent

PAST

- Per-Address Spanning Tree routing algorithm
- Unmodified Ethernet switches and hosts
 - ► Implementable today
 - Exploit existing features
- Arbitrary topologies
 - ▶ 10's of thousands of hosts
- Performance comparable to or greater than ECMP

PAST Algorithm

- Goal: Route using the Ethernet table (DMAC, VLAN)
- Constraint 1: Full pair-wise connectivity per-VLAN
- Constraint 2: Ethernet table forces a tree
- Solution: Build a spanning tree rooted at each address
- Load Balances at the address ((v-)host) granularity

PAST Algorithm

- Goal: Route using the Ethernet table (DMAC, VLAN)
- Constraint 1: Full pair-wise connectivity per-VLAN
- Constraint 2: Ethernet table forces a tree
- Solution: Build a spanning tree rooted at each address
- Load Balances at the address ((v-)host) granularity

PAST Algorithm

- Goal: Route using the Ethernet table (DMAC, VLAN)
- Constraint 1: Full pair-wise connectivity per-VLAN
- Constraint 2: Ethernet table forces a tree
- Solution: Build a spanning tree rooted at each address
- Load Balances at the address ((v-)host) granularity

- Goal: Use efficient paths
- Solution: Use a BFS tree for minimal paths
- Goal: Load-balance over all links
- Solution: Tree selection
 - ► Random
 - Weight links by load

- Goal: Use efficient paths
- Solution: Use a BFS tree for minimal paths
- Goal: Load-balance over all links
- Solution: Tree selection
 - ► Random
 - Weight links by load

- Goal: Use efficient paths
- Solution: Use a BFS tree for minimal paths
- Goal: Load-balance over all links
- Solution: Tree selection
 - ► Random
 - Weight links by load

- Goal: Use efficient paths
- Solution: Use a BFS tree for minimal paths
- Goal: Load-balance over all links
- Solution: Tree selection
 - ► Random
 - Weight links by load

- Goal: Use efficient paths
- Solution: Use a BFS tree for minimal paths
- Goal: Load-balance over all links
- Solution: Tree selection
 - ► Random
 - Weight links by load

- Goal: Use efficient paths
- Solution: Use a BFS tree for minimal paths
- Goal: Load-balance over all links
- Solution: Tree selection
 - ► Random
 - Weight links by load

- Goal: Use efficient paths
- Solution: Use a BFS tree for minimal paths
- Goal: Load-balance over all links
- Solution: Tree selection
 - ► Random
 - Weight links by load

- Goal: Use efficient paths
- Solution: Use a BFS tree for minimal paths
- Goal: Load-balance over all links
- Solution: Tree selection
 - ► Random
 - Weight links by load

- Goal: Use efficient paths
- Solution: Use a BFS tree for minimal paths
- Goal: Load-balance over all links
- Solution: Tree selection
 - ► Random
 - Weight links by load

Valiant Load Balancing

Non-Minimal Tree Construction

NM-PAST

- Root the tree for host h at a random intermediate switch i
- Inspired by Valiant Load Balancing

Non-Minimal Tree Construction

NM-PAST

- Root the tree for host h at a random intermediate switch i
- Inspired by Valiant Load Balancing

Non-Minimal Tree Construction

NM-PAST

- Root the tree for host h at a random intermediate switch i
- Inspired by Valiant Load Balancing

PAST Discussion

Broadcast/Multicast

Unaffected. May be provided through STP or SDN

Security

Use VLANs as normal

Virtualization

Use any higher layer virtualization overlay (NetLord, SecondNet, MOOSE, VXLAN)

PAST Implementation

IBM RackSwitch G8264

Implementation Scalability

Eliminate Broadcasts

Improve scalability by using controller for address detection and resolution (ARP, DHCP, IPv6 ND, and RS)

Route Computation

8,000 hosts $\Rightarrow 40\mu s - 1ms$ per tree (300ms per network) Trivially Parallelizable

Route Installation

Install and forward to 100K addresses 2-12ms rule install latency \Rightarrow masked by migration latency

Failure Recovery

Should patch affected portions of trees

Simulator

- Simulate to evaluate performance at scale
 - ► Flow based simulator assumes max-min fairness
- Workloads

$URand-8$ $i \in 18$ $Dst^i = rand()\%N,$ $Benign$	$Stride-64$ $Dst_n = (n + 64)\%N$, $Adversarial$	Shuffle-10 128MB to all hosts, Random order, 10 active	MSR Synthetically generated from 1500-server cluster,
Benign		10 active	cluster,
		connections,	Light load

More stressful than URand

Topologies

Compare equal bisection-bandwidth (oversubscription ratio) networks

Jellyfish (Random Regular Graph)

 Demonstrate PAST performance equal to or greater than other routing algorithms

Demonstrate PAST performs well under adversarial workloads

- Demonstrate PAST performance equal to or greater than other routing algorithms
 - ▶ URand-8 on a 1:2 Bisection Bandwidth HyperX
 - ► Shuffle-10 on a 1:2 Bisection Bandwidth HyperX

Demonstrate PAST performs well under adversarial workloads

URand-8 on a 1:2 Bisection Bandwidth HyperX

PAST matches ECMP

Shuffle-10 on a 1:2 Bisection Bandwidth HyperX

EthAir scales poorly

- Demonstrate PAST performance equal to or greater than other routing algorithms
 - ► PAST matches ECMP
 - ► EthAir scales poorly

Demonstrate PAST performs well under adversarial workloads

- Demonstrate PAST performance equal to or greater than other routing algorithms
- Demonstrate PAST performs well under adversarial workloads
 - ► Stride-64 on a 1:1 Bisection Bandwidth HyperX
 - ► Shuffle-10 on a 1:2 Bisection Bandwidth HyperX

Stride-64 on a 1:1 Bisection Bandwidth HyperX

NM-PAST can double performance . . .

Stride-64 on a 1:1 Bisection Bandwidth HyperX

...and NM-PAST matches VAL ...

Stride-64 on a 1:1 Bisection Bandwidth HyperX

...although collisions can hurt performance

Shuffle-10 on a 1:2 Bisection Bandwidth HyperX

VAL halves performance under uniform workloads

- Demonstrate PAST performance equal to or greater than other routing algorithms
- Demonstrate PAST performs well under adversarial workloads
 - ► NM-PAST can double performance
 - NM-PAST matches VAL
 - ► NM-PAST and VAL halve performance under uniform workloads
- Demonstrate that PAST can effectively use a variety of topologies

- Demonstrate PAST performance equal to or greater than other routing algorithms
- Demonstrate PAST performs well under adversarial workloads
- Demonstrate that PAST can effectively use a variety of topologies
 - ▶ URand-8 on 1:2 Bisection Bandwidth networks
 - ► Stride-64 on 1:2 Bisection Bandwidth networks

URand-8 on 1:2 Bisection Bandwidth Networks

PAST on HyperX and Jellyfish outperforms EGFT

Stride-64 on 1:2 Bisection Bandwidth Networks

NM-PAST on a HyperX matches PAST on an EGFT

- Demonstrate PAST performance equal to or greater than other routing algorithms
- Demonstrate PAST performs well under adversarial workloads
- Demonstrate that PAST can effectively use a variety of topologies
 - PAST on HyperX and Jellyfish outperforms EGFT
 - ► NM-PAST enables HyperX to perform well under adversarial workloads

Conclusions

- PAST is a datacenter network that supports full host mobility, high bandwidth, self-configuration, and tens of thousands of hosts
- PAST can provide near optimal throughput
 - ► Worst case performance equal to ECMP
 - ► Best case performance double ECMP
 - ► ECMP is not as useful (or necessary) as previously thought
- PAST supports commodity switches and exploits only the most basic Ethernet hardware
 - ► PAST is implementable today