
Automatic Test Packet Generation

James Hongyi Zeng
with Peyman Kazemian,

George Varghese, Nick McKeown
Stanford University, UCSD, Microsoft Research

http://eastzone.github.com/atpg/
CoNEXT 2012, Nice, France

http://eastzone.github.com/atpg/

CS@Stanford Network Outage

Tue, Oct 2, 2012 at 7:54 PM:

“Between 18:20-19:00 tonight we experienced a
complete network outage in the building when a
loop was accidentally created by CSD-CF staff. We're
investigating the exact circumstances to understand
why this caused a problem, since automatic
protections are supposed to be in place to prevent
loops from disabling the network.”

2

Outages in the Wild

3

Hosting.com's New Jersey data

center was taken down on June 1,
2010, igniting a cloud outage and
connectivity loss for nearly two
hours… Hosting.com said the
connectivity loss was due to a
software bug in a Cisco switch that
caused the switch to fail.

On April 26, 2010, NetSuite
suffered a service outage that
rendered its cloud-based applications
inaccessible to customers worldwide
for 30 minutes… NetSuite blamed a
network issue for the downtime.

The Planet was rocked by a pair of

network outages that knocked it off
line for about 90 minutes on May 2,
2010. The outages caused disruptions
for another 90 minutes the following
morning.... Investigation found that
the outage was caused by a fault in a
router in one of the company's data
centers.

Network troubleshooting a problem?

• Survey of NANOG mailing list (June 2012)

– Data set: 61 responders: 23 medium size networks
(<10K hosts), 12 large networks (< 100K hosts)

– Frequency: 35% generate >100 tickets per month

– Downtime: 25% take over an hour to resolve.
(estimated $60K-110K/hour [1])

– Current tools: Ping, Traceroute, SNMP

– 70% asked for better tools, automatic tests

[1] http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html

4

The Battle

5

Hardware
Buffers, fiber cuts, broken interfaces,

mis-labeled cables, flaky links

Software
firmware bugs, crashed module

vs

+
ping, traceroute,

SNMP, tcpdump

wisdom and intuition

Automatic Test Packet Generation

Goal: automatically generate test packets to test
the network state, and pinpoint faults before being
noticed by application.

Augment human wisdom and intuition.
Reduce the downtime.
Save money.

Non-Goal: ATPG cannot explain why forwarding
state is in error.

6

ATPG Workflow

7

ATPG

Network

FIBs, ACLs
Topology

Test Packets

Test Results

Systematic Testing

• Comparison: chip design

– Testing is a billion dollar market

– ATPG = Automatic Test Pattern Generation

8

Roadmap

• Reachability Analysis

• Test packet generation and selection

• Fault localization

• Implementation and Evaluation

9

Reachability Analysis

• Header Space Analysis (NSDI 2012)

• All-pairs reachability: Compute all classes of
packets that can flow between every pair of
ports.

10

Header Space Analysis

FIBs, config files
topology

<Port X, Port Y>

All Forwarding Equivalent
Classes (FECs) flowing X->Y

rA1,rA2,rA3

rB1,rB2,rB3,rB4

PA PB

PC

rC1,rC2

Example

11

Box A

Box C

Box B

All-pairs reachability

12

PA PB

PC

Box A

Box C

Box B

New Viewpoint: Testing and coverage

• HSA represents networks as chips/programs
• Standard testing finds inputs that cover every

gate/flipflop (HW) or branch/function (SW)

13

Testbench

Results

Cover
Chip model:

Boolean Algebra

Device Under Test

Test PatternsHSA Network Model:
Reachability

Network Under Test

Test Packets

New Viewpoint: Testing and coverage

• In networks, packets are inputs, different
covers

– Links: packets that traverse every link

– Queues: packets that traverse every queue

– Rules: packets that test each router rule

• Mission impossible?

– testing all rules 10 times per second needs < 1% of
link overhead (Stanford/Internet2)

14

Roadmap

• Reachability Analysis

• Test packet generation and selection

• Fault localization

• Implementation and Evaluation

15

All-pairs reachability and covers

16

PA PB

PC

Box A

Box C

Box B

Test Packet Selection

• Packets in all-pairs reachability table are more
than necessary

• Goal: select a minimum subset of packets
whose histories cover the whole rule set

A Min-Set-Cover problem

17

Min-Set-Cover

18

R1 R2 R3 R4 R5 R6

A

B

C

D

E

F

G

R1 R2 R3 R4 R5 R6

B

C

G

Pa
ck

et
s

Pa
ck

et
s

Test Packets Selection

19

Test Packets

Min-Set-CoverRegular Packets Reserved Packets

- Exercise all rules
- Sent out periodically

- “Redundant”
- Will be used in

fault localization

• Min-Set-Cover

– Optimization is NP-Hard

– Polynomial approximation (O(N^2))

Roadmap

• Reachability analysis

• Test packet generation and selection

• Fault localization

• Evaluation: offline (Stanford/Internet2),
emulated network, experimental deployment

20

Fault Localization

21

Fault Localization

• Network Tomography? → Minimum Hitting Set
• In ATPG: we can choose packets!
• Step 1: Use results from regular test packets

– F (potentially broken rules) = Union from all failing packets
– P (known good rules) = Union from all passing packets
– Suspect Set = F – P

22

F P
Suspects

Fault Localization

• Step 2: Use reserved test packets

– Pick packets that test only one rule in the suspect
set, and send them out for testing

– Passed: eliminate

– Failed: label it as “broken”

• Step 3: (Brute force…) Continue with test
packets that test two or more rules in the
suspect set, until the set is small enough

23

Roadmap

• Reachability analysis

• Test packet generation and selection

• Fault localization

• Implementation and Evaluation

24

Parser

Topology, FIBs, ACLs, etc

Transfer
Function

All-pairs
Reachability

H
ea

d
er

 S
p

ac
e

A
n

al
ys

is
Header In Port Out Port Rules

10xx… 1 2 R1,R5,R20

… … … …

All-pairs Reachability Table

Test Packet Generator
(sampling + Min-Set-Cover)

Fault
Localization

Test
Terminal

(1)

(2)

(3)

(4)

(5)

Putting them all together

25

Implementation

• Cisco/Juniper Parsers
– Translate router configuration files and forwarding

tables (FIB) into Header space representation

• Test Packet Generation/Selection
– Hassel: A python header space library

– Min-Set-Cover

– Python’s multiprocess module to parallelize

• SDN can simplify the design

26

Datasets

• Stanford and Internet2
– Public datasets

• Stanford University backbone
– ~10,000 HW forwarding entries (compressed from

757,000 FIB rules), 1,500 ACLs

– 16 Cisco routers

• Internet2
– 100,000 IPv4 forwarding entries

– 9 Juniper routers

27

Test Packet Generation

28

<1% Link Utilization
when testing 10 times per second!

Stanford Internet2

Computation Time ~1hour ~40min

Regular Packets 3,871 35,462

Packets/Port (Avg) 12.99 102.8

Min-Set-Cover Reduction 160x 85x

Ruleset structure

Using ATPG for Performance Testing

• Beyond functional problems, ATPG can also be
used for detecting and localizing performance
problems

• Intuition: generalize results of a test from
success/failure to performance (e.g. latency)

• To evaluate used emulated Stanford Network in
Mininet-HiFi
– Open vSwitch as routers
– Same topology, translated into OpenFlow rules

• Users can inject performance errors

29

s3 s5s2

yoza

s4s1

bozacoza pozbpoza rozagoza

bbra

30

Does it work?

• Production Deployment

– 3 buildings on Stanford campus

– 30+ Ethernet switches

• Link cover only (instead of rule cover)

– 51 test terminals

31

CS@Stanford Network Outage

Tue, Oct 2, 2012 at 7:54 PM:

“Between 18:20-19:00 tonight we experienced a
complete network outage in the building when a
loop was accidentally created by CSD-CF staff. We're
investigating the exact circumstances to understand
why this caused a problem, since automatic
protections are supposed to be in place to prevent
loops from disabling the network.”

32

33

The problem in the email

Unreported problem

ATPG Limitations

• Dynamic/Non-deterministic boxes

– e.g. NAT

• “Invisible” rules

– e.g. backup rules

• Transient network states

• Ambiguous states (work in progress)

– e.g. ECMP

34

Related work

35

Policy
“Group X can

talk to Group Y”

Control Plane

Forwarding State

Topology
Forwarding

Rules

ATPG

NICE, Anteater
HSA, VeriFlow

Forwarding Rule != Forwarding State
Topology on File != Actual Topology

Takeaways

• ATPG tests the forwarding state by generating
minimal link, queue, rule covers automatically

• Brings lens of testing and coverage to networks

• For Stanford/Internet2, testing 10 times per
second needs <1% of link overhead

• Works in real networks.

36

37

Merci!

http://eastzone.github.com/atpg/

http://eastzone.github.com/atpg/

