Resource Allocation in Underprovisioned Multioverlay Live Video Sharing Services

Jiayi Liu1, Shakeel Ahmad2, Eliya Buyukkaya1, Raouf Hamzaoui2 and Gwendal Simon1
1Telecom Bretagne
2De Montfort University
Massively Multiplayer Online Game collaborative tool
Massively Multiplayer Online Game collaborative tool

Players emit user-generated videos

Developed by the CNG (Community Network Game) project

Integrated in "The Missing Ink" (www.missing-ink.com)
Xfire: online game player video casting platform
Challenges

- Thousands of simultaneous video sources
Challenges

- Thousands of simultaneous video sources
- Each video is seen by a dozen of players

Solution: multioverlay P2P video streaming system
Challenges

- Thousands of simultaneous video sources
- Each video is seen by a dozen of players
- Video sources are low-capacity computers

→ peer-to-peer may be useful

Solution: multioverlay P2P video streaming system
Challenges

- Thousands of simultaneous video sources
- Each video is seen by a dozen of players
- Video sources are low-capacity computers

CDN is not cost-effective
Challenges

- Thousands of simultaneous video sources
- Each video is seen by a dozen of players
- Video sources are low-capacity computers

CDN is not cost-effective
 \[\rightarrow \text{peer-to-peer may be useful} \]

Solution: multioverlay P2P video streaming system
1. Multioverlay P2P video streaming system

2. Inter-overlay bandwidth allocation problem

3. Performance evaluation

4. Conclusion
A player can simultaneously watch several videos.
System design points

Intra-overlay P2P video streaming:

- Mesh-based: bandwidth fluctuation and peer dynamics
System design points

Intra-overlay P2P video streaming:
- Mesh-based: bandwidth fluctuation and peer dynamics

Inter-overlay bandwidth allocation:
- Peers allocate their uplink bandwidth
- Independent with intra-overlay video streaming
Avancement

1. Multioverlay P2P video streaming system
2. Inter-overlay bandwidth allocation problem
3. Performance evaluation
4. Conclusion
Peers watching several videos should share their uplink

Problem: How to allocate bandwidth to overlays?
Bandwidth Allocation Problem

Peers watching several videos should share their uplink

Problem: How to allocate bandwidth to overlays?

overlay_1 overlay_2 overlay_3

p_1 p_2 p_3 p_4
uplink: 9 uplink: 5 uplink: 8 uplink: 8
Peers watching several videos should share their uplink.

Problem: How to allocate bandwidth to overlays?

```
overlay₁

| P₁  | uplink: 9 |
.overlay₂

| P₂  | uplink: 5 |
.overlay₃

| P₃  | uplink: 8 |
| P₄  | uplink: 8 |

peer subscribes to overlay
```
Peers watching several videos should share their uplink.

Problem: How to allocate bandwidth to overlays?
Bandwidth Allocation Problem

Peers watching several videos should share their uplink capacity.

Problem: How to allocate bandwidth to overlays?

overlay_1 \rightarrow \text{overlay_2} \rightarrow \text{overlay_3}

\begin{align*}
\text{overlay_1} & : \text{demand} = 18, \text{capacity} = 12 \\
\text{overlay_2} & : \text{demand} = 12, \text{capacity} = 7 \\
\text{overlay_3} & : \text{demand} = 18, \text{capacity} = 8 \\
\end{align*}

\begin{align*}
p_1 & : \text{uplink} = 9 \\
p_2 & : \text{uplink} = 5 \\
p_3 & : \text{uplink} = 8 \\
p_4 & : \text{uplink} = 8 \\
\end{align*}

---6--- peer allocates to overlay
Peers watching several videos should share their uplink.

Problem: How to allocate bandwidth to overlays?

overlay\(_1\)
- Peer 1: uplink: 9, capacity: 12, demand: 18
- Peer 2: uplink: 5, capacity: 7, demand: 12

overlay\(_2\)
- Peer 3: uplink: 8, capacity: 22, demand: 18

overlay\(_3\)
Objective 1: minimizing the waste of resources

Overlay provisioning:

- overlay capacity - overlay demand
 - overlay capacity - overlay demand ≥ 0: overprovisioned overlay (G^+)
 - overlay capacity - overlay demand < 0: underprovisioned overlay (G^-)
Objective 1: minimizing the waste of resources

Overlay provisioning:

- Overlay capacity - overlay demand
 - Overlay capacity - overlay demand ≥ 0:
 - Overprovisioned overlay (G^+)
 - Overlay capacity - overlay demand < 0:
 - Underprovisioned overlay (G^-)

Objective: minimizing total underprovisioning

$$\sum_{\text{overlay} \in G^-} |\text{capacity} - \text{demand}|$$
Our solution: a max-flow

Node \(S_1 \):
- Demand: 18
- Capacity: 6

Node \(S_2 \):
- Demand: 12
- Capacity: 4

Node \(S_3 \):
- Demand: 18
- Capacity: 8

Node \(p_1 \):
- Uplink: 9

Node \(p_2 \):
- Uplink: 5

Node \(p_3 \):
- Uplink: 8

Node \(p_4 \):
- Uplink: 8
Our solution: a max-flow
Our solution: a max-flow

\[
\begin{align*}
\text{source} & \quad \text{sink} \\
q & \\
0/12 & 0/8 & 0/10 \\

s_1 & \quad s_2 & \quad s_3 \\
p_1 & \quad p_2 & \quad p_3 & \quad p_4 \\
0/9 & 0/5 & 0/8 & 0/8 \\
f & \\
\end{align*}
\]
Our solution: a max-flow
Objective 2: for underprovisioned system

Underprovisioned system:

\[\sum_p \text{bandwidth} < \sum_{\text{overlay}} \text{required bandwidth} \]
Objective 2: for underprovisioned system

Underprovisioned system:

\[\sum_p \text{bandwidth} < \sum_{\text{overlay}} \text{required bandwidth} \]

Given objective 1, how to share the resource deficit?
Objective 2: for underprovisioned system

Underprovisioned system:

\[\sum_{p} \text{bandwidth} < \sum_{\text{overlay}} \text{required bandwidth} \]

Given objective 1, how to share the resource deficit?

- popularity: the most popular sources first
Objective 2: for underprovisioned system

Underprovisioned system:

\[\sum_p \text{bandwidth} \ < \ \sum_{\text{overlay}} \text{required bandwidth} \]

Given objective 1, how to share the resource deficit?

- **popularity**: the most popular sources first
- **diversity**: the largest number of sources
Objective 2: for underprovisioned system

Underprovisioned system:
\[\sum_p \text{ bandwidth} < \sum_{\text{overlay}} \text{ required bandwidth} \]

Given objective 1, how to share the resource deficit?

- **popularity**: the most popular sources first
- **diversity**: the largest number of sources
- **others**: e.g. **payment**: the premium sources first
Our solution: a min-cost max-flow
Our solution: a min-cost max-flow

add a cost function

popularity: \(\frac{1}{n}, \forall s \)
Our solution: a min-cost max-flow

1. Add a cost function:
 - **popularity**: $\frac{1}{n}, \forall s$
 - **diversity**: $1 - \frac{1}{n}, \forall s$

2. Graph representation:
 - **Nodes**: $s_1, s_2, s_3, p_1, p_2, p_3, p_4$
 - **Edges and Costs**:
 - s_1 to s_2: 0/12
 - s_1 to s_3: 0/8
 - s_2 to s_3: 0/10
 - p_1 to p_2: 0/9
 - p_1 to p_3: 0/5
 - p_1 to p_4: 0/8
 - p_2 to p_3: 0/8
 - p_2 to p_4: 0/8
 - p_3 to f: 0/8
 - p_4 to f: 0/8

3. Objective Function: Minimize the total cost of the flow.
Our solution: a min-cost max-flow

- **popularity**: \(\frac{1}{n}, \forall s \)
- **diversity**: \(1 - \frac{1}{n}, \forall s \)
- **payment**: \[
\begin{cases}
1, & \text{if } s \text{ is premium} \\
2, & \text{otherwise}
\end{cases}
\]
Avancement

1. Multioverlay P2P video streaming system
2. Inter-overlay bandwidth allocation problem
3. Performance evaluation
4. Conclusion
System practicability

- **Peer dynamics**
 - Peers periodically report their estimated upload bandwidth
 - Server periodically recomputes, and sends bandwidth allocation

- **Light peer server communication overhead**
 - **0.8 Mbps** server upload bandwidth: 100,000 peers, 1min period, 3 average watching overlays × 2 bytes
 - **0.8 Mbps** server download bandwidth: 100,000 peers, 1min period, 4 bytes bandwidth and 4 bytes peer ID.

- **Min-cost-max-flow algorithm computation time**

<table>
<thead>
<tr>
<th>nb. peers</th>
<th>1,000</th>
<th>5,000</th>
<th>10,000</th>
<th>50,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>time (sec)</td>
<td>0.005</td>
<td>0.086</td>
<td>0.311</td>
<td>7.455</td>
<td>31.887</td>
</tr>
</tbody>
</table>
Realistic player upload bandwidth:
- log-normal distribution from 256kbps to 5Mbps
Realistic player upload bandwidth:
- log-normal distribution from 256kbps to 5Mbps

Real trace based MMOG player relationship:
- Xfire \(\sim \) facebook network of *Smith College*
- Pareto’80-20: 80% videos from 20% most active players
Simulations : models and settings

Realistic player upload bandwidth :
- log-normal distribution from 256kbps to 5Mbps

Real trace based MMOG player relationship :
- Xfire \(\sim\) facebook network of *Smith College*
- Pareto’80-20 : 80% videos from 20% most active players

Watchers’ behavior leads to a Zipf video popularity :
- most popular : 330 peers; median popularity : 7 peers
Results - PSNR

CDF of peers

PSNR (dB)

1
0.8
0.6
0.4
0.2
0
naive

Multioverlay Bandwidth Allocation
Results - PSNR

CDF of peers

PSNR (dB)

naive
DAC
Results - PSNR

![CDF of peers](image)

- **naive**
- **DAC**
- **diversity-based**
- **popularity-based**

PSNR (dB) vs CDF of peers
Avancement

1. Multioverlay P2P video streaming system
2. Inter-overlay bandwidth allocation problem
3. Performance evaluation
4. Conclusion
Conclusion

- A multioverlay P2P live video streaming system

- Inter-overlay bandwidth allocation problem
 - Minimizing global underprovisioning
 - Sharing the resource deficit with different policies
Thanks!