
On the Benefits of Applying Experimental Design to
Improve Multipath TCP

Christoph Paasch† Ramin Khalili‡ Olivier Bonaventure†

†ICTEAM, UCLouvain, Belgium
‡Telekom Innovation Laboratories / TU Berlin, Germany

ABSTRACT
Many scientific disciplines rely on “Experimental Design” to study
various types of systems. Experimental design refers to a planned
approach to experimentation that tries to provide statistical evi-
dence to the outcome of experiments. The networking community
rarely relies on such approaches, especially for real protocol imple-
mentations. Many improvements to protocols like TCP, including
the recently proposed Multipath TCP, have been evaluated by con-
sidering a relatively limited set of simulations or experiments.

Multipath TCP increases the goodput of a data transfer by si-
multaneously using multiple interfaces. It also improves load bal-
ancing thanks to dedicated congestion control. By applying ex-
perimental design, we conduct a large set of measurements inside
Mininet with the Linux kernel Multipath TCP implementation, to
measure its bandwidth aggregation and load balancing. Thanks to
the experimental design approach, we are able to highlight several
limitations of this implementation. We identify heuristics that lead
to lower than expected performance and propose improvements.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statistics—
Experimental Design; C2.2 [Computer-communication Networks]:
Network Protocols

Keywords
Experimental Design; Measurements; Multipath TCP

1. INTRODUCTION
“Experimental Design” is an approach to planned experimen-

tation in order to answer different types of questions on a certain
process or system [7]. Scientists in many disciplines follow this
approach to have statistical confidence in their claims. The exper-
imental design approach comprises a careful selection of the influ-
encing factors of the system. Among these factors, the set of input
parameters are chosen to allow an accurate view of the system’s
response. Finally, repeating runs allows to account for the variance
of individual experiments.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT’13, December 9-12, 2013, Santa Barbara, California, USA.
Copyright 2013 ACM 978-1-4503-2101-3/13/12 ...$15.00.
http://dx.doi.org/10.1145/2535372.2535403.

Multipath TCP (MPTCP) is a newly proposed extension to TCP [8,
9]. MPTCP allows the use of multiple interfaces for the transmis-
sion of a single data stream, without requiring any modifications
among the applications and still being usable on today’s Internet
with all its middleboxes and firewalls. MPTCP achieves this by
creating a TCP subflow for each interface and multiplexing the
data segments among these subflows [22]. This allows to pool the
resources of the interfaces, effectively increasing the goodput for
the application. Further, MPTCP allows mobile nodes to vertically
handover traffic from one interface to another, allowing them to
seamlessly move data connections from a WiFi access point to the
3G connection [19].

An MPTCP implementation is a complex system, with many
heuristics and algorithms influencing its performance [4, 22]. The
congestion-control algorithm [26, 14] influences the sending rate
of the individual subflows, the scheduler decides how to multiplex
data among the subflows. Flow control provides another limitation
to the sending rate. Many external factors further influence the per-
formance of MPTCP [20, 4, 19, 6]. Especially the network’s char-
acteristics in terms of capacity, propagation delay, etc. It is very
difficult to have a clear understanding of how MPTCP behaves in
different heterogeneous environments.

In this paper we apply the experimental design approach to eval-
uate the Linux Kernel implementation of MPTCP in a wide range
of heterogeneous environments. To the best of our knowledge, this
is the first attempt to apply an experimental design approach to
evaluate a real protocol implementation. We show that it is very
beneficial to use such an approach, as it revealed previously un-
known performance issues within MPTCP.

This paper is structured as follows. Section 2 describes the ex-
perimental design approach and the different choices that can be
taken. Section 3 explains how this approach can be applied to the
evaluation of a transport-layer protocol like MPTCP. Section 4 dis-
cusses our experimental results and describes how it allowed us to
improve MPTCP’s performance. The next section analyses the sen-
sitivity of our experimental design. Finally, section 6 discusses the
performance issues we identified and possible next steps.

2. EXPERIMENTAL DESIGN
Experimental Design refers to the process of executing controlled

experiments in order to collect information about a specific process
or system [7]. The system under experimentation is influenced by
controllable or uncontrollable factors (see Figure 1). The system
responds to these factors according to the laws of nature. The ex-
perimenter can observe these responses by collecting one or multi-
ple outputs of the system, which provide the information necessary
to understand the system.

393

System

Laws of Nature

Uncontrollable Factors
Output

Controllable Factors

Figure 1: The system’s output is influenced by a number of
factors and obeys to the laws of nature [3]

Running experiments in computer science (and networking re-
search) is peculiar in the sense that the output is often more de-
terministic (in absence of external factors, like temperature, time,
etc.) [23]. Further, depending on the system, experiments may be
cheap in terms of time required, thus allowing a large number of
experiments. In this section, we give an overview of the different
steps of experimental design and its particularities with respect to
computer experiments.

2.1 Objective
The first step is to define the objective pursued by the experi-

ments. Kleijnen et al. defines in [15] three different types of ques-
tions that may be answered through experimentation:

• “Develop a Basic Understanding” - This allows to have an
overview of the system’s behavior, uncover problems within
the system or confirm expectations.

• “Finding Robust Decisions or Policies” - The goal is to find
the correct configuration of the system to produce a desired
output, while taking into consideration the influence of un-
controllable factors.

• “Comparing Decisions or Policies” - This process allows to
estimate the behavior of the system with respect to a specific
set of factors.

The objective defines the system that is under test and the out-
come we want to measure. Once the objective is defined, the influ-
encing factors and the way of measuring the output of the system
must be also defined.

2.2 Factors
In experimental design, the system under test is often very com-

plex. Many factors can influence the output of a system (see Fig-
ure 1). They may be of different kinds, controllable and uncontrol-
lable. Among the controllable factors, those which influence the
output of the system have to be selected. The uncontrollable fac-
tors may also influence the output of the system and are the reason
for the variance of the system’s output. To reduce the impact of the
uncontrollable factors, an experiment should be repeated multiple
times. This allows to extract the central tendency of the response
by calculating the mean or median.

Optimal real-world experiments would require that the experi-
ments are run simultaneously, to reduce the effect of the uncon-
trollable factors. However, in computer experiments this constraint
can often be neglected as the output of the system is deterministic,
allowing a sequential execution of the experiments [15].

2.3 Design of the experiment
The design of the experiment influences the input parameters that

are selected to conduct the experiments. In [5, 17], the desirable
properties that such parameter sets should have are discussed.

If the behavior of the system is meant to be modeled by a first-
order polynomial model, fractional designs are a good fit [5]. These
designs distribute the parameter set along the edges. Further, or-
thogonality is a desirable criterion of experiment designs, as it en-
sures that the sets are uncorrelated and thus allows to decide if a
factor should be part of the model or not [15].

However, sometimes it is not possible to assume a first-order
polynomial model of the response. It may be that there is no prior
knowledge of the system’s response surface, or that the system has
a rather stochastic nature. In this case, space-filling designs are
good choices [16]. Space-filling designs don’t only sample at the
edges, but distribute the parameter sets equally among the whole
factor space. A space-filling design can be generated with different
algorithms. Santiago et al. propose in [24] the WSP algorithm
which distributes the sets equally among the space. It is based
on a uniform random sampling of the input parameters and elimi-
nates excess points according to a minimum-distance criterion. The
WSP algorithm has particularly good space-filling properties, even
in high-dimensional spaces [24].

3. EXPERIMENTING WITH MPTCP
In this section we describe how the experimental design approach

can be applied to the experimentation with a transport protocol like
MPTCP. For this purpose, we need to define our objective, deter-
mine our design factors and experiment design.

3.1 Objective
We are interested in a performance analysis of MPTCP to verify

whether it fulfills its two main design goals [21]:

• Improve throughput: MPTCP should perform at least as well
as regular TCP along the best path.

• Balance congestion: MPTCP should move traffic away from
congested paths.

We evaluate the performance of MPTCP for a wide range of
parameters and pinpoint the scenarios where these goals are not
met. We can also use this framework to validate the performance
of MPTCP as modifications to certain algorithms within the proto-
col are being done.

We execute our approach by using Mininet [11] which allows
us to easily create a virtual network and run experiments between
Mininet hosts using the v0.86 Linux Kernel implementation of MPTCP1.
The benefit of using Mininet is that the results are reproducible and
do not require a large number of physical machines. Compared to
simulations, Mininet allows us to use the real MPTCP implemen-
tation and not a model of the protocol.

3.2 Factors
The performance of a transport protocol like MPTCP is influ-

enced by various factors, such as bandwidth limitations, propa-
gation delay, queuing delay, loss, etc. [2]. Further, memory con-
straints on either of both hosts will limit the TCP window size,
additionally influencing the performance [4, 25]. Among these fac-
tors, one must distinguish between the quantitative ones (e.g., loss-
rate between two hosts) and the qualitative ones (e.g., congestion-
control being used). For each of the selected factors, the domain
must be selected accordingly. We consider the following factors in
our study:

1Our scripts and the Mininet virtual images are available at
http://multipath-tcp.org/conext2013

394

Capacity Our evaluation of MPTCP targets environments of reg-
ular users, whose access speed may range from mobile net-
works to FTTH. We fix the range of our capacity from 0.1 to
100 Mbps.

Propagation delay The propagation delay is the round-trip-time
between the sender and the receiver over an uncongested
path. Measurement studies have shown that the delay may
be up to 400 ms [27] . We set the delay to a domain between
0 ms and 400 ms.

Queuing delay The buffers at the bottleneck influence the queu-
ing delay [10]. A perfect Active Queue Management (AQM)
algorithm at the bottleneck router would not add any addi-
tional delay, whether a badly sized buffer may add a huge
amount of queuing delay [10, 1]. We only consider tail-drop
queues whose size is set to add a queuing delay between 0 ms
up to 2000 ms. We leave the evaluation of different queuing
policies like RED or Codel for future work.

Loss [18] shows that the loss probability over the Internet is very
low (between 0 and 0.1%). In wireless or mobile networks,
the loss probability may be considerably higher. We consider
environments where the loss ranges from 0% to 2.5%.

Congestion Control We consider the two MPTCP congestion-control
schemes: the Coupled congestion control [21, 26] which is
the default one and the recently proposed OLIA [14].

These factors and their considered ranges allow to cover the prin-
cipal environments that MPTCP might face when being used over
the Internet. Additional factors and/or broader ranges are left for
future work.

3.3 Design of the experiment
We cannot be sure of the nature of the response surface of Multi-

path TCP. Hence, we choose a space-filling design to cover a wide
range of scenarios and correlations among the factors. It allows us
to avoid making any assumptions on the behavior of MPTCP (cfr.
Section 2.3). The drawback is that we need to run a large number
of experiments in order to fully cover the factor space, but thanks
to Mininet we are able to quickly perform these experiments. We
use the WSP algorithm to generate the parameter sets in the space-
filling design.

4. EVALUATION
This section shows the experiments we conducted and how they

helped us to identify previously unknown performance issues with
MPTCP.

4.1 Aggregation Benefit
We study whether MPTCP satisfies its first design goal (improve

throughput), by quantifying the aggregation benefit (as defined by
Kaspar in [13]). The aggregation benefit is expressed as a function
between −1 and 1. If MPTCP performs as good as the path with the
highest goodput, the aggregation benefit will be 0. If MPTCP per-
fectly aggregates the capacities of all paths, the aggregation benefit
will be 1. −1 means that MPTCP achieves zero goodput.

Let S be a multipath aggregation scenario, with n paths. Ci is
the capacity of the path i and Cmax the highest capacity among all
paths. If we measure a goodput of g with MPTCP, the aggregation

Low-BDP High-BDP
Factor Min. Max. Min. Max.

Capacity [Mbps] 0.1 100 0.1 100
Propagation delay [ms] 0 50 0 400

Queuing [ms] 0 100 0 2000

Table 1: Domains of the influencing factors for the measure-
ment of aggregation benefit.

Subflow 1

Subflow 2

Client Server

Figure 2: Our topology to evaluate aggregation benefit:
MPTCP creates one subflow across each bottleneck. This al-
lows to evaluate multipath-scenarios like a mobile phone con-
necting to WiFi/3G at the same time.

benefit, Ben(S), is given by [13]:

Ben(S) =

g − Cmax∑n

i=1 Ci − Cmax
, if g ≥ Cmax

g − Cmax

Cmax
, if g < Cmax

Our setup evaluates MPTCP in a scenario (Figure 2) where the
hosts establish two subflows between each other. We consider this
as the common scenario (e.g., a client having two access networks
like WiFi/3G). In order to measure the aggregation benefit, the
Mininet-hosts create an iperf-session using the v0.86-release of MPTCP,
which creates one subflow per bottleneck-link. The iperf-session
runs for 60 seconds to allow the flows to reach equilibrium.

We study two types of environments: low Bandwidth-Delay-
Products (BDP) and high-BDP. Low-BDP environments have rela-
tively small propagation and queuing delays. In a high-BDP envi-
ronment, the maximum values for the propagation and the queuing
delays are very large. In a first run we only consider 3 factors per
bottleneck, namely the capacity, propagation delay and queuing de-
lay. For this first run we do not add the loss-factor as the MPTCP-
specific congestion controls have a very specific behavior in lossy
environments (as can be seen at the end of this section). The exact
specifications of each environment can be found in Table 1.

As we consider 2 paths, each being influenced by 3 factors, we
have a 6-dimensional parameter space. We generate the parame-
ter sets by using the WSP space-filling design, resulting in about
200 individual experiments. We have limited ourself to 200 exper-
iments, as our Mininet environment is able to run these within 4
hours. This allows us to quickly obtain the results of the experi-
ments. In order to cope with possible variations, we repeat each
parameter set 5 times and use the median to extract the central ten-
dency of the aggregation benefit.

Effect of receive-buffer sizes.
The performance of MPTCP is influenced by the receive-buffer

sizes of the end hosts [22]. We evaluate the impact of a fixed receive
buffer on the aggregation benefit in the low-BDP and the high-BDP
environments. In Figure 3 we show the aggregation benefit’s mean
(with its standard deviation) and the median, 25% and 75% per-
centiles as well as the degree of dispersion. We see that the larger
the receive buffer, the larger is the aggregation benefit. If the re-
ceive buffer is small, the MPTCP session is flow limited and thus
cannot use the full capacity of the links, which reduces the aggrega-

395

250KB1MB 2MB 4MB250KB1MB 2MB 4MB
−1.0

−0.5

0.0

0.5

1.0
A

gg
re

ga
tio

n
B

en
efi

t
Low-BDP High-BDP

Figure 3: The aggregation benefit in-
creases with the buffer size. If the buffer
is small, MPTCP is limited by the receive
window and does not fully utilizes the net-
work’s capacity.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Receive Buffer size [MB]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 4: With auto-tuning, 50% of the
experiments are able to consume less than
4MB of receive buffer in the low-BDP en-
vironment.

MPTCP v0.86
Modif. penal.

MPTCP v0.86
Modif. penal.

−1.0

−0.5

0.0

0.5

1.0

A
gg

re
ga

tio
n

B
en

efi
t

Low-BDP High-BDP

Figure 5: MPTCP v0.86 has a weak per-
formance with auto-tuning. Our modifica-
tion to the penalization algorithm signifi-
cantly improves the aggregation benefit.

0 2 4 6 8 10 12
Time [s]

0

500

1000

1500

2000

2500

3000

C
on

ge
st

io
n

W
in

do
w

[p
ac

ke
ts

]

TF TA

4MB recv. buffer
Auto-tuning enabled

Figure 6: During the slow-start phase of an MPTCP sub-
flow, the congestion window increases much slower when auto-
tuning is enabled.

tion benefit. The results are shown when coupled congestion con-
trol [26] is used. In this scenario, OLIA [14] performs similarly to
coupled congestion control.

Effect of enabling auto-tuning.
The Linux TCP stack does not use a fixed receive buffer. In-

stead, it includes an auto-tuning algorithm [25] that adapts dynam-
ically to the size of the receive buffer to achieve high goodput at the
lowest possible memory cost. The current MPTCP implementation
sets the buffer to 2 ∗

∑n
i bwi ∗RTTmax, to allow aggregating the

throughput of all the subflows [4].
Enabling auto-tuning should reduce the memory requirements

of the MPTCP connection. Figure 4 reports the maximum receive
buffer used in the low-BDP environment for each set. Indeed, we
observe that on 50% of the experiments the receive buffer remains
below 4 MB, effectively reducing the memory used by the connec-
tion.

However, enabling auto-tuning can also lead to a huge perfor-
mance degradation with MPTCP. Figure 5 depicts the aggregate
benefit of MPTCP v0.86 when auto-tuning is enabled, capping the
buffer to Linux’s default of 4 MB. We observe that in high-BDP
environments the aggregation benefit is significantly smaller than if
the receive buffer is fixed at 4 MB (cfr. Figure 4). Effectively, 80%
of the experiments have an aggregation benefit below 0. We ob-
serve this performance degradation in low-BDP environments too:
25% of the experiments have an aggregation benefit below 0.1.

The auto-tuning at the receiver will make the receive buffer start
at a small value at the beginning of the connection, increasing it as
the sender’s subflows evolve during their slow-start phase. MPTCP

−4 −2 0 2 4 6 8 10
TA - TF [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

PD
F

Figure 7: With auto-tuning enabled, MPTCP is slower to in-
crease the congestion window during slow-start compared to a
fixed receive buffer at 4 MB.

evaluates the receive-buffer size every RTTmax in order to esti-
mate the sending rate of the peer.

∑n
i bwi ∗ RTTmax represents

the amount of data the peer sends during one RTTmax-interval.
Multiplying this by 2 to achieve the recommended receive buffer
of [4] should allow the sender to increase its sending rate during
the slow-start phase. However, subflows whose RTT is smaller
than RTTmax will more than double their sending rate during an
RTTmax-interval, effectively making the sender limited by the re-
ceive window. As the subflows evolve through their slow-start
phase, the announced window will continue increasing and even-
tually be large enough. Hence, these receive-window limitations
are only transient and should not prevent users from achieving a
high transmission rate.

MPTCP’s reaction to transient receive-window limitations is overly
aggressive because of the "penalization" mechanism proposed in [22].
This mechanism handles receive-window limitations due to round-
trip-time differences among the subflows (e.g., in WiFi/3G environ-
ments). When the flow is limited by the receive window, it halves
the congestion window of the subflow who causes this receive-
window limitation and sets its slow-start threshold to the current
congestion window. If an MPTCP-connection experiences the tran-
sient receive-window limitations while one of its subflows is in
slow-start, the penalization algorithm will give this subflow a false
view of the path capacity by adjusting its slow-start threshold to a
smaller value.

We propose to modify the penalization algorithm. It should not
adjust the slow-start threshold when a subflow is in its slow-start
phase. Figure 5 shows how this small modification to the penaliza-
tion algorithm improves the performance of MPTCP. In the low-

396

Coupled OLIA
Coupled OLIA

−1.0

−0.5

0.0

0.5

1.0

A
gg

re
ga

tio
n

B
en

efi
t

Low-BDP High-BDP

Figure 8: The MPTCP congestion controls
move traffic away from congested (aka
lossy) paths. Only the less-lossy path is
used for MPTCP.

Clients Servers

Figure 9: Three bottlenecks are used to
evaluate MPTCP’s load-balancing perfor-
mance. Each MPTCP session has a one-
hop and a two-hop subflow.

Uncoupled

NewReno Coupled OLIA
Uncoupled

NewReno Coupled OLIA
0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
of

ag
gr

eg
at

e
th

ro
ug

hp
ut

Low-BDP High-BDP

Figure 10: In the low-BDP environments,
OLIA is able to efficiently move the traffic
away from the congested paths.

BDP environments, more than 75% of the experiments achieve an
aggregation benefit of 0.85 or higher. And even the experiments
in the high-BDP environments have their median increased up to
an aggregation benefit of around 0.5. Long data transfers with
MPTCP are now less vulnerable to transient receive-window limi-
tations and achieve a high aggregation benefit.

Effect of transient receive-window limitations.
Our modification to the penalization algorithm mitigates the ef-

fect of the transient receive-window limitations for long flows. How-
ever, the fundamental problem is still there. Transient receive-
window limitations slow down the increase rate of the congestion
window during slow-start. We picked a specific set of parameters
where these transient receive-window limitations are particularly
apparent. The first bottleneck has a capacity of 1 Mbps, while the
second has a capacity of 50 Mbps. Both bottlenecks have a high
propagation delay and queueing delay. A plot of the congestion-
window’s evolution of the fastest path during the slow-start phase
is shown in Figure 62. When auto-tuning is enabled, the congestion
window increases much slower, reaching its maximum at time TA,
about four seconds later compared to a fixed receive buffer at 4 MB
(TF).

We measure the difference between TA and TF in our high-
BDP environment among the 200 parameter sets generated with
the space-filling design. Figure 7 illustrates the PDF of these dif-
ferences. Ideally, the difference between TA and TF should be
zero. However, this is only true for 6% of the experiments. For
a large portion of the experiments the congestion window reaches
its maximum between 500ms and 2000ms faster if auto-tuning is
disabled.

This could have a negative impact on flow-completion time of
short flows, as the connection is receive-window limited during its
slow-start phase. An ideal auto-tuning algorithm should not prevent
the sender from increasing the sending rate - even during slow-start.

Effect of losses.
In this section, we study the effect of transmission losses on

the performance of MPTCP. This could represent wireless envi-
ronments where losses occur due to the fading. We model lossy
links by adding a loss factor to each bottleneck, effectively increas-

2The Figure shows that even the flow whose receive buffer is fixed
at 4 MB experiences a stall in the congestion-window’s increase
rate (between 2.5 and 5.5 seconds). This is due to a very spe-
cific issue of the Linux TCP window handling and has been fixed
by http://patchwork.ozlabs.org/patch/273311/. Unfortunately the
Linux MPTCP-stack does not yet include this recent fix.

ing the parameter space to a total of 8 factors. These loss-factors
range from 0 to 2.5% and are set individually on each bottleneck.
The two MPTCP congestion controls (Coupled and OLIA [26, 14])
both try to move traffic away from congested paths. As these loss-
based congestion controls interpret a loss as congestion, they move
traffic away from lossy subflows. Figure 8 shows that Coupled and
OLIA have mostly an aggregation benefit of 0. This confirms that
Coupled and OLIA only push traffic on the less lossy of the two
subflows, thus moving almost all traffic to the best path.

4.2 Congestion Balancing
In this section, we analyze whether MPTCP satisfies its congestion-

balancing design goal. For this purpose, we study the performance
of MPTCP in the scenario of Figure 9. The network contains three
bottlenecks, and the end-hosts create a total of three MPTCP ses-
sions passing by this network. Each session creates two subflows,
one crossing a single-bottleneck and the other passing through two
bottlenecks. As discussed in [26], to balance the congestion and
hence maximize the throughput for all MPTCP sessions, no traf-
fic should be transmitted over the two-hop subflows. The bottle-
necks are influenced by the capacity, propagation delay and queu-
ing delay, effectively emulating the low-BDP and high-BDP envi-
ronments form Table 1. With three bottlenecks and three factors per
bottleneck, we have effectively a 9-dimensional parameter space.
We generate about 400 parameter sets with the WSP space-filling
algorithm and start iperf-sessions for each MPTCP session.

We evaluate this scenario and show the relation between the ag-
gregated goodput of all MPTCP sessions, compared to the theo-
retical upper bound in Figure 10. We compare the performance of
OLIA and Coupled congestion control with the case that uncoupled
NewReno congestion control3 is used. We observe that OLIA is
able to move traffic away from the two-hop subflows in low-BDP
environments and hence efficiently uses the capacity available in
the network. Coupled fails to provide any load balancing in the
network and performs similarly to uncoupled NewReno. This ob-
servation confirms previous discussions about performance issues
with coupled congestion control [14]. In high-BDP environments,
even OLIA fails to provide a good congestion balancing. This is
because the large BDP makes one of the three MPTCP sessions be-
come receive-window limited if the three bottlenecks have different
characteristics. This flow cannot benefit of OLIA’s load-balancing
algorithms and leads to suboptimal network utilization.

3Uncoupled NewReno [12] represents the case where regular TCP
congestion control is used on the subflows. It increases the conges-
tion windows of each subflow irregardless of the congestion state
of the other subflows that are part of the MPTCP session.

397

5. SENSITIVITY ANALYSIS
The number of experiments executed within the parameter space

influences the accuracy of the results. The more sets explored, the
better the accuracy will be. However, CPU-time constraints limit
the number of experiments that can be executed. The sensitivity
analysis allows to confirm that the number of experiments con-
ducted per parameter space is sufficient to have an accurate view
of MPTCP’s performance. This can be achieved by generating dif-
ferent space-filling designs, and comparing the 5th, 25th, 75th and
95th percentiles and median among each of these designs.

To evaluate the aggregation-benefit we used three influencing
factors per bottleneck link, effectively creating a 6-dimensional
parameter space. 200 sets were generated, using the WSP space-
filling algorithm. We generate 5 different space-filling designs of
comparable size for the sensitivity analysis. Each design explores
different sets among the parameter space. Comparing the percentiles
and the median of the aggregation benefit for each of the designs
has shown that the standard deviation is very low. Relative to the
range of the aggregation benefit (−1, 1), it ranges between 0.1%
and 2.62%. We can conclude that running 200 experiments is suffi-
cient to have a good overview of the aggregation benefit of MPTCP
in our 6-dimensional parameter space. In the load-balancing envi-
ronment we observe a simimlarly low standard deviation ranging
from 0.008% to 1.4%.

6. DISCUSSION
Transport layer protocols like MPTCP, are complex systems, whose

performance is influenced by numerous factors. To explore the im-
pact of these factors we use a space-filling design. Our first attempt
at applying "Experimental Design" techniques to the evaluation of
MPTCP allowed us to discover previously unknown performance
issues within the Linux Kernel implementation of MPTCP.

We were able to modify the penalization algorithm and validate
over our 6-dimensional parameter space, that this modification in-
deed improves the aggregation benefit. Thanks to the sensitivity
analysis, we are confident that the proposed modification works
well within the considered domain of each factor.

Further, we identified an issue within MPTCP concerning the
auto-tuning algorithm during the slow-start phase. The receiver is
not able to accurately estimate the sender’s increase rate while its
subflows are in slow-start. This makes the sender suffer from tran-
sient receive-window limitation issues. A solution for this problem
is far from straight forward, as a good compromise between mem-
ory utilization, responsiveness and throughput must be found.

One of MPTCP’s many benefits is its load-balancing capabilities
by coupling the congestion controls. We validated that the load
balancing works well in low-BDP environments. However, in high-
BDP environments the load balancing does not work well as some
subflows are being limited by the receive buffer. This effectively
prevents OLIA to balance the load among the subflows.

This paper has demonstrated the benefits of applying experimen-
tal design to evaluate and improve the reference implementation of
an IETF protocol. Applying it to real implementations enables us
to understand the impact of implementation heuristics such as auto-
tuning that are often neglegcted in simulation models.

Two directions of further work are clearly open. First, we en-
courage other networking researchers to apply experimental design
techniques to validate their new protocols and algorithms across a
wide range of parameters. Second, we plan to perform more de-
tailled experiments with Multipath TCP to include other factors
such as background traffic, advanced queuing and packet discard
disciplines, flow durations,. . .

7. ACKNOWLEDGMENTS
This research has received funding from the European Union’s

Seventh Framework Programme FP7/2007-2013 under Trilogy 2
project (grant agreement 317756), the EU project CHANGE (FP7-
ICT-257422) and the IAP BESTCOM network. Many thanks go
to Bernadette Govaerts and Catherine Rasse from the UCL-SMCS
for their consultancy while investigating the Experimental Design.
Finally, we thank our anonymous reviewers as well as our shepherd
Richard Mortier for their constructive feedback.

8. REFERENCES
[1] M. Allman. Comments on Bufferbloat. ACM SIGCOMM Computer

Communication Review, 43(1), 2012.
[2] M. Allman and A. Falk. On the Effective Evaluation of TCP. ACM SIGCOMM

Computer Communication Review, 29(5), 1999.
[3] Ö. Andersson. Experiment! Planning, Implementing and Interpreting. Wiley,

2012.
[4] S. Barre, C. Paasch, and O. Bonaventure. Multipath TCP: From Theory to

Practice. In IFIP Networking, 2011.
[5] G. Box and N. R. Draper. Empirical Model Building and Response Surfaces.

John Wiley & Sons, 1987.
[6] Y-C Chen, Y-S Lim, R. Gibbens, E. Nahum, R. Khalili, and D. Towsley. A

Measurement-based Study of Multipath TCP Performance over Wireless
Networks. In ACM SIGCOMM conference on Internet measurement, 2013.

[7] R. A. Fisher et al. The Design of Experiments. Number 5th ed. Oliver and Boyd,
London and Edinburgh, 1949.

[8] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar. Architectural
Guidelines for Multipath TCP Development. RFC6182, March 2011.

[9] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for
Multipath Operation with Multiple Addresses. RFC6824, January 2013.

[10] J. Gettys and K. Nichols. Bufferbloat: Dark buffers in the internet. ACM Queue,
9(11), 2011.

[11] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown.
Reproducible Network Experiments using Container-based Emulation. In ACM
CoNext, 2012.

[12] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The NewReno Modification
to TCP’s Fast Recovery Algorithm. RFC6582, April 2012.

[13] D. Kaspar. Multipath Aggregation of Heterogeneous Access Networks. PhD
thesis, University of Oslo, 2011.

[14] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J-Y. Le Boudec. MPTCP is
not Pareto-Optimal: Performance Issues and a Possible Solution. In ACM
CoNext, 2012.

[15] S. Kleijnen, J.and Sanchez, T. Lucas, and T. Cioppa. State-of-the-art Review: a
User’s Guide to the Brave new World of Designing Simulation Experiments.
INFORMS Journal on Computing, 17(3), 2005.

[16] M. Morris and T. Mitchell. Exploratory Designs for Computational
Experiments. Journal of Statistical Planning and Inference, 43(3), 1995.

[17] R. Myers and D. Montgomery. Response Surface Methodology: Process and
Product Optimization Using Designed Experiments. Wiley, 2009.

[18] H. X. Nguyen and M. Roughan. Rigorous Statistical Analysis of Internet Loss
Measurements. IEEE/ACM Transactions on Networking, 38(1), 2012.

[19] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure. Exploring
Mobile/WiFi Handover with Multipath TCP. In ACM SIGCOMM workshop
CellNet, 2012.

[20] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley.
Improving Datacenter Performance and Robustness with Multipath TCP. In
ACM SIGCOMM, 2011.

[21] C. Raiciu, M. Handley, and D. Wischik. Coupled Congestion Control for
Multipath Transport Protocols. RFC6356, October 2011.

[22] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley. How Hard Can It Be? Designing and
Implementing a Deployable Multipath TCP. In USENIX NSDI, 2012.

[23] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and Analysis of
Computer Experiments. Statistical science, 4(4), 1989.

[24] J. Santiago, M. Claeys-Bruno, and M. Sergent. Construction of Space-Filling
Designs using WSP Algorithm for High Dimensional Spaces. Chemometrics
and Intelligent Laboratory Systems, 113, 2012.

[25] J. Semke, J. Mahdavi, and M. Mathis. Automatic TCP Buffer Tuning. ACM
SIGCOMM Computer Communication Review, 28(4), 1998.

[26] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
Implementation and Evaluation of Congestion Control for Multipath TCP. In
USENIX NSDI, 2011.

[27] B. Zhang, T. Ng, A. Nandi, R. Riedi, P. Druschel, and G. Wang.
Measurement-Based Analysis, Modeling, and Synthesis of the Internet Delay
Space. IEEE/ACM Transactions on Networking, 18(1), 2010.

398

	Introduction
	Experimental Design
	Objective
	Factors
	Design of the experiment

	Experimenting with MPTCP
	Objective
	Factors
	Design of the experiment

	Evaluation
	Aggregation Benefit
	Congestion Balancing

	Sensitivity Analysis
	Discussion
	Acknowledgments
	References

