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ABSTRACT
Network outages are an important issue for Internet Ser-
vice Providers (ISPs) and, more generally, online service
providers, as they can result in major financial losses and
negatively impact relationships with their customers. Trou-
bleshooting network outages is a complex and time-consu-
ming process. Network administrators are overwhelmed with
large volumes of monitoring data and are limited to using
very basic tools for debugging, e.g., ping and traceroute.
Intelligent correlation of measurements from different Inter-
net locations is very useful for analyzing the root cause of
outages. However, correlating measurements of user traffic
across domains is largely avoided as it raises privacy con-
cerns. A possible solution is secure multi-party computa-
tion (MPC), a set of cryptographic methods that enable a
number of parties to aggregate data in a privacy-preserving
manner. In this work, we describe a novel system that helps
diagnose network outages by correlating passive measure-
ments from multiple ISPs in a privacy-preserving manner.
We first show how MPC can be used to compute the scope
(local, global, or semi-global) and severity (number of af-
fected hosts) of network outages. To meet near-real-time
monitoring guarantees, we then present an efficient proto-
col for MPC multiset union that uses counting Bloom fil-
ters (CBF) to drastically accelerate MPC comparison oper-
ations. Finally, we demonstrate the utility of our scheme
using real-world traffic measurements from a national ISP
and we discuss the trade-offs of the CBF-based computa-
tion.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring
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1. INTRODUCTION
Internet outages affect Internet Service Providers (ISPs),

as well as a huge number of industry players, who provide
services and applications that rely on uninterrupted online
connectivity for conducting their business. For ISPs, such
outages may have a direct impact on service level agree-
ments (SLAs) with their business customers, or an indirect
but nevertheless important impact on their reputation for
service quality for consumers. Outages may also have a sig-
nificant impact on online service providers. For example,
according to their reported earnings, Amazon may have lost
about 4.9 million USD when its website was unreachable for
approximately one hour in January 20131. The outages may
be caused by a number of different events, ranging from tar-
geted attacks like prefix highjacking, routing issues due to
misconfiguration, to equipment malfunction, power failures
and problems with physical transmission media, e.g., fiber
cuts. Detecting and troubleshooting outages in a timely
manner is essential for the successful operations of all these
businesses.

Current troubleshooting tools, including a number of in-
dustry solutions (e.g., from Cisco2), rely heavily on closed
(single) domain network information [2]. As the automated
tools require processing of private data (e.g., customers’ traf-
fic, if passive measurement tools are utilized) and commer-
cially sensitive data (e.g., information about the network
quality of an ISP or an enterprise), aggregation of such data
from multiple domains is not a current practice. Yet it ap-
pears quite obvious that there are a number of potential ben-
efits that may be achieved with such aggregation, as demon-
strated by researchers [9]. Root cause analysis is an integral
part of troubleshooting outages, which requires determining

1http://www.networkworld.com/news/2013/
013113-amazoncom-suffers-outage-nearly-5m-266314.
html
2http://www.cisco.com/en/US/docs/net_mgmt/
assurance_manager/mpls/1.0/user/guide/cod.pdf

429



the scope of the outage, that is, whether an outage is local to
a domain or affects multiple domains (a global outage), and
the number of clients that are impacted. To assist with trou-
bleshooting outages by comparing connectivity information
from a number of different vantage points, network opera-
tors currently utilize mailing lists (e.g., NANOG [25] and
Outages [26]) to request assistance from peers. Other tools
and services used for monitoring include external monitoring
systems and customer support, which directly liaise with the
affected customers, and subsequently direct the initial infor-
mation to technical support for resolution. Needless to say,
the latter is ineffective as a means of enabling fast reactivity
to service disruptions.

To enable correlating private data (both private for the
ISP’s business confidentiality and the customer’s data point
of view), it is important to include a privacy preserving
mechanism within the outage detection system. To illustrate
this, consider the following scenario. A network operator no-
tices an outage towards a destination. To troubleshoot the
outage, the operator would typically ask if other operators
experience a problem with the same destination in mailing
lists, such as NANOG. However, if the destination hosts
controversial content, the operator might not want to dis-
close that they experience a problem to this destination and
therefore the operator would not be able to receive help in
troubleshooting the outage. Recent advances in privacy pre-
serving computations have enabled real-time aggregation of
large scale network data [7] using secure multi-party compu-
tation (MPC) [11]. MPC is a set of cryptographic methods
that enable multiple parties to jointly compute a function
without revealing their inputs. In other words, MPC enables
a number of parties to jointly provide the functionality of a
trusted third party, without having to trust anyone of the
parties.

In this paper, we build on the SEPIA MPC framework [8]
and propose a privacy preserving approach for collabora-
tive connectivity tracking that aggregates passive network
traffic measurements across multiple ISPs to assist with an-
alyzing the root cause of outages. Our contributions are
as follows. First, we propose Multi-FACT, a novel system
for detecting the scope and severity of network outages by
aggregating traffic data from multiple domains, while pre-
serving the privacy of the source data. Multi-FACT builds
on earlier work on the Flow-based Approach for Connectiv-
ity Tracking (FACT) [31]. It enables multi-domain collab-
oration, while keeping confidential all associations between
domains and the destinations towards which they experi-
ence outages. Second, to enable efficient (near real-time)
outage detection, we present an efficient method for multi-
set union operations using counting Bloom filters (CBF). We
demonstrate the benefits of the proposed system through ex-
perimental evaluation based on real (live) network datasets
from a Swiss research and academic network. We show that
it is possible to achieve up to 97% reduction on the outages
that need to be investigated, thereby enabling more produc-
tive use of the operators’ technical resources. To aid with
practical system design considerations, we further analyze
the estimation accuracy of the CBF and the trade-offs in-
troduced by the CBF-based computations.

We start by discussing related work on network outage
monitoring systems and privacy preserving aggregation for
networking applications in Section 2. In Section 3, we dis-
cuss two important prior works that our system design re-

lies on, namely FACT and MPC. Our proposed system is
presented in Section 4, including the details of the efficient
privacy preserving aggregation scheme based on MPC. Sec-
tion 5 demonstrates the utility of our proposal in real world
events. We present the experimental evaluation of our sys-
tem in terms of the protocol runtime and result accuracy in
Section 6. Finally, in Section 7 we conclude the paper.

2. RELATED WORK
The related work falls into two categories: 1) network

outage monitoring approaches and 2) privacy preserving ag-
gregation.

2.1 Network outage monitoring systems
Existing approaches to monitoring Internet reachability

problems can be classified based on three criteria: the mon-
itoring approach, the system architecture and the specific
goals of a system.

The monitoring approach can be active, passive or hy-
brid. Active measurement systems (e.g., PlanetSeer [36])
continuously probe remote destinations using tools such as
traceroute and ping, and typically introduce network over-
head. Passive measurements may be collected either from
the control or the data plane. Control plane passive mea-
surement systems typically use BGP data (e.g., from Route-
Views [30] or RIPE RIS [27]). However, these approaches
typically rely on anomaly detection techniques for discov-
ering, e.g., prefix hijacking, and are prone to false posi-
tives. Passive measurements from the data plane leverage
user traffic, like in FACT [31] and Crowdsourcing Event
Monitoring [9]. To exploit the benefits of active and pas-
sive measurements, some systems combine both approaches.
Examples of hybrid systems include the approaches pro-
posed in [37], [22] and [33]. In hybrid systems, passive
measurements are used to determine the remote destina-
tions (usually BGP prefixes) that are affected by an outage,
while active measurements are used to verify and localize
the outages. Besides, the collaborative monitoring platform
PerfSonar [19, 35] includes a number of both active and
passive measurement tools to troubleshoot network perfor-
mance problems. However, PerfSonar shares non-sensitive
network monitoring data, such as traceroute or SNMP mea-
surements, and does not provide privacy-preserving compu-
tation mechanisms for analyzing more sensitive data, which
is the focus of this work. Furthermore, there are also emerg-
ing techniques that use aggregated information from multi-
ple (non-network) sources, including social stream analysis
of user complaints [2, 15].

The monitoring approaches can also be categorized ac-
cording to the system architecture. We refer to entities that
perform network monitoring as monitors and the process
to determine outages as the decision making process. Some
monitoring systems, such as Hubble [22] and Argus [33],
use distributed monitors and centralized decision making
processes. In other words, they employ monitors that are
distributed across the Internet, but the decision making is
performed by a centralized entity. Monitoring systems us-
ing this architecture detect Internet-wide (or global) out-
ages, which may be irrelevant for some domains. In contrast,
some monitoring system, such as FACT [31], only monitor
the traffic of a domain (i.e., ISP or AS) and the decision
making process is performed by the same domain. While
this means that only relevant outages are detected, the sys-
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tem cannot determine whether the outage is limited to a
domain or is more widespread. Other monitoring systems
(e.g., Crowdsourcing Event Monitoring [9]) use distributed
monitors, and the decision making process is performed by
each monitor individually based on its data and the data
from other end-user systems. The clear advantage of this
architecture is that the system is capable of detecting global
outages and determining which ones are relevant to the do-
main.

While the main goal of all the monitoring approaches
is the same, that is, to detect outages, some approaches
are also designed to achieve additional goals, such as trou-
bleshooting or remediation. For example, Hubble [22] at-
tempts troubleshooting outages by locating or narrowing
down the potential locations of outages. Meanwhile, Life-
guard [23] redirects traffic away from outages.

Our approach, Multi-FACT, uses passive data-plane mea-
surements. However, unlike FACT, Multi-FACT correlates
data from multiple monitors. The decision making process is
run by each domain individually, but it exploits information
from other domains to diagnose local and global outages.
In our recent work [14], we provide a tutorial-nature intro-
duction to leveraging MPC for troubleshooting outages with
Multi-FACT.

2.2 Privacy preserving aggregation
Several privacy preserving aggregation mechanisms for net-

working applications have been proposed. We present some
of the mechanisms below.

In [29], Roughan and Zhang propose privacy preserving
mechanisms for joint network performance computation. In
particular, the work focuses on traffic summation and In-
ternet anomaly detection. It proposes a secure summation
protocol using secret sharing. (We discuss secret sharing in
more details in Section 3.2.) The secure summation protocol
is also used to compute average delay in [28]. Furthermore,
the work discusses the use of sketch [10], a small-space data
structure that allows an approximate reconstruction of the
value associated with any given key, to compress the input
data. Anomaly detection is performed by applying a time-
series forecast model to the sketch of the input data. These
works use a similar privacy mechanism to ours, the main
difference with respect to our proposal is the application to
passive outage monitoring and the validation of the mecha-
nism on an experimental platform with real ISP data.

Applebaum et al. [1] propose a privacy preserving aggre-
gation mechanism for a large number of participants for
generic networking applications. The work focuses on the
aggregation mechanism to compute the intersection of the
participants’ input data. For efficiency reasons, the mech-
anism uses a semi-centralized architecture (as opposed to
the fully distributed architecture used in our system), which
also allows clients to asynchronously provide inputs without
requiring complex scheduling. It includes (as a minimum) a
proxy and a database. The proxy obliviously blinds client
inputs and transmits the blinded inputs to the database,
while the database builds a table that is indexed by the
blinded key and performs the aggregation. The mechanism
utilizes several cryptographic protocols (such as oblivious
pseudorandom functions) and it can be extended to include
multiple proxies and databases. Compared to our solution,
this work relies on both a different architecture and a dif-
ferent privacy mechanism. Furthermore, this work is not

directly applicable to the problem (network outage moni-
toring) addressed with our proposal.

3. BACKGROUND
We provide an overview of the privacy preserving compu-

tation mechanism used in this paper and the passive outage
detection approach we use as a basis for Multi-FACT.

3.1 Passive Monitoring with FACT
A number of recent studies have identified passive network

traffic measurements as a new, promising data source for
detecting and measuring the impact of network outages [31,
17, 12]. These approaches analyze network traffic over time
to identify changes in the traffic signal observed from dif-
ferent networks. Compared to the traditional approach of
running active measurements, they leverage an existing rich
data source, i.e., the innate traffic of a network, without
introducing additional probing. In this work we exploit in
particular the tool introduced in the Flow-based Approach
for Connectivity Tracking (FACT) [31], which is based on
passive flow-level traffic measurements.

FACT captures unsampled network traffic data using Net-
Flow from the border routers of a network, like an ISP or
an enterprise network. It extracts traffic between local and
remote hosts and performs bi-flow pairing. A two-way flow
suggests a successful connection and refers to outgoing traf-
fic (as perceived by the border routers), matched with the
corresponding incoming traffic. In particular, the outgoing
and incoming traffic include the same 5-tuple (e.g. IP ad-
dresses, port numbers, and protocol number) with reverse
values in the source and destination fields. On the other
hand, the presence of outgoing traffic without a correspond-
ing incoming traffic flow is classified as an one-way flow,
which indicates an unsuccessful connection with a remote
destination.

Network outages are identified by a rapid increase in the
number of unsuccessful connections (one-way flows) and a si-
multaneous decline in the number of successful connections
(two-way flows) to a remote destination. FACT classifies
networks with only one-way flows as a potential network
outage. Networks that produce a mixture of one-way and
two-way flows are considered operational. FACT can also
detect outages at different levels of granularity, i.e., a re-
mote destination may refer to an IP address, prefix or AS.
Furthermore, this approach only detects outages that affect
the clients of a monitored network, which helps to prioritize
outages by the number of affected local clients.

3.2 Secure multi-party computation (MPC)
Our privacy-preserving aggregation scheme is based on

secure multi-party computation (MPC) [11]. Given input
data from multiple parties, MPC is a cryptographic protocol
that enables distributed parties to jointly compute functions,
while providing formal guarantees on the confidentiality of
the input data and on the correctness of the computation
result.

The most popular MPC method uses Shamir secret shar-
ing (SSS) (e.g., in [4]). The SSS scheme [32] is a well-known
secret sharing scheme based on polynomial interpolation.
Given a secret D, the (k, n) SSS scheme generates n shares
from D and distributes them between n entities. D is only
computable given the knowledge of at least k shares (where
k < n), and the knowledge of k − 1 shares does not reveal
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any information about D. SSS is suitable for MPC since it
has a homomorphism property, where the results of certain
types of computations performed on the shares match the
results of the computations performed on the actual data.
The SSS scheme guarantees the confidentiality of the input
data and the correctness of the results. Provided that the
polynomial in SSS is of rank t =

⌊
n−1
2

⌋
, in the honest-but-

curious adversary model (which is the adversary model used
in this work) MPC is secure up to t < n

2
colluding entities

who, jointly, would not be able to obtain any information
about either the secret input data or the intermediate results
of the computations [4].

In our MPC scheme, input peers provide the input data,
and privacy peers perform the secure computation on this
data. An entity participating in MPC may have either a
single role (i.e., as input peer or privacy peer) or both roles.
In summary, the input peers use SSS to secretely distribute
their input data to the privacy peers. The privacy peers
then perform the computation on the shares and return the
final computation results to the input peers. As the privacy
peers only receive the shares of the input data and SSS guar-
antees that a privacy peer (on its own) cannot recover the
input data, there is no requirement for a trust relationship
between the input and privacy peers. The number of input
peers directly affects the computational complexity of MPC,
while the number of privacy peers affects both the compu-
tational complexity and the resilience of the MPC mecha-
nism against collusion attacks. Generally, MPC’s resilience
to attacks scales linearly with the number of privacy peers.
Hence, the selection of the number of privacy peers reflects
a complexity-resilience trade-off.

For many years, the research field of MPC had been al-
most exclusively of theoretical interest. The majority of the
works focused on improving the security of MPC under more

sophisticated attack models (e.g., [21]) and reducing the
computational complexity of different operations (e.g., [5]).
While the real-world use of MPC is limited due to the com-
putational overhead, there are a number of on-going efforts
to exploit MPC for real-world problems. For example, a
real-world MPC application was demonstrated on January
2009, when MPC was used to facilitate an actual multi-party
sugar beet auction in Denmark [6]. An example MPC appli-
cation in networking is for privacy-enhanced inter-domain
route computation [18, 20]. Furthermore, several efficient
MPC frameworks, such as SEPIA [8], VIFF [13] and Fair-
PlayMP [3], have been recently introduced.

We use SEPIA [8], an efficient MPC library based on SSS,
to evaluate our proposed mechanism (in Section 6). SEPIA
is written in Java, is optimized for parallel execution, and is
specifically designed to aggregate network events and statis-
tics from multiple domains. In SEPIA, SSL is used to secure
the communications among the peers. SEPIA uses the semi-
honest (i.e., honest-but-curious) adversary model, where the
adversaries (semi-honest privacy peers) conform to the pro-
tocol, but use the information received and may collude to
find the secret input data.

We choose MPC as the specific privacy preserving mech-
anism (as opposed to selecting, for example, differential pri-
vacy [16]), as our goal is to perform a privacy-preserving
computation on sensitive input data without using a trusted
third party. In contrast, differential privacy is useful for pub-
lishing an obfuscated version of the sensitive data, which is
not relevant for our goal. The input peers only share the
output of our MPC computation, which is a counting Bloom
filter that encodes aggregate information about the number
of domains (or hosts) that cannot reach different destina-
tions. Therefore, the output of the computation does not

Figure 1: The architecture of our proposal.
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Algorithm 1: Multiset union using a combination of
comparison and addition operations.

Input: Input multiset from m domains:
[S1,S2, . . . ,Sm]

Output: Sout

1 Sout = S1;
2 for a = 2..m do
3 foreach (xi, yi) ∈ Sa do
4 inSet = False;

// If xi ∈ Sout, update the count

5 foreach (xj , yj) ∈ Sout do
6 if xi = xj then
7 yj = yj + yi;
8 inSet = True;
9 break;

10 end

11 end
// Otherwise add (xi, yi) to Sout

12 if !inSet then
13 append (xi, yi) to Sout;
14 end

15 end

16 end

provide any association between network domains and the
destinations towards which they experience outages.

4. MULTI-FACT
While FACT has many advantages compared to other

network outage monitoring systems, it does not have suf-
ficient information to troubleshoot outages. This follows
from FACT only using the traffic data collected in the do-
main where it was deployed, and therefore it has limited
visibility into the scope of an outage. Efficiently combin-
ing traffic data from multiple domains in a privacy preserv-
ing manner can greatly help in troubleshooting outages. To
make this feasible we propose Multi-FACT, a privacy pre-
serving distributed network outage monitoring system based
on FACT. Given that multiple domains run FACT indepen-
dently, Multi-FACT aggregates the outputs of FACT from
these domains using MPC to preserve the confidentiality of
input data, i.e., of IP addresses.

Combining FACT outputs from multiple domains gener-
ates more information about an outage, such as the scope
and the severity of an outage. The scope of an outage refers
to how widespread an outage is, that is, the number of do-
mains that detect the same outage. The scope can be local,
semi-global or global. A local outage is only experienced by
one domain. In contrast, a global outage is experienced by
all (participating) domains. A semi-global outage is expe-
rienced by multiple (but not all) domains. Using the scope
of an outage, we can narrow down the possible location and
cause of the outage. The probable cause of a local outage is a
fault in the domain that detected the outage, while a global
outage indicates a fault in the remote location. The severity
of an outage refers to the total number of local clients in all
participating domains that fail to reach a specific destina-
tion. This information is useful to prioritize troubleshooting,
that is, outages that affect more clients should be addressed
with a higher priority.

4.1 High level architecture
Figure 1 illustrates the architecture of Multi-FACT. In

Multi-FACT, the individual domains (ISPs) run FACT in-
dependently. Based on the traffic flows in a domain, FACT
outputs a list of unreachable destinations and the corre-
sponding number of local clients that cannot reach the des-
tinations. To privately aggregate FACT outputs, each do-
main generates secret shares based on the FACT outputs
using SSS and sends the shares to the privacy peers. The
privacy peers then perform the private data aggregation and
return the result to the individual domains.

4.2 Aggregating FACT outputs
The scope and the severity of an outage are computed

separately. Recall that FACT outputs the unreachable des-
tinations and the corresponding number of local clients that
cannot reach the destinations. To compute the scope, we
need to count the number of domains that cannot reach each
unreachable destination. To compute the global severity of
an outage, we need to count the number of clients in all do-
mains that cannot reach each unreachable destination. One
possible operation that can be used to compute the scope
and the severity of an outage is multiset union. We note that
multiset is a set in which elements can be repeated multiple
times. In our case, a multiset is used to represent the num-
ber of clients or domains that cannot reach specific unreach-
able destinations. Given several multisets as the input, the
multiset union operation computes all the distinct elements
and the corresponding total number of occurrences of each
element in the input multisets. The multiset representation
and the aggregation process differ for the computations of
the scope and the severity of an outage. In particular, they
are used as follows:

• Scope computation: each domain prepares a multi-
set, where the elements represent the unreachable des-
tinations, and each unreachable destination only oc-
curs once. In this case, an input multiset simply repre-
sents the destinations unreachable from a domain. The
multisets from all domains are the input to the multi-
set union operation. The resulting aggregate multiset
contains the unreachable destinations, where each des-
tination is repeated as many times as the total number
of domains that detected the same outage.

• Severity computation: each domain prepares a mul-
tiset, where the elements represent the unreachable
destinations, and the number of occurrences for each
unreachable destination corresponds to the number of
local clients in the domain that cannot reach the desti-
nation. Then, the multiset union operation computes
an aggregate multiset, which contains the unreachable
destinations. Each destination is repeated as many
times as the total number of clients that cannot reach
it.

4.3 Multiset union in MPC
The multiset union operation is used to aggregate the out-

puts of FACT from multiple domains to determine the scope
and severity of outages. In MPC, multiset union opera-
tion is typically performed using one of two methods. The
first method is by combining comparison and addition op-
erations. The second method is based on using counting
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Algorithm 2: Inserting yi, the count of xi, to a CBF.

Input: (xi, yi)
// Given k hash functions, h1, . . . hk

1 for j = 1..k do
2 posj = hj(xi);
3 if CBF (posj) < yi then
4 CBF (posj) = yi;
5 end

6 end

Algorithm 3: Retrieving yi, the count of xi, from a
CBF.

Input: xi

Output: yi
// Given k hash functions, h1, . . . hk

1 for j = 1..k do
2 posj = hj(xi);

// If the CBF position is 0, then xi �∈ CBF

3 if CBF (posj) = 0 then
4 return xi �∈ CBF;
5 end

// Find the minimum value

6 if j = 1 then
7 yi = CBF (posj);
8 end
9 if CBF (posj) < yi then

10 yi = CBF (posj);
11 end

12 end
13 return yi

Bloom filter (CBF). We discuss the two methods in detail
below.

We use the following notation in the rest of the paper.
A multiset S contains r input elements, which represent
unreachable destinations, and each input element can be
repeated multiple times. S is represented as a vector of tu-
ples, ((x1, y1), (x2, y2), . . . (xr, yr)). For the tuple (xi, yi), xi

represents an element of the multiset and yi is the number
of occurrences or the count of xi in the multiset.

4.3.1 Comparison-based method
A straightforward method to perform multiset union in

MPC is by using a combination of comparison and addition
operations. Algorithm 1 shows multiset union using this
method. The comparison (equal test) operation is used to
determine whether an unreachable destination appears in
different multisets (line 6 in Algorithm 1) and the addition
operation is used to sum the total number of occurrences of
the unreachable destinations (line 7 in Algorithm 1).

While the approach is seemingly straightforward, the com-
putation relies on comparison operations, which require sev-
eral rounds of MPC multiplication operations and result in
a high computation overhead [8]. We analyze the runtime
of this approach in Section 6.1. Furthermore, the aggregate
multiset discloses all the unreachable destinations, includ-
ing destinations that may be reachable from some domains,
but unreachable from others. This might not be a desirable
privacy guarantee: it reveals, to domains that can reach a
destination, that some other domains (potentially compet-

ing ISPs) cannot reach the same destination, but without
revealing the identity of these other domains. To avoid dis-
closing that information, a better approach (considering pri-
vacy) would be to reveal how many other domains cannot
reach a destination, if and only if this destination is unreach-
able from the local domain.

4.3.2 CBF-based method
As proposed in [24], an alternative method to computing

multiset union is by using counting bloom filters (CBF). In
this case, a counting bloom filter (CBF) is used to repre-
sent a multiset, and multiset union operation is computed
as a fixed array summation. A CBF is an integer array of
size s, where initially all the elements are set to 0. Re-
call that we have a multiset S consists of r input data,
((x1, y1), (x2, y2), . . . (xr, yr)). Converting a multiset S to
a CBF requires k independent hash functions h1, h2, . . . , hk

where the range of each hash function is between 1 and s.
The algorithm to insert (xi, yi) is provided in Algorithm 2.
The hash functions are used to determine the positions in
the CBF to insert (xi, yi) and the values in the positions are
updated to yi only if the existing value in the CBF is less
than yi. The algorithm to retrieve the count of xi, yi, from
the CBF is provided in Algorithm 3. Note that we need the
set of hash functions that are used to convert the multiset
to CBF. As before, the hash functions are used to deter-
mine the positions in the CBF. If any of the CBF positions
is 0 then xi �∈ S . Otherwise, yi is the minimum of all the
positions that xi was hashed to.

All the domains select the same set of hash functions to
convert their multiset (i.e., the list of unreachable destina-
tions) to the input CBF. As a result, elements that appear
in different input multisets are hashed to the same posi-
tions. Therefore, the CBF representation transforms mul-
tiset union operation to summation of integer arrays. This
means that CBF-based multiset union only requires addi-
tion in MPC, which is an inexpensive operation since the
operation is performed locally. However, CBF-based multi-
set union affects the accuracy of the computation since CBF
introduces errors through hash collisions.

4.4 Multi-FACT operation using multiset uni-
on

We use the CBF-based multiset union in Multi-FACT.
Figure 2 illustrates the MPC protocol for CBF-based mul-
tiset union. Each domain runs FACT on its traffic indepen-
dently and uses the output of FACT as the input multiset.
Next, each domain converts its input multiset to a CBF us-
ing a set of hash functions. The multiset content depends
on the type of computation, as discussed in Section 4.2. We
assume that all the domains use the same hash functions
for converting the input multisets to CBFs. Each domain
then uses SSS to generate secret shares for each element in
the CBF and distributes the shares to the privacy peers.
The privacy peers then collaboratively perform the private
computation (summation) on the shares and recover the re-
sulting CBF. The resulting CBF is then sent back to the
domains. To determine the total count for each unreachable
destination (which corresponds to either the scope or the
severity), each domain retrieves the count for each unreach-
able destination.
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Figure 2: CBF-based multiset union in MPC.
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Figure 3: The local severity (number of affected local hosts) of the detected outages in different domains of
SWITCH for Hurricane Sandy event.

5. REAL-WORLD CASE STUDIES
In this section we analyze the impact of two important

real-world events to illustrate the usefulness of Multi-FACT.
Through our case studies, we also provide a novel perspec-
tive on the impact of these events, based on a new dataset.
As input we use traffic traces from SWITCH [34] – a national
backbone ISP in Switzerland that connects approximately
40 universities, governmental institutions and research lab-
oratories to the Internet. Specifically, we use unsampled
NetFlow data collected from the border routers of SWITCH
during: 1) Hurricane Sandy and 2) a major misconfigura-
tion in one of the largest Internet Exchange Points (IXP) in
Europe that partitioned its client base.

We note that, in this section, we use a Ruby based im-
plementation of Multi-FACT that does not include MPC
functionality. Our purpose was to demonstrate the benefits
provided by the use of Multi-FACT, rather than the privacy
feature, which is an additional operational requirement (to
enable ISPs to privately share data for Multi-FACT compu-
tations). We also note that consequently, there is no error
introduced by the use of CBF operations. We estimate this
error, in a fully functional Multi-FACT that includes MPC,
in Section 6.

5.1 Troubleshooting Hurricane Sandy
In the evening of October 29 2012, Hurricane Sandy hit

the east coast of North America. It was the deadliest and
most destructive hurricane in the 2012 Atlantic hurricane
season with damage estimated around 75 billion USD. Some
of the worst hit areas were New York and New Jersey, which
are the locations of major data centers. Hurricane Sandy
resulted in power loss, fiber cuts and other damages that
affected Internet connectivity.

We investigate the impact of Hurricane Sandy on the In-
ternet connectivity of a remote location, as measured with
FACT, and demonstrate the utility of correlating data from
multiple domains. To simulate a multi-domain setting, we
divide the SWITCH traffic equally into four domains, based
on the IP addresses of the local hosts. Next, we analyze the
Hurricane Sandy event independently in each of these do-
mains using FACT. Finally, we determine the overall scope
of the detected outages using Multi-FACT.

Figure 3 and 4 show the impact of Hurricane Sandy in
terms of BGP prefixes unreachable in each of the four do-
mains. We observe that almost 80 BGP prefixes were un-
reachable from the four domains during the time of the
event. We observe a sharp increase in the number of un-
reachable BGP prefixes during the event (from October 30
00:00 in Figure 3 and 4) compared to the day before. Fur-
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Figure 4: The overall scope of the detected outages as viewed by individual domain of SWITCH for Hurricane
Sandy event.

thermore, while the number of unreachable prefixes decreas-
ed over time, a significant number of prefixes was still un-
reachable two days after the event. In addition, the passive
measurement reveals a diurnal pattern in user traffic and
the resulting detected network outages.

Figure 3 shows the local severity for each domain during
Hurricane Sandy. In the figure, we annotate the number
of prefixes that had a higher impact (i.e., affected more lo-
cal hosts) using darker colors. We observe that in all four
domains, most prefixes affect a small number of local hosts
(denoted in grey). This means the prefixes affected by Hur-
ricane Sandy were not particularly popular in Switzerland.
Note that the affected prefixes are registered to organiza-
tions located around New York.

Figure 4 shows the scope of the detected unreachable BGP
prefixes at each domain. We use colors to highlight the
number of domains in SWITCH that were unable to connect
to certain BGP prefixes. In particular, darker colors denote
more domains are affected. From the figure, we observe that
the majority of the unreachable prefixes detected at each
domain also affect other domains in SWITCH.

5.2 Troubleshooting A Partitioned IXP
On March 25 2010, part of the SWITCH network expe-

rienced a partial blackhole after a scheduled maintenance
at a large European IXP. We investigate the impact of this
event in terms of the overall severity and the scope of out-
ages using Multi-FACT, as seen by the six main customers
of SWITCH. To obtain the individual traffic of each of the
six main customers, we filter SWITCH traffic based on the
IP address ranges of each of the customers during the event.
We use Multi-FACT to detect the unreachable destinations
in each domain and aggregate them to determine the scope
and severity of the outages. Note that Multi-FACT can
detect outages in three different levels of granularity, IP ad-
dresses, /24 networks and BGP prefixes, and perform the
aggregation separately.

Figure 5 shows the scope of the detected outages in the
BGP prefix level. In this experiment, Multi-FACT only ag-
gregates prefixes that are unreachable by at least two local
hosts at each domain. As before, we use colors to denote the
number of domains that are affected by unreachable prefixes,
where dark colors indicate that more domains are affected.
We observe that half of the unreachable prefixes only af-
fect one domain. Since we only consider outages that affect
at least two local hosts at each domain, we do not detect
global outages (i.e., outages common to all six domain) for
this event. Figure 6 shows the overall severity of the de-
tected outages at the level of BGP prefixes obtained using
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Figure 5: Scope of detected outages during parti-
tioned IXP event.
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Figure 6: Overall severity of detected outages during
partitioned IXP event.

Multi-FACT. We use different colors to highlight the total
number of local hosts that are affected by unreachable BGP
prefixes. We observe that half of the detected outages are
experienced by two or more local hosts, while the other half
only affect one local host.

5.3 Discussion
In this section, we evaluated the scope and the severity of

the outages detected during Hurricane Sandy and the parti-
tioned IXP events. Scope is useful for determining the root
cause of outages, by narrowing down the possible source of
the outage, while severity helps in prioritizing troubleshoot-
ing.

Typically, outages that affect a large number of local cli-
ents (i.e., have more severe impact) should receive trou-
bleshooting priority, as the number of affected local clients
directly relates to the popularity of the remote destination.
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Domain The scope of outages
Local Semi-global/global

A 45.4% 54.6%
B 45.69% 54.31%
C 48.53% 51.47%
D 42.59% 57.41%

Table 1: The percentage of outages detected during
Hurricane Sandy event, classified by the scope per
individual domain.

For example, for the Hurricane Sandy event, each domain
can prioritize troubleshooting for the 3.8% of outages (on
average) that affect more than 14 local clients. In the parti-
tioned IXP events, 2.9% of the outages (affecting more than
eight clients) should receive troubleshooting priority.

Semi-global and global outages affect multiple domains.
This indicates that the root cause is not in the individual
domains that detected the outage. Global outages are likely
caused by problems in the remote destination’s network, and
the source of semi-global outages is in the path between the
domains and the remote destination. For these types of
outages, the problem is beyond the control of the network
administrators of the local domains. In this case, the local
administrators need to notify their counterpart at the do-
main where the problem originates. As shown in Table 1,
more than 50% of the outages experienced in each domain
during Hurricane Sandy were either semi-global or global
outages, while only 18.5% of the outages detected during
the partitioned IXP event were semi-global or global. On
the other hand, local outages only affect one domain, and
hence the likely cause of these outages is local misconfigura-
tion. In this case, the local administrator needs to further
troubleshoot the infrastructure. On average, 45% of the
outages detected by the domains during Hurricane Sandy
were local, while the percentage of local outages during the
partitioned IXP event was 81.5%.

6. IMPLEMENTATION TRADEOFFS
In this section, we compare the performance of the compa-

rison-based and CBF-based multiset union. The goal is to
assess the implementation tradeoffs between the two mul-
tiset union methods. We perform the evaluation using the
SEPIA MPC library [8], which contains the operations that
are required for comparison-based multiset and a built-in
CBF-based multiset union operation.

To run the experiment, we implement a CBF-based mul-
tiset union protocol in SEPIA, using an example protocol
as the code base. Furthermore, we generate all the required
materials (including running scripts and configuration files

Input Privacy peers
peers 3 5 7 9
5 866 894 899 929
10 2,825 2,914 2,933 3,030
15 5,702 5,882 5,919 6,116
20 9,522 9,823 9,884 10,214
25 14,311 14,763 14,855 15,351

Table 2: Estimated runtime in days for comparison-
based multiset union operation.

for each peers) using a built-in configuration editor. The
evaluation is performed in an OpenStack cloud, which con-
sists of six workers. Each worker has 12 CPU cores of In-
tel Xeon 2.67GB and a Gigabit network connection. We
use nine virtual machines, where each machine has 2GB of
memory and one virtual CPU based on KVM virtualization.
Due to the system limitation, we cannot assign all the input
and privacy peers in the experiments to different machines
(recall the definitions of input and privacy peers from Sec-
tion 3.2). Hence we simulate the input and privacy peers,
where the peers are uniformly distributed across the virtual
machines. The number of input data, r, for each of the input
peers, corresponds to the highest number of unreachable IP
addresses in the Hurricane Sandy event, which is 2,114 IP
addresses. We vary the number of ISPs aggregating input
data (i.e., the input peers) and the number of MPC privacy
peers. The number of input peers are varied from 5 to 25
and the number of privacy peers are varied from 3 to 9.

6.1 Protocol runtime
We compare the protocol runtime of the comparison-based

and the CBF-based multiset union. The protocol runtime
refers to the total computation and communication time re-
quired to perform multiset union on one set of input data.
Note that the protocol time does not include the peers dis-
covery time.

For comparison-based multiset union, we estimate the time
taken to run the protocol for different number of input peers
and privacy peers. Given the input data size and the number
of input peers, we run a non-MPC comparison-based mul-
tiset union protocol and count the number of comparison
operations (nc) and addition operations (na) required. The
non-MPC protocol is an original implementation in Ruby.
To estimate the time, we measure the runtime of one ad-
dition of two input data operation (ta) and one compari-
son (i.e., equality check) of two input data operation (tc) in
SEPIA for different numbers of privacy peers. For estimat-
ing the runtime of the addition and comparison operations,
we conduct the experiment 10 times and compute the aver-
age for the estimated runtime. The estimated protocol run-
time is computed as nc × tc + na × ta. Therefore, given the
numbers of input and privacy peers, the estimated runtime
is the total number of operations required for the number
of input peers multiplied by the total time required for the
number of privacy peers.

Table 2 shows the estimated runtime for the comparison-
based multiset union. We observe that the estimated run-
time is generally quite high. For example, the runtime for
a 5 input peers and 3 privacy peers configuration is around
866 days, while the estimated runtime for 25 input peers and
9 privacy peers is around 15,351 days. For a given number
of input peers, the estimated runtime increases as there are
more privacy peers. For example, the estimated runtime for
5 input peers and 5 privacy peers is 894 days, in contrast to
866 days required for the same number of input peers and 3
privacy peers. Note that our estimation only considers the
addition and comparison operations, and there may be other
operations required for the actual comparison-based proto-
col in MPC, which would increase the protocol runtime.

Figure 7 shows the runtime of the CBF-based multiset
union in SEPIA. The figure presents the protocol runtime for
different peer configurations, each averaged over 5 runs. We
observe that the protocol runtime increases as the number
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of privacy peers increases. On average, the runtime for a
configuration with 9 privacy peers is almost one second more
than the runtime for a configuration with 3 privacy peers.

Comparing the results in Table 2 and Figure 7, there is
a significant runtime difference between the two multiset
union methods. For example, for 3 privacy peers configura-
tion, the runtime for comparison-based method is at least
74 million times the runtime for CBF-based method. The
CBF-based method has shorter runtime since the method is
essentially a summation of integer arrays. CBF-based mul-
tiset union only requires the use of the addition operation,
which is the most efficient operation in MPC. In contrast,
comparison-based multiset union requires comparison and
addition operations. The implementation of the equality
check operation in SEPIA is quite efficient [8], however it
still requires several multiplication operations, which results
in higher runtime.

6.2 Accuracy of the results
We compare the accuracy of the results of the compa-

rison-based and the CBF-based multiset union. The main
advantage of the comparison-based multiset union is that
the results are error free. On the other hand, CBF-based
multiset union introduces overestimation error. The goal of
this evaluation is to determine the error rate of the CBF-
based multiset union when compared to the results of the
comparison-based multiset union and the possible ways to
minimize the overestimation error.

Recall from Section 4.3 that an input (xi, yi) ∈ S con-
sists of an element (i.e., unreachable destination) xi, and
its corresponding count yi. Furthermore, each (xi, yi) is
represented by k copies of yi in the CBF. Overestimation
error occurs when the computation result of an input data
is higher than what it should be. This error is triggered by
collision, that is, when two or more input points are hashed
to the same positions in the CBF. Note that overestimation
error only occurs when all k copies of an input data entry
in the CBF are affected by collision.

Collision can occur locally, between two or more inputs
of an input peer, or globally, between two or more inputs
from different input peers. Local collision occurs during the
input data insertion process. When this happens, the input
data with the smaller count is overwritten by the input data
with the larger count (lines 3-5 in Algorithm 2). This also
means that scope computation is not affected by overesti-
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mation error due to local collision, since the counts of all
the input data are equal. Global collision becomes apparent
when aggregating the CBFs from different input peers. It
occurs because different input peers have different sets of
input data. Some of the inputs of an input peer are com-
mon to all input peers, some are common to multiple input
peers and the rest are unique to an input peer. In our case,
the distribution of the input data relates to the popularity
of a destination across different input peers. Another fac-
tor contributing to global collision is the existence of local
collisions.

In Figure 8 and 9, we show the error rate for different
numbers of hash functions (k) with CBF of size 131,072
and the error rate for different sizes of CBF (s) with 10
hash functions. The error rate is computed as the number
of incorrect results divided by the total number of unique
inputs across all the input peers (obtained from the non-
MPC protocol). Note that in this evaluation, the number
of privacy peers does not affect the accuracy of the results,
and the inputs are always hashed to the same positions in
the CBF.

We observe from Figure 8 that for 10 or more input peers
the error rate varies significantly as the number of hash func-
tions increases. For example, for 15 input peers, the error
rate is 18% when k = 5 and 87% when k = 50. However,
the error rate for 5 input peers does not significantly change
as the number of hash functions used increases. In this case,
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the error rate remains close to 0% regardless of k. Due to
limited overlap between inputs from different input peers,
a higher number of input peers results in a higher number
of unique inputs. This in turn increases the probability of
global collision and therefore increases the error. Further-
more, the number of hash functions used also affects the
error rate in two opposing ways. On one hand, having more
hash functions provides more redundancy, that is, the com-
putation result is correct if at least one of the hashes of an
input is not affected by collision. However, a higher number
of hash functions also contributes to a higher chance of col-
lision, as a large value of k corresponds to more copies of an
input data stored in the CBF, which increases the density
of the CBF.

Figure 9 shows the error rate for 10 hash functions for
different CBF sizes. We observe that the CBF size signifi-
cantly affects the error rate. For a CBF size of 32,768, we
can see that the error rate is extremely high, especially as
the number of input peers increases. For example, the er-
ror rate for 25 input peers is 99%. This is because there
are not enough spaces to store the k copies of each input in
the CBF without inducing collisions. In contrast, the error
rate for a CBF size of 262,144 is close to 0% regardless of
the number of input peers. Hence, we can conclude that a
larger CBF size which minimizes the error rate should be
used, with consideration of the hardware limitations of the
computing platforms used for the Multi-FACT system.

6.3 Discussion
We compared the protocol runtime and accuracy of the

results of the comparison-based and CBF-based methods.
The runtime of the CBF-based method is significantly bet-
ter than that of the comparison-based method. Given the
same number of input and privacy peers, the runtime of
comparison-based method is at least 74 million times that
of the runtime of the CBF-based method. While the CBF-
based method has low runtime, it introduces error to the
computation results. Based on Figures 8 and 9, we note that
the error can be minimized or eliminated by carefully select-
ing the size of the CBF and the number of hash functions.
As a rule of thumb, the combination of a large CBF and a
small number of hash functions reduces the error. Also note
that the number of inputs and the number of input peers
also contribute to the error.

In a real-world scenario, we believe that tier-1 ISPs are in-
terested in collaborative troubleshooting of outages. Consid-
ering that there are around 15 tier-1 ISPs globally,3 Multi-
FACT provides a viable solution to help troubleshooting out-
ages.

7. CONCLUSIONS
We proposed a novel approach to help diagnose network

outages by correlating traffic measurements across multiple
ISPs. The proposed system is based on MPC to protect
the sensitive traffic data and is capable of detecting the
scope and severity of network outages. For near-real-time
performance, we also proposed an efficient method to ag-
gregate traffic measurements using the CBF-based multiset
union operation. We evaluated the utility of our system by
applying the system to datasets from a medium-sized ISP,
which contain real-world incidents, to determine the scope

3http://en.wikipedia.org/wiki/Tier_1_network

and severity of the detected outages. We showed how trou-
bleshooting can be prioritized based on the severity and the
scope, to narrow down the source of the outages. We showed
that the performance of CBF-based multiset union is close to
real-time. Furthermore, the overestimation error introduced
by the CBF can be minimized or eliminated by carefully se-
lecting the number of hash functions used and the size of
the CBF.
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