


patterns [31]. Finally, the throughput of large flows can
be improved by employing multipath data transfer schemes,
rather than using saturating link queues.
A remarkable feature of DCNs is the richness of paths

between hosts. For example, the Fat Tree architecture [2]
achieves a bandwidth oversubscription ratio of 1:1. It has
k2/4 equal-cost paths between a pair of inter-pod hosts,
where k is the amount of ports per switch. By exploiting
path diversity, Raiciu et al. [25] demonstrated that Multi-
path TCP (MPTCP) [1] is promising for significantly im-
proving the performance of bulk data transfer in DCNs. An
MPTCP flow can split its traffic into several subflows, each
of which goes through a different path available between the
source and the destination. The congestion control algo-
rithm of MPTCP, called Linked Increases (LIA) [34], is re-
sponsible for adaptively adjusting the transmission rate of
each subflow in an attempt to shift traffic from more congest-
ed paths to less congested ones, thus improving throughput
and link utilization.
We believe the server side (e.g., content providers) will be

highly incentivized to utilize high capacity links instead of
keeping their customers constantly complaining Quality of
Experience (QoE) dissatisfactions. In case they encounter
frequent single path saturation or server overloading, the
natural choice for servers will be to upgrade their infrastruc-
ture. As a result, MPTCP could leverage the wide existence
of multiple paths at the core and the aggregation layer in
DCNs to achieve higher throughput.
However, LIA is designed originally for the Internet and

by nature based on TCP-Reno. Thus, it does not take into
account the tradeoff between throughput and latency. On
one hand, LIA exhausts link buffer to achieve a full link uti-
lization, resulting in a considerably large RTT and a high
packet loss probability which both adversely impact the per-
formance of small flows. On the other hand, if LIA wants
to limit its buffer occupancy below an acceptable level, its
50% window reduction in response to congestion will cause
link under-utilization.
DCTCP [4] was developed to accommodate the conflicting

requirements of throughput-sensitive large flows and latency-
sensitive small flows. However, it is a single-path data trans-
fer scheme. As shown in our simulations, DCTCP cannot
fully utilize path diversity in DCNs, thus wasting some links,
especially when several flows collide on the same link.
This paper aims to design a new multipath congestion

control scheme for DCNs under the constraint of a control-
lable link buffer occupancy. LIA follows an ad-hoc design
based on the three predetermined performance goals given
in [34]. In contrast, our scheme, eXplicit MultiPath (XMP)
congestion control, is developed using the network utility
maximization model [21, 22]. First, we propose the Buffer
Occupancy Suppression (BOS) algorithm, which employs
the Explicit Congestion Notification (ECN) mechanism [17]
to control link buffer occupancy. Next, we find the utility
function of BOS and then “multi-path-lize” it in the context
of MPTCP. Finally, based on the above results, we construct
the Traffic Shifting (TraSh) algorithm to couple subflows so
as to move the traffic of an MPTCP flow from its more con-
gested paths to less congested ones. The BOS and the TraSh
algorithm together constitute the XMP scheme. BOS brings
link queue buffers consumed by XMP under control so as to
meet the low latency requirement of small flows and to re-
duce packet loss probability. TraSh provides for XMP the

ability to shift traffic between multiple paths, thus improv-
ing the throughput of large flows.

Our previous work in [8] employed the network utility
maximization model to establish a general framework for
designing multipath congestion control algorithms. This
paper uses this framework to develop XMP with specifi-
cally addressing DCN’s distinct characteristics. Our main
original contribution is exploiting the BOS and the TraSh
algorithm together to achieve a high throughput for large
flows and a low latency for small flows, forming a practi-
cal multipath congestion control scheme (XMP) for DCNs.
Note that, in this paper, large flows use MPTCP (with XMP
or LIA) while small flows use TCP to transfer data.

TraSh sits on BOS. This makes TraSh differ from LIA.
Although XMP and LIA both can achieve traffic shifting,
their performance is different. For example, Raiciu et al.
proposed that an MPTCP flow with LIA needs 8 paths [25]
to obtain a good utilization in the Fat Tree network. Our
simulations show that XMP doesn’t need so many subflows.
The increase in the amount of subflows will make more small
flows miss their completion deadline.

We implemented XMP in both MPTCP v0.861 [27] and
the NS-3.14 simulation platform [29]. Our source code can
be found in [28]. By conducting comprehensive experiments
and simulations, we evaluated the performance of XMP on
traffic shifting, fairness, goodput, buffer occupancy and link
utilization. Our results show that XMP outperforms exist-
ing schemes and can effectively balance throughput with
latency.

The remainder of the paper is organized as follows. In
Section 2, we propose the BOS algorithm and the TraSh
algorithm. In Section 3, we present the implementation of
XMP in details. Section 4 and Section 5 are dedicated to ex-
periments and simulations, respectively. We briefly overview
related work in Section 6. Finally, we discuss the future work
and conclude the paper in Section 7.

2. ALGORITHMS OF XMP
Our goal is to achieve effective traffic shifting under the

constraint of a controllable buffer occupancy in link queues.
Next we will elaborate on the design principles of XMP
towards this goal.

2.1 Suppressing Link Buffer Occupancy
A straightforward method for suppressing link buffer occu-

pancy is to employ Active Queue Management algorithms,
such as Random Early Detection (RED) [11], to throttle
the transmission rate of sources with the aid of ECN. The
ECN+RED has been implemented in many types of forward-
ing devices as well as host protocol stacks. Traditionally,
the congestion control loop works as follows. RED performs
the Exponentially Weighted Moving Average (EWMA) algo-
rithm to estimate the average link buffer occupancy, accord-
ing to which RED assigns a probability to marking the ar-
riving packet with the Congestion Experienced (CE) code-
point in the IP header. When receiving a CE signal, the
destination feeds it back to the source by setting the ECN
Echo (ECE) codepoint in the TCP header of each acknowl-
edgement packet. The source reduces its congestion window
(cwnd) by half in response to ECE signals. And meanwhile
it sets the Congestion Window Reduced (CWR) codepoint

1It is based on Linux Kernel 3.5.

74



in the TCP header of the sending packet in order to inform
the destination of ceasing sending ECE signals.
Based upon the following three reasons, we do not copy

the above-mentioned standard control process in our scheme.
First, a path in DCNs is often dominated by very few large
flows [7]. This leads to quite a low degree of statistical mul-
tiplexing on links. Since we want to maintain a low level
of buffer occupancy, halving cwnd will cause the average
packet arrival rate to be far away from link capacity, hence
an under-utilization of network resources. Second, the main
cause of packet loss events in DCNs is the temporal traffic
burstiness [7, 24, 31] due to Incast-like communication pat-
terns. This implies the average queue length estimated by
EWMA is not an appropriate congestion metric for switches,
especially in the network with ultra-low RTT (several hun-
dreds of microseconds) and a low degree of statistical mul-
tiplexing. Third, it is difficult to determine the desirable
parameters for RED to avoid instability [23] when the level
of link buffer occupancy is low.
Kuzmanovic [20] first proposed to use the instantaneous

queue length as the congestion metric to mark packets. This
idea was lately adopted by DCTCP, which translates the
amount of ECN marks received by the source into the con-
gestion extent of networks so as to proportionally reduce
cwnd. Although DCTCP is quite an ingenious method that
can solve the tradeoff between throughput and latency in
DCNs, we found that DCTCP is sensitive to the parameter
settings and may converge to the state of unfair bandwidth
allocation. An example is given in Figure 1(a) and 1(b). We
think the reasons are two-fold. First, a relatively small re-
duction in cwnd increases the time that the competing flows
take to converge to the fairness state. If the global synchro-
nization [11] happens 2 before the end of convergence, every
flow will stay in the unfairness state until the occurrence or
the disappearance of a flow breaks the current global syn-
chronization. Second, the cwnd reduction factor and the
amount of marked packets may have a mutual influence on
each other for DCTCP. This interaction effect may lead to
an inconsistent congestion estimate that the different flows
make for the same bottleneck link.
Actually, we can achieve a comparable link utilization to

DCTCP using a constant factor to reduce cwnd, providing
that the marking threshold K is set to an appropriate value.
Taking the case in Figure 1 for example, the Bandwidth
Delay Product (BDP) is about 1Gbps× 225µs/(8× 1500) ≈
19 packets. So if K = 20, halving cwnd still can fully utilize
link capacity, as shown in Figure 1(d). It is interesting that
the result in Figure 1(c) is also pretty good. We think it
can be explained by two facts. First, the minimal cwnd is
about (19 + 10)/2 ≈ 15 packets, which is only 4 packets
lower than the BDP. Second, a smaller K leads to a smaller
RTT, hence a faster growth rate of cwnd, which significantly
compensates for utilization loss due to halving cwnd. As
mentioned before, packet queuing delay predominates RTT
in DCNs. In the above example, changing K from 20 down
to 10 will decrease RTT by 10 × 1500 × 8/1Gbps ≈ 120µs,
which accounts for more than half of RTT.
Generally, suppose cwnd is reduced by a factor of 1/β

in response to ECN marks. In order to achieve a full link
utilization, the marking threshold K should satisfy (K +

2It is common when using Droptail queues in the condition
of the low degree of statistical multiplexing on links.

BDP )/β ≤ K. So we have

K ≥ BDP

β − 1
, β ≥ 2. (1)

A larger β, in general, corresponds to a smaller lower-bound
of K, hence a smaller latency and a sufficient free space in
link queues to accommodate the burstiness of small flows.
However, similar to DCTCP, if β is too large, the conver-
gence time will significantly increase and the bandwidth may
be unfairly shared by competing flows. Considering cwnd
changes with packet granularity, we think it is sufficient to
choose an appropriate β from the integers between 3 and 5.
In DCNs, hosts are connected to switches commonly using
links of 1Gbps and RTT is less than 400µs [31, 36]. So the
BDP is about 33 packets. We choose β = 4 and K = 10.

Motivated by these observations, we propose the follow-
ing Buffer Occupancy Suppression algorithm (BOS) as a
starting point to design XMP.

1) Packet Marking Rules: The switch marks the arriving
packet with the CE codepoint if the instantaneous queue
length of the outgoing interface is larger than K packets;
otherwise, it does not perform packet marking.

2) ECN Echo: The destination feeds its received CEs back
to the source through the ECE and the CWR codepoint
of acknowledgement packets. The two bits can encode at
most 3 CEs.

3) Slow Start: The source increases cwnd by one if receiv-
ing an acknowledgement packet whose ECE and CWR
are both zero; otherwise, it stops increasing cwnd, and
meanwhile enters Congestion Avoidance.

4) Congestion Avoidance: The source decreases cwnd by
a factor of 1/β if receiving an acknowledgement packet
whose ECE and CWR are not both zero; otherwise, it
increases cwnd by δ on the end of a round. Note that the
source decreases cwnd only once in a round, as needed.

We define a “round” as the interval from the time of sending
out a specified packet to the time of receiving its acknowl-
edgement. Please see Section 3 and Figure 2 for more details.
Note that the standard process of ECN is changed in BOS.
Specifically, instead of setting ECE in every acknowledge-
ment packet until receiving CWR from the source, the desti-
nation echoes exactly each received CE to the source. Thus,
the standard function of the CWR codepoint is no longer
required. We employ it together with ECE to encode the
amount of CEs. Two bits are sufficient since the destination
sends back to the source one cumulative acknowledgement
for at most every two consecutively received packets3.

We use differential equations to formulate the cwnd evo-
lution of BOS in the phase of congestion avoidance:

dw(t)

dt
=

δ

T
(1− p(t))− w(t)

Tβ
p(t), (2)

where w(t) is the size of cwnd, T is the time interval of a
round (roughly one RTT) and p(t) is the probability that at
least one packet is marked in a round. Since BOS attempts
to hold the queue length at about K packets, the queuing

3This is due to the Delayed ACKs mechanism. In contrast to
our two-bit encoding method, DCTCP uses a state machine
to infer the amount of CEs.

75



0 5 10 15 20 25 30 35
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
at

e

Flow 1
Flow 2
Flow 3
Flow 4

(a) DCTCP, K = 10.

0 5 10 15 20 25 30 35
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
at

e

Flow 1
Flow 2
Flow 3
Flow 4

(b) DCTCP, K = 20.

0 5 10 15 20 25 30 35
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
at

e

Flow 1
Flow 2
Flow 3
Flow 4

(c) Halving cwnd, K = 10.

0 5 10 15 20 25 30 35
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
at

e

Flow 1
Flow 2
Flow 3
Flow 4

(d) Halving cwnd, K = 20.

Figure 1: Four flows compete for a bottleneck link with capacity of 1Gbps. We start or stop a flow with an
interval of 5s. Whenever the number of flows changes, the current equilibrium state is broken and then a new
equilibrium state will be established. RTT is about 225µs with no packet queuing delay. If the instantaneous
queue length in switches is larger than K, the arriving packet is marked; otherwise, it is not marked.

delay doesn’t change much. Thus, we assume T is a constant
related to the path. At the equilibrium point, we have

p̃ =
1

1 + w̃/δβ
. (3)

So the utility function [21] of BOS is

U(x) =
δβ

T
log

(
1 +

T

δβ
x

)
, (4)

where x = w̃/T is the bandwidth obtained by a flow. Clearly,
U(x) is increasing, strictly concave and twice continuously
differentiable in the nonnegative domain.
It is worth further explaining p(t). Traditionally, a packet

marking/dropping probability q(t) is assumed to quantify
the congestion extent of networks. Given that q(t) is suffi-
ciently small and the packets are marked/dropped indepen-

dently of each other, equation p̃ = 1− (1− q̃)w̃ ≈ q̃w̃ holds.
In DCNs, however, a window of packets issued by a source
commonly arrives at switches in batches. Once one of the
packets is marked, all the succeeding ones are also most like-
ly marked. This implies that the assumption of independent
packet marking does not hold. Thus, we use p(t), instead of
q(t), as the congestion metric in DCNs.

2.2 Coupling Subflows for Traffic Shifting
Based on the BOS algorithm, we next present how to

achieve traffic shifting by means of coupling the subflows
belonging to an MPTCP flow.
An MPTCP flow can split its traffic into several subflows,

each of which goes through a different path. If the subflows
perform congestion control independently of each other, the
fairness will be violated. Thus, we think that a major objec-
tive of multipath congestion control is to couple all the sub-
flows belonging to a flow to achieve both the efficiency and
the fairness goal. In [8, Section I], we provided two examples
for explaining these two goals. Not only does coupling sub-
flows make every flow compete for bandwidth in a consistent
way, irrespective of the amount of subflows, but also it gives
multihomed end-hosts an ability to shift traffic from more
congested paths to less congested ones. Thus, MPTCP is
considered promising for load balancing in DCNs.
We employ the network utility maximization model to

couple subflows. Suppose flow s transfers data along path r4

4We use r to denote both the path and the subflow running
on it.

at rate xs,r. So its total rate is ys =
∑

r∈Rs
xs,r and it can

obtain an utility U(ys). Each link l has a finite capacity of
cl. All the paths are formulated by matrix A, where al,r = 1
if path r goes through link l, and al,r = 0 otherwise. Path
set Rs is given by matrix B, where bs,r = 1 if path r is used
by flow s, and bs,r = 0 otherwise. The objective of conges-
tion control is to determine rate X for maximizing the total
utility subject to link capacity constraints:

max
X≥0

∑
s∈S

U(ys)

s.t. Y = BX
AX ≤ C.

(5)

Based upon this model, we established a general framework
in [8] for designing multipath congestion control algorithms.
The framework consists of three key components as follows.
Please refer to [8] for more details.

1) Congestion Metric: It determines how the source quan-
tifies the congestion extent of paths using congestion sig-
nals that are explicitly or implicitly“announced”by links.

2) Adjustable Parameters: The source changes cwnd of
each subflow in response to congestion signals. In other
words, the source needs a set of parameters as a knob to
controlling the bandwidth obtained by each subflow.

3) Congestion Equality Principle: If each flow strives
to equalize the congestion extent that it perceives on
every available paths by means of traffic shifting, net-
work resources will be fairly and efficiently shared by all
the flows. This principle guides the source to adjust the
knob parameters along the direction of convergence.

Following the framework, we first choose p(t) as the con-
gestion metric. According to (4), we construct the utility
function of XMP as follows:

U(ys) =
β

Ts
log

(
1 +

Ts

β
ys

)
, (6)

where Ts = min{Ts,r, r ∈ Rs} and Ts,r is the smoothed RTT
of path r measured by flow s. The derivative

U
′
(ys) =

1

1 + ysTs/β
(7)

can be interpreted as the expected congestion extent as
though flow s transferred data at rate ys along a virtual

76



single path whose RTT is Ts and whose capacity is the sum
of all the paths used by flow s.
Suppose subflow r changes its cwnd according to the BOS

algorithm with parameter δs,r and parameter β. So at the
equilibrium point we have

p̃s,r =
1

1 + xs,rTs,r/δs,rβ
. (8)

Clearly, a larger δs,r can help flow s obtain more bandwidth
on path r. Conversely, a smaller δs,r may lead to less band-
width. In other words, δs,r indicates how aggressively flow s
competes for bandwidth with other flows on path r. Thus,
we choose δs,r as the knob to controlling the bandwidth
obtained by flow s on path r.
The Additive-Increase Multiplicative-Decrease rule makes

TCP flows converge to the equilibrium point that satisfies
both fairness and efficiency in a distributed way. Similarly,
the Congestion Equality Principle guides each MPTCP flow
to shift its own traffic among multiple paths with only local
knowledge on network status, achieving both fairness and
efficiency in the context of multipath data transfer. Follow-

ing this principle, if p̃s,r > U
′
(ys), δs,r should be decreased

so as to offload a part of traffic; if p̃s,r < U
′
(ys), δs,r should

be increased so as to moderately onload more traffic. Theo-
retically, δ will ultimately converge to the point at which
all the paths used by flow s are equally congested5, i.e.

p̃s,r = U
′
(ys) for each r ∈ Rs. Letting (7) = (8) yields

δs,r =
Ts,rxs,r

Tsys
. (9)

According to this result, we design the Traffic Shifting algo-
rithm (TraSh) as follows.

1) Initialization: At step t = 0, flow s sets δs,r(0) = 1 for
each r ∈ Rs; go to 2).

2) Rate Convergence: At step t, flow s performs the BOS
algorithm independently on each subflow until achieving

rate convergence, namely xs,r(t) =
βδs,r(t)(1−ps,r(t))

Ts,rps,r(t)
for

each r ∈ Rs; go to 3).

3) Parameter Adjustment: At step t, flow s calculates
the total rate ys(t) =

∑
r∈Rs

xs,r(t) and finds out Ts =

min{Ts,r, r ∈ Rs}. It then adjusts δs,r for each r ∈ Rs

using δs,r(t+ 1) =
Ts,rxs,r(t)

Tsys(t)
; go to 4).

4) Iteration: t← t+ 1; go to 2).

Proposition 1. If ps,r(t) < U
′
(ys(t)), then δs,r(t+1) >

δs,r(t).

Proof. Substituting (7) and (8) into ps,r(t) < U
′
(ys(t))

yields
Ts,rxs,r(t)

δs,r(t)
> Tsys(t). Thus,

Ts,rxs,r(t)

Tsys(t)
= δs,r(t+ 1) >

δs,r(t) holds.

Since δs,r controls the bandwidth obtained by flow s on
path r, Proposition 1 proves that TraSh follows the Conges-
tion Equality Principle and it can effectively achieve traffic
shifting.

5An MPTCP flow should give up the path whose congestion
extent is always higher than that of its other paths. In
practice, however, it is more reasonable to set 2 packets as
the lower-bound of cwnd.

Figure 2: A round. snd una is the highest unac-
knowledged sequence number. snd nxt is the seq-
uence number of the next packet that will be sent.
beg seq records a specified packet sequence number.
When snd una > beg seq, a round ends. And mean-
while, beg seq is updated using snd nxt. snd cwnd is
the congestion window. cwr seq is used to avoid un-
desired reduction in snd cwnd when ECN signals are
received.

3. IMPLEMENTATION OF XMP
For an MPTCP flow, each subflow adjusts its cwnd accord-

ing to the BOS algorithm while its parameter δ is tuned by
the TraSh algorithm. These two algorithms together consti-
tute the XMP scheme. Next, we present the implementation
details of XMP in Linux Kernel. The pseudo-code of XMP
is given by Algorithm 1.

First of all, XMP requires the switches are ECN-enabled.
Currently, most types of ECN-switches support RED, which
uses the EWMA algorithm to estimate the average queue
length of each outgoing interface and marks packets accord-
ing to two configurable thresholds [11]. By employing RED
with the two configuration tricks, we can implement our
packet marking rules. One is to set parameter Wq [11] of
EWMA to 1.0. The other is to configure both the high and
the low marking threshold to be K.

For brevity and clarity, we denote the variables of sub-
flow r in the form of array elements. During the phase
of congestion avoidance, XMP adjusts congestion window
snd cwnd[r] and other related parameters once per round.
To identify the end of each round, we use variable beg seq[r]
to record a specified packet sequence number, as illustrated
in Figure 2. When subflow r receives an acknowledgement
number that is larger than beg seq[r], its current round
ends. And meanwhile, beg seq[r] is updated using the cur-
rent snd nxt[r] for preparation of identifying the next round.

The destination uses cnt ce[r] to record the amount of
received CEs that are waiting for returning to the source.
As proposed in BOS, the destination feeds CEs back to the
source through encoding the ECE and the CWR codepoint
in the TCP header. Since at most 3 CEs can be piggybacked
on each acknowledgement packet, the Delayed ACKs mech-
anism does not matter much to XMP.

XMP reduces snd cwnd[r] only once in a round when
receiving CEs on subflow r. To this end, XMP performs
the following operations.

• When subflow r receives the first acknowledgement packet
that carries CEs6, it reduces snd cwnd[r]. And mean-
while, it records the current snd nxt[r] in cwr seq[r] and
changes the state from NORMAL to REDUCED.

• Subflow r ignores all the CEs carried by the succeeding
acknowledgements if it is in the state of REDUCED.

6Namely, the ECE and the CWR codepoint are not both
zero.

77



• Subflow r changes its state from REDUCED to
NORMAL when snd una[r] ≥ cwr seq[r].

The idea behind these operations is based on two observa-
tions. First, it takes about one RTT for congestion signals
to reach the source. Likewise, it also takes time for the re-
duction in cwnd to kick in. Thus, in order to prevent CEs
from triggering an undesired successive reduction in cwnd,
we limit the frequency of reduction to at most once per RTT
(round). Second, the amount of CEs received by subflow r
in a round is no more than snd cwnd[r] which equals the
interval between snd una[r] and cwr seq[r], as illustrated
in Figure 2. By the time snd una[r] ≥ cwr seq[r] holds,
all the CEs issued in the previous round will have been fed
back to the source. At this point, the state is changed from
REDUCED to NORMAL for preparation of the possible
next reduction in cwnd.
Theoretically, the TraSh algorithm involves two levels of

convergence. At the inner level, each subflow r ∈ Rs achieves
rate convergence, given a fixed δs,r. At the outer level, each
δs,r is tuned using converged subflow rates until traffic shift-
ing stops. The two levels interact with each other. In prac-
tice, however, the rate convergence is not a strict condi-
tion on which it is allowed to adjust δ. XMP uses a round
as the control interval on each subflow so as to quickly re-
sponse to the changes in the extent of network congestion.
Specifically, subflow r updates instant rate[r] by dividing
snd cwnd[r] by srtt us[r] and adjusts delta[r] using Equa-
tion (9) on the end of each round. instant rate[r] serves as
the converged rate of subflow r. srtt us[r] is the smooth-
ed RTT measured on subflow r. Linux provides a flag,
TCP CONG RTT STAMP , for congestion control mod-
ules since version 2.6.22. By enabling this flag, XMP can
measure RTT with microsecond granularity.
XMP provides parameter mptcp xmp reducer as the user

interface to configure β in the BOS algorithm. Since most
of hosts in DCNs are connected to switches using links of
1Gbps and RTT is commonly less than 400µs [31, 36], the
BDP is about 33 packets. Considering β should not be too
large, we think it is a reasonable choice to configure β = 4
and K = 10.

4. EXPERIMENTS
To verify the performance of XMP on traffic shifting and

fairness, we built a testbed using several personal comput-
ers equipped with multiple Gigabit network interface cards.
These computers are all connected to a Gigabit switch. They
logically constitute two network topologies shown in Figure
3 by means of different routing configurations. In Figure 3,
Si and Di denote the source and the destination, respective-
ly, which are indexed with i and use CentOS 6.4 as operating
systems. DNi serves as a switch which runs FreeBSD 9.1
along with DummyNet [26] to construct a two-way bottle-
neck link and to perform packet marking operations. We
configured the sending/receiving buffer of each flow to be
sufficiently large so that the transmission rate is limited
only by congestion windows. Because the average RTT is
roughly 1.8ms in our testbed, we set the capacity of bottle-
neck links to 300Mbps so as to achieve a BDP of about 45
packets. DummyNet has a built-in RED algorithm. Howev-
er, it performs packet discarding to implicitly inform sources
of congestion signals. So we had to modify the source code
of DummyNet to implement packet marking. In the exper-

Algorithm 1: The pseudo-code of XMP

At receiving a new ack on subflow r:
/* perform per-round-operations */
if ack > beg seq[r] then

instant rate[r]← snd cwnd[r]/srtt us[r];
total rate←

∑
{instant rate};

min rtt← min{srtt us};
delta[r]← snd cwnd[r]/(total rate×min rtt);
if state[r] = NORMAL and
snd cwnd[r] > snd ssthresh[r] then

/* congestion avoidance */
adder[r]← adder[r] + delta[r];
snd cwnd[r]← snd cwnd[r] + ⌊adder[r]⌋;
adder[r]← adder[r]− ⌊adder[r]⌋;

beg seq[r]← snd nxt[r]; // for next round

/* perform per-ack-operations */
if state[r] = NORMAL and
snd cwnd[r] ≤ snd ssthresh[r] then

snd cwnd[r]← snd cwnd[r] + 1; // slow start

if state[r] ̸= NORMAL and ack ≥ cwr seq[r] then
state[r]← NORMAL;

At receiving ECE or CWR on subflow r:
if state[r] = NORMAL then

state[r]← REDUCED;
cwr seq[r]← snd nxt[r];
/* reduce the congestion window */
if snd cwnd[r] > snd ssthresh[r] then

tmp← snd cwnd[r]/mptcp xmp reducer;
snd cwnd[r]← snd cwnd[r]−max{tmp, 1};
snd cwnd[r]← max{snd cwnd[r], 2};

/* avoid re-entering slow start */
snd ssthresh[r]← snd cwnd[r]− 1;

iments, we set K to 15 and the queue size to 100 packets.
For brevity and clarity, we identify each flow by the number
of its corresponding source. Moreover, the subflows of a flow
are numbered, starting at 1, in sequence from left to right
or from the top down.

The first experiment aims to test the ability of XMP to
shift traffic between two paths. In Figure 3(a), Flow 1, Flow
2 and Flow 3 are simultaneously started at 0s. Flow 2 estab-
lishes two subflows which go through DN1 and DN2, res-
pectively. Two background flows come up on DN1 at 10s
and on DN2 at 20s, respectively, both of which last for 10s.
Figure 4 shows the subflow rates of Flow 2. By comparing
Figure 4(a) to 4(b), we found that a larger β may adversely
impact the performance of XMP. This is because a larger β
makes each flow relinquish less bandwidth for reallocation,
leading to an increased convergence time of traffic shifting. If
the global synchronization happens before the end of conver-
gence, the process of traffic shifting will stall. Besides, Fig-
ure 4(a) demonstrates the rate compensation effect. That
is to say, when one subflow decreases the rate, the other
subflow will increase its rate as compensation. A more com-
plicated scenario is given in the next section.

Unlike small flows which care more about latency (or com-
pletion time), large flows need to fairly share network re-
sources. XMP is specifically designed for assuring fairness
of throughput for large flows. To verify it, we conducted the
second experiment in the topology of Figure 3(b), where four

78



(a) Traffic Shifting

(b) Fairness

Figure 3: Testbed

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 R
at

e

Flow 2-1
Flow 2-2

(a) β = 4

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 R
at

e

Flow 2-1
Flow 2-2

(b) β = 6

Figure 4: Two background flows run on DN1 from 10s to 20s and on DN2
from 20s to 30s, respectively. They make Flow 2 dynamically shift its traffic
from one subflow to the other.

Figure 5: Torus Topology

0 5 10 15 20 25 30
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
at

e

Flow 1-1
Flow 1-2
Flow 1-3

Flow 2-1
Flow 2-2

Flow 3
Flow 4

(a) β = 4

0 5 10 15 20 25 30
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
at

e

Flow 1-1
Flow 1-2
Flow 1-3

Flow 2-1
Flow 2-2

Flow 3
Flow 4

(b) β = 6

Figure 6: Four flows compete for one link.

flows compete for one bottleneck link. Flow 1 has three sub-
flows which are established at 0s, 5s and 15s, respectively.
Flow 2 has two subflows which are established simultane-
ously at 20s. Flow 3 and Flow 4 both have single subflow
and they are started at 0s and 10s, respectively, and are
shut down simultaneously at 25s. The experiment results
are shown in Figure 6. Clearly, with β = 4, all the flows can
fairly share the bottleneck link, irrespective of how many
subflows each flow has. In contrast, Figure 6(b) shows the
fairness of XMP declines when increasing β.

5. SIMULATIONS
In order to further evaluate the performance of XMP in

a larger network topology, we implemented MPTCP and
DCTCP in the NS-3.14 simulation platform. XMP and LIA
were also implemented as the congestion control algorithm of
MPTCP. Note that in all the simulations, we configured the
sending/receiving buffer of each flow to be sufficiently large
so that the transmission rate is limited only by congestion
windows.

5.1 Rate Compensation
The rate compensation effect is an important metric to

evaluate the performance of an multipath congestion con-
trol algorithm on traffic shifting. Benefiting from the design
principle of coupling subflows through the knob parameters,
an MPTCP flow can adaptively increase the transmission
rate on less congested paths so as to compensate for the de-
crease in the rate on more congested paths, thus achieving

a higher throughput. Rate compensation between subflows
leads to an interesting phenomenon: a congestion event oc-
curring in one place may cause the flows in other places to
change their rate. In other words, the impact of a congestion
event is spread from its occurring location to other places
in the network. This process is similar to the attenuated
Dominos.

We constructed a scenario to demonstrate the performance
of XMP on rate compensation. In Figure 5, from left to
right, the capacity of bottleneck links is 0.8Gbps, 1.2Gbps,
2Gbps, 1.5Gbps and 0.5Gbps, respectively. The flows index-
ed from 1 to 5 are started one by one with an interval of 5s.
Each of these five flows has two subflows that go through
the different bottleneck links. After 25s, the other four back-
ground flows are added to link L3 one by one with an interval
of 5s. The background flows are used to make L3 become
increasingly congested. After 45s, the background flows are
shut down sequentially. After 60s, link L3 is closed. We
configured RTT of every path to be 350µs. So the BDP is
between 15 and 60 packets. We conducted the simulation
three times with β = 4, β = 5 and β = 6, respectively.
According to Equation (1), we set the corresponding mark-
ing threshold to K = 20, K = 15 and K = 10, respectively,
and the queue size to 100 packets.

Figure 7 shows the average subflow rates of each flow dur-
ing every interval of 5s. As expected, with L3 becoming
increasingly congested from 25s to 45s, Flow 2-2 and Flow
3-1 both continuously decrease their rate. Meanwhile, Flow
2-1 and Flow 3-2 gradually increase rates to compensate for

79



0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
at

e

Flow 1-1

K=20
beta=4
K=15
beta=5
K=10
beta=6

0 10 20 30 40 50 60
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

Flow 1-2

(a) Flow 1

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
at

e

Flow 2-1
K=20
beta=4

K=15
beta=5

K=10
beta=6

0 10 20 30 40 50 60
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

Flow 2-2

(b) Flow 2

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
at

e

Flow 3-1
K=20
beta=4

K=15
beta=5

K=10
beta=6

0 10 20 30 40 50 60
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

Flow 3-2

(c) Flow 3

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
at

e

Flow 4-1
K=20
beta=4

K=15
beta=5

K=10
beta=6

0 10 20 30 40 50 60
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

Flow 4-2

(d) Flow 4

Figure 7: Rate Compensation Effect. For each flow, if the rate curve of one subflow is concave, that of the
other subflow is convex, and vice versa.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Goodput

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

DCTCP
LIA-2
LIA-4
XMP-2
XMP-4

(a) Permutation

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Goodput

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

DCTCP
LIA-2
LIA-4
XMP-2
XMP-4

(b) Incast

Inter-Pod Inter-Rack Inner-Rack0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 G
oo

dp
ut

DCTCP
LIA-4
XMP-2
XMP-4

(c) Permutation

Inter-Pod Inter-Rack0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 G
oo

dp
ut

DCTCP
LIA-4
XMP-2
XMP-4

(d) Incast

Figure 8: Goodput Distributions. In (c) and (d), each vertical bar is marked with three short horizontal lines
that represent the 10th, 50th and 90th percentile, respectively, from the bottom up. Each long vertical line
shows the minimal and the maximal value. XMP-x, LIA-y: x and y mean the amount of subflows established
by each large flow in the corresponding scheme.

bandwidth loss on their respective sibling subflow, which in
turn leads to a decrease in the rate of Flow 1-2 and Flow
4-2, and so on. After 45s, the changes in the rates of each
flow are just the reverse, since L3 gradually returns to the
initial uncongested status due to the four background flows
ending. Finally, when L3 is closed at 60s, the rate of Flow
2-2 and Flow 3-1 sharply declines to zero while the rate of
Flow 2-1 and Flow 3-2 shows a significant increase. Also, we
found that the rate of Flow 1-1 and Flow 4-2 remains nearly
unchanged from 25s to 65s7. This indicates that the rate
compensation effect is of the attenuation property. In sum-
mary, for an MPTCP flow, if the rate curve of one subflow is
concave, that of the other subflow is convex, and vice versa.
This simulation proves that XMP can effectively achieve rate
compensation, or, in other words, traffic shifting.

5.2 Performance Evaluation in DCNs

5.2.1 Settings and Traffic Patterns
Considering many DCNs are built using multi-rooted tree

architectures [7], we conducted performance evaluation in a
Fat-Tree topology which follows the same structure as [2].
Specifically, the network consists of 80 8-port switches and
128 hosts. The link capacity is 1Gbps. The one-way link
delay is 20µs, 30µs and 40µs in the rack, the aggregation
and the core layer, respectively. So RTT with no queuing
delay is between 105µs and 435µs. Since the BDP is less
than 37 packets, we set β to 4, K to 10 and the queue size to
100. Instead of the ECMP routing scheme employed in [25],

7The rate of Flow 5-1 and Flow 5-2 also remains unchanged.
Their rate curves are not ploted.

we adopted the Two-Level Routing Lookup proposed in [2]
to forward packets. We assigned multiple addresses to each
host so that an MPTCP flow can establish multiple subflows
that go through different paths.

According to the simulations in [2, 25] and the findings
in [7, 36], we constructed three traffic patterns as follows.
Each pattern generates more than 2000 large flows which
totally transfer about 600GB of data.

• Permutation: Every host transfers data to one other
host chosen at random with the constraint that each host
serves as the destination of only one flow. After all the
flows finish data transfer, a new “permutation” is started.
This is the simplest randomized pattern that may satu-
rate the whole network [25]. The flow size is uniformly
distributed between 64MB and 512MB.

• Random: Every host transfers data to one other host
chosen at random with the constraint that each host serves
as the destination of no more than 4 flows. When a host
finishes data transfer, it immediately chooses another host
at random to issue a new flow. The flow size is a ran-
dom variable that follows the Pareto distribution with the
shape parameter of 1.5, the mean of 192MB and the upper
bound of 768MB.

• Incast: A “Job” is defined as follows. First, 9 hosts are
chosen at random, one of which serves as a client and
the others as servers. Next, the client issues a request
to each server simultaneously. Each request is a small
flow whose size is a constant, 2KB. After receiving the
request, the server immediately issues back to the client a
response which is also a small flow with the size of 64KB.

80



Finally, when the client receives all the responses, the Job
ends. After that, a new Job will be started. There are
totally 8 Jobs running simultaneously. Additionally, each
host issues a large flow, following the Random pattern, to
generate traffic on background8. Note that all the small
flows use TCP to transfer data.

5.2.2 Goodput
We define“Goodput”as the average data transfer rate of a

large flow over its whole running time. The average goodput
over all the large flows is listed in Table 1, where the trailing
digit of each scheme name denotes the amount of subflows
established by a large flow. The goodput distributions are
shown in Figure 8(a) and 8(b).

Table 1: Average Goodput (Mbps)
Permutation Random Incast

DCTCP 513.6 440.5 423.7
LIA-2 400.8 310.0 302.7
LIA-4 627.3 434.5 425.4
XMP-2 644.3 497.9 483.7
XMP-4 735.6 542.9 535.7

From these results, we can draw the following conclusions.
First, even if each flow establishes 2 subflows, XMP can
increase goodput by more than 13%, compared to DCTCP.
Second, XMP-2 significantly outperforms LIA-2 and achieves
a comparable goodput with LIA-4. We think the primary
factor that adversely impacts the goodput of LIA is the min-
imal retransmission timeout (RTOmin) of 200ms. Third,
there is only a minor increase (10%) in goodput for XMP,
if the amount of subflows changes from 2 to 4. In contrast,
doubling the amount of subflows can significantly increase
the goodput of LIA (by more than 40%). In other words,
LIA can further improve throughput by establishing more
subflows. This result is consistent with [25], where Raiciu
et al. proposed that MPTCP with LIA needs 8 paths to
obtain a good utilization in Fat Tree networks. For XMP, it
is not necessary to establish so many subflows. Finally, by
comparing Incast with Random, we found that Jobs cause
only a slight decrease in the goodput of large flows.
Figure 8(c) and 8(d) provide more information on good-

put distributions. According to the location of the source
and the destination, we classified large flows into three cate-
gories: Inter-Pod, Inter-Rack9 and Inner-Rack. DCTCP can
achieve the highest goodput for inner-rack flows. However,
its goodput drops significantly for the other two categories
of flows. This is because DCTCP is sensitive to the changes
in network congestion. The increase in path hops will lead
to a higher packet marking probability, hence more frequent
congestion window reduction. In contrast, XMP can com-
pensate for the adverse impact of sensitiveness by means
of establishing multiple subflows. Also, we found that LIA
achieves a comparable performance with other algorithms
for inter-pod flows. The poor performance of LIA for inner-
rack flows is mainly caused by the packet loss recovery time
of 200ms, which is two thousand times larger than RTT of
inner-rack flows.

8We posed on large flows an additional constraint that the
source and the destination are not located in the same rack.
9The source and the destination are located in the different
racks of the same pod.

0 50 100 150 200 250 300
Completion Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

DCTCP
LIA-2
LIA-4
XMP-2
XMP-4

Figure 9: Job Completion Time Distributions. Note
that large flows use MPTCP or DCTCP while small
flows use TCP to transfer data.

In order to further evaluate the impact of XMP on other
congestion control schemes, we constructed three coexis-
tence scenarios using the Random pattern as follows: half of
flows use XMP and the other half of flows use 1) LIA or 2)
TCP or 3) DCTCP. Each MPTCP flow establishes 2 sub-
flows. The results in Table 2 show that XMP fairly shares
network resources with DCTCP. We think the main reasons
are two-fold. First, these two schemes are both based on
ECN, following the similar congestion control way. Second,
the number of subflows are small for XMP. So the advan-
tages of MPTCP are not fully exploited. By referring to the
results in Table 1, we believe, with the number of subflows
increasing, XMP will obtain more bandwidth than DCTCP.

Table 2: Average Goodput (Mbps) in the Random
Pattern. XMP coexists with other three schemes,
respectively.

Queue Size 50 packets 100 packets
XMP : LIA 463.4 : 314.3 423.2 : 388.3
XMP : TCP 522.9 : 175.3 501.8 : 243.4
XMP : DCTCP 485.4 : 485.3 481.4 : 493.5

By comparing Table 2 with column Random in Table 1,
we found that XMP has little impact on other schemes,
and vice versa. It is worth noting that the queue size is
an important factor for the throughput of LIA and TCP.
A larger queue size implies that LIA/TCP can use a larger
congestion control window to transfer data, which partly
offsets link under-utilization caused by packet losses, thus
helping LIA/TCP increase throughput. Also, a higher level
of link buffer occupancy leads to more ECN signals issued
by switches. So XMP has to relinquish some bandwidth to
LIA/TCP.

5.2.3 RTT and Job Completion Time
In order to meet the low latency requirement of small

flows, the switches should maintain a low level of buffer
occupancy in link queues. This is because packet queuing
delay predominates RTT in DCNs. For example, in the
Fat-Tree network, one buffered packet will increase RTT by
12µs, which accounts for more than one tenth of inner-rack
RTT. Thus, RTT can be employed to estimate the level of
buffer occupancy in link queues. From Figure 10, we con-

81



Inter-Pod Inter-Rack Inner-Rack0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
TT

 (m
s)

DCTCP
LIA-4
XMP-2
XMP-4

(a) Permutation

Inter-Pod Inter-Rack Inner-Rack0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
TT

 (m
s)

DCTCP
LIA-4
XMP-2
XMP-4

(b) Random

Inter-Pod Inter-Rack Inner-Rack0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
TT

 (m
s)

DCTCP
LIA-4
XMP-2
XMP-4

(c) Incast

Figure 10: RTT Distributions

Core Aggregation Rack0.0

0.2

0.4

0.6

0.8

1.0

U
til

iz
at

io
n

DCTCP
LIA-4

XMP-2
XMP-4

(a) Permutation

Core Aggregation Rack0.0

0.2

0.4

0.6

0.8

1.0
U

til
iz

at
io

n

DCTCP
LIA-4

XMP-2
XMP-4

(b) Random

Core Aggregation Rack0.0

0.2

0.4

0.6

0.8

1.0

U
til

iz
at

io
n

DCTCP
LIA-4

XMP-2
XMP-4

(c) Incast

Figure 11: Link Utilization Distributions. A shorter vertical line implies a more balanced link utilization.

cluded that due to the similar packet marking rules, XMP
and DCTCP both can effectively control link buffer occu-
pancy under a low level. Moreover, the amount of subflows
has very little impact on RTT. The relatively large RTT in
the Incast pattern is because small flows use TCP to transfer
data. In contrast, LIA leads to a very large RTT.
The completion time of Jobs is primarily determined by

two factors: RTT and packet loss probability. The packet
marking rules force large flows to relinquish a majority of
link buffer space to small flows, thus reducing packet losses
and queuing delay. As shown in Table 3, XMP and DCTCP
both make Jobs ending as early as possible. Compared
to DCTCP, XMP roughly doubles the completion time of
Jobs. This is because MPTCP fully utilizes all the available
paths between hosts to transfer data. So small flows have no
opportunity to exclusively run on some paths, hence a longer
completion time. Note that XMP outperforms LIA on com-
pletion time while outperforming both LIA and DCTCP on
throughput. Since XMP aims to achieve tradeoff between
throughput and latency, the results in Table 3 are accept-
able. Also, the results show that more than one tenth of
Jobs cannot end within 300ms if LIA is used by large flows.
In contrast, this ratio is nearly close to zero for XMP as well
as DCTCP.
From Figure 9, we can further find some interesting re-

sults. First, each CDF curve has two distinct jumps with an
interval of about 200ms. This is due to RTOmin = 200ms.
In other words, most of small flows experience at least one
TCP collapse caused by incast. Of course, this result highly
depends upon the load level of networks. Second, DCTCP

achieves the best performance and it outperforms XMP by
roughly 25% before the first jump. As explained before, the
reason is that MPTCP saturates the whole network. Howev-
er, XMP achieves a comparable performance with DCTCP
after the second jump. Third, doubling the amount of sub-
flows leads to that roughly 8% of Jobs experience the second
TCP collapse. Thus, we think it might not be a good prac-
tice to establish too many subflows for an MPTCP flow.
Finally, before the first jump in Figure 9, XMP can achieve
the completion time of less than 15ms, which is half of that
of LIA.

Table 3: Average Job Completion Time (ms)
DCTCP LIA-2 LIA-4 XMP-2 XMP-4

Time 52 156 180 93 109
> 300ms 0.1% 10.1% 12.5% 0.1% 0.2%

5.2.4 Link Utilization
We employed link utilization as the metric to evaluate

the performance on efficiency. The utilization of link l is
defined as transferred/capacity, where the numerator is
the amount of bytes that go through link l during the whole
simulation time and the denominator is the maximal amount
of bytes that can be transferred by link l.

Figure 11(a) shows that the utilization of DCTCP is con-
siderably below that of the other schemes. This is because a
DCTCP flow can use only one path between the source and
the destination, thus wasting many under-utilized links, es-

82



pecially when several flows collide on one link. Figure 11(b)
and 11(c) show the similar distributions. This indicates that
link utilization is primarily determined by the traffic of large
flows. Compared to LIA, XMP increases link utilization by
10% in average. Although the peak utilization of DCTCP
in the core and the aggregation layer is higher than that
of XMP and LIA, the vertical lines of DCTCP are longer
in Figure 11. In other words, DCTCP fails to achieve a
balanced link utilization.
Note that, irrespective of which transport protocol is used,

the total data in each simulation is about 600GB transferred
by 2000 large flows. Because the throughput of DCTCP is
smaller than that of MPTCP, the same data transferred with
DCTCP take more time than the one with MPTCP.

6. RELATED WORK
Many multipath transport protocols were proposed in ear-

lier years, such as pTCP [14], mTCP [37] and CMT-SCTP
[16]. By incorporating many lessons learned from previ-
ous research efforts, Raiciu et al. proposed MPTCP [1] in
recent years and demonstrated its pretty good performance
in DCNs [25]. MPTCP has become a de facto standard
of multipath proposals. However, the above schemes are
designed originally for the Internet, rather than for DCNs.
The work in [7] analyzed the raw data collected from 10

DCNs and obtained some empirical results which are very
useful for researchers to emulate DCNs. [7] found that many
DCNs are built using 3-layer multi-rooted tree architectures
[13]. Thus, we conducted the simulations in a Fat Tree topo-
logy [2]. Vasudevan et al. [31] studied the Incast issue in
DCNs and proposed to reduce RTOmin for avoiding TCP
collapse. We think this method may also help MPTCP im-
prove its throughput. ICTCP [35] is a receiver-side scheme
that eliminates Incast congestion by adjusting TCP receive
window proactively before packet drops occur. Alizadeh et
al. recognized the conflicting requirements between large
and small flows in DCNs and proposed two solutions to
address it. One is to sacrifice about 10% of bandwidth for
reducing packet queuing delay down to zero [5]. The other
is DCTCP [4], which employs ECN to limit the buffer occu-
pancy of large flows. Similarly, D2TCP [30] uses ECN to
make flows with tight deadlines obtain more bandwidth in
DCNs. Besides, the work in [36] proposed to improve the
data transfer performance of DCNs only by tuning ECN pa-
rameters. Note that the above transport protocols are all
single-path schemes. ECN is also employed by NF-TCP [6]
to make large flows such as P2P traffic submissive to latency-
sensitive applications under congestion. However, it is also
not a multipath scheme, and not designed for DCNs.
MPTCP can be regarded as a load balancing scheme de-

ployed at end systems. This is because it can shift traffic
from one path to the others. [19] improved this ability. Thus,
when large flows use MPTCP to transfer data in DCNs, link
utilization will be more balanced. Before that, flow schedul-
ing is one of the possible solutions, such as Hedera [3].
The fluid approximation and the duality model [22] are

both classic methods to solve congestion control issues. For
example, [23] analyzed the linear stability of TCP/RED and
Kelly et al. [18] presented a sufficient condition for the local
stability of end-to-end congestion control. Low [21, 22] pro-
posed a dual model to formulate TCP congestion control
algorithms. Wang et al. [32] developed two distributed algo-
rithms to maximize the aggregate source utility. We par-

tially exploited these theoretical foundations on congestion
control to design XMP.

7. CONCLUSIONS AND FUTURE WORK
In order to balance throughput with latency in DCNs, we

developed XMP as a congestion control scheme of MPTCP.
XMP primarily comprises two core algorithms. The BOS
algorithm achieves controllable link buffer occupancy to meet
the low latency requirement of small flows. The TraSh algo-
rithm performs traffic shifting, thus improving the through-
put of large flows. Our experiments and simulations demon-
strate the performance of XMP in DCNs.

XMP has two configurable parameters: packet marking
threshold K and congestion window reduction factor β. The
parameter setting has impact on the performance of XMP,
as demonstrated by our experiments. We think a deeper
understanding on these impacts should be based on further
theoretical analysis. Additionally, we noted the points raised
by [19]. As the principle of TraSh is similar to LIA, TraSh
may also be subject to the non-Pareto-optimal issue, and
the proposed solution in [19] could be exploited to improve
XMP as well. However, the focus of XMP is on the trade-
off between throughput and latency. We plan to study the
above issues in future work. Also, we will deploy XMP in a
DCN testbed to verify and possibly improve its performance.

8. ACKNOWLEDGMENTS
The research is partially supported by the National Basic

Research Program of China (973 Program) under Grant
2012CB315803, the National Natural Science Foundation of
China (61073166 and 61133015), the National High-Tech Re-
search and Development Program of China (863 Program)
under Grant 2011AA01A101, as well as the EU-JAPAN
GreenICN project under EC FP7 Grant No. 608518 and
NICT Contract No. 167.

9. REFERENCES
[1] A. Ford, C. Raiciu, M. Handley, S. Barre, and J.

Iyengar. Architectural Guidelines for Multipath TCP
Development. RFC 6182, Mar. 2011.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In
ACM SIGCOMM, pages 63–74, 2008.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan,
N. Huang, and A. Vahdat. Hedera: Dynamic Flow
Scheduling for Data Center Networks. In USENIX
NSDI, pages 19–19, 2010.

[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and
M. Sridharan. Data Center TCP (DCTCP). In ACM
SIGCOMM, pages 63–74, 2010.

[5] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less is More: Trading a
little Bandwidth for Ultra-Low Latency in the Data
Center. In USENIX NSDI, pages 19–19, 2012.

[6] M. Arumaithurai, X. Fu, and K. K. Ramakrishnan.
NF-TCP: a Network Friendly TCP Variant for
Background Delay-insensitive Applications. In
NETWORKING, pages 342–355, 2011.

[7] T. Benson, A. Akella, and D. A. Maltz. Network
Traffic Characteristics of Data Centers in the Wild. In
ACM IMC, pages 267–280, 2010.

83



[8] Y. Cao, M. Xu, and X. Fu. Delay-based Congestion
Control for Multipath TCP. In IEEE ICNP, pages
1–10, 2012.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In USENIX OSDI,
pages 137–150, 2004.

[10] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s Highly Available Key-Value
Store. ACM SIGOPS Operating Systems Review,
41(6):205–220, Oct. 2007.

[11] S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, Aug. 1993.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google File System. ACM SIGOPS Operating Systems
Review, 37(5):29–43, Oct. 2003.

[13] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VL2: A Scalable and Flexible Data
Center Network. In ACM SIGCOMM, pages 51–62,
2009.

[14] H. Y. Hsieh and R. Sivakumar. pTCP: an end-to-end
transport layer protocol for striped connections. In
IEEE ICNP, pages 24–33, 2002.

[15] M. Isard. Autopilot: Automatic Data Center
Management. ACM SIGOPS Operating Systems
Review, 41(2):60–67, Apr. 2007.

[16] J. R. Iyengar, P. D. Amer, and R. Stewart. Concurrent
multipath transfer using SCTP multihoming over
independent end-to-end paths. IEEE/ACM
Transactions on Networking, 14(5):951–964, Oct. 2006.

[17] K. Ramakrishnan, S. Floyd, and D. Black. The
Addition of Explicit Congestion Notification (ECN) to
IP. RFC 3168, Sept. 2001.

[18] F. Kelly and T. Voice. Stability of end-to-end
algorithms for joint routing and rate control. ACM
SIGCOMM Computer Communication Review,
35(2):5–12, Apr. 2005.

[19] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and
J.-Y. Le Boudec. MPTCP is not Pareto-Optimal:
Performance Issues and a Possible Solution. In ACM
CoNEXT, pages 1–12, 2012.

[20] A. Kuzmanovic. The Power of Explicit Congestion
Notification. In ACM SIGCOMM, pages 61–72, 2005.

[21] S. H. Low. A Duality Model of TCP and Queue
Management Algorithms. IEEE/ACM Transactions
on Networking, 11(4):525–536, Aug. 2003.

[22] S. H. Low and D. E. Lapsley. Optimization flow
control-I: basic algorithm and convergence.
IEEE/ACM Transactions on Networking,
7(6):861–874, Dec. 1999.

[23] S. H. Low, F. Paganini, J. Wang, and J. C. Doyle.
Linear Stability of TCP/RED and a Scalable Control.
Computer Networks, 43(5):633–647, Dec. 2003.

[24] A. Phanishayee, E. Krevat, V. Vasudevan, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and S. Seshan.
Measurement and Analysis of TCP Throughput
Collapse in Cluster-based Storage Systems. In
USENIX FAST, pages 12:1–12:14, 2008.

[25] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh,
D. Wischik, and M. Handley. Improving datacenter
performance and robustness with multipath TCP. In
ACM SIGCOMM, pages 266–277, 2011.

[26] The dummynet project. [Online]. Available:
http://info.iet.unipi.it/∼luigi/dummynet/.

[27] The implementation of MPTCP. [Online]. Available:
http://multipath-
tcp.org/pmwiki.php?n=Main.Release86.

[28] The implementation of XMP. [Online]. Available:
http://routing.netlab.edu.cn/tiki-
index.php?page=Yu+Cao.

[29] The NS-3 network simulator. [Online]. Available:
http://www.nsnam.org/.

[30] B. Vamanan, J. Hasan, and T. Vijaykumar.
Deadline-Aware Datacenter TCP (D2TCP). In ACM
SIGCOMM, pages 115–126, 2012.

[31] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat,
D. G. Andersen, G. R. Ganger, G. A. Gibson, and
B. Mueller. Safe and Effective Fine-grained TCP
Retransmissions for Datacenter Communication. In
ACM SIGCOMM, pages 303–314, 2009.

[32] W. H. Wang, M. Palaniswami, and S. H. Low. Optimal
flow control and routing in multi-path networks.
Performance Evaluation, 52(2–3):119–132, Apr. 2003.

[33] C. Wilson, H. Ballani, T. Karagiannis, and
A. Rowtron. Better Never than Late: Meeting
Deadlines in Datacenter Networks. In ACM
SIGCOMM, pages 50–61, 2011.

[34] D. Wischik, C. Raiciu, A. Greenhalgh, and
M. Handley. Design, implementation and evaluation of
congestion control for multipath TCP. In USENIX
NSDI, pages 8–8, 2011.

[35] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP:
Incast Congestion Control for TCP in Data Center
Networks. In ACM CoNEXT, pages 13:1–13:12, 2010.

[36] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang.
Tuning ECN for Data Center Networks. In ACM
CoNEXT, pages 25–36, 2012.

[37] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and
R. Wang. A transport layer approach for improving
end-to-end performance and robustness using
redundant paths. In USENIX Annual Technical
Conference, pages 99–112, 2004.

84




