
Multipath in the Middle(Box)

Gregory Detal, Christoph Paasch and Olivier Bonaventure
ICTEAM, Université catholique de Louvain

Louvain-la-Neuve – Belgium

firstname.name@uclouvain.be

ABSTRACT

Multipath TCP (MPTCP) is a major modification to TCP
that enables a single transport connection to use multiple
paths. Smartphones can benefit fromMPTCP by using both
WiFi and 3G/4G interfaces for their data-traffic, potentially
improving the performance and allowing mobility through
vertical handover. However, MPTCP requires a modifica-
tion of the end hosts, thus suffers from the chicken-and-egg
deployment problem. A global deployment of MPTCP is
therefore expected to take years. To increase the incentives
for clients and servers to upgrade their system, we propose
MiMBox an efficient protocol converter that can translate
MPTCP into TCP and vice versa to provide multipath ben-
efits to early adopters of MPTCP.
MiMBox is application agnostic and can be used trans-

parently or explicitly. Moreover, a close attention was paid
to the implementation’s design to achieve good forwarding
performance. MiMBox is implemented entirely in the Linux
kernel so that it is able to more easily circumvent the bottle-
necks of a user-space implementation. Measurements show
that we always outperform user-space solutions and that the
performance is close to plain IP packet forwarding.

Categories and Subject Descriptors

C.2.5 [Local and Wide-Area Networks]: Internet (e.g.,
TCP/IP)

Keywords

Deployment; Multipath TCP

1. INTRODUCTION
The Transmission Control Protocol (TCP) exists since

1981, the date of the publication of RFC 793. Despite its
age, TCP is still the dominant transport protocol on the
Internet. More than 95% of the Internet traffic relies on
TCP [1]. During the last thirty years TCP evolved signifi-
cantly. In the late 80’s the congestion collapse lead to the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HotMiddlebox’13, December 9, 2013, Santa Barbara, CA, USA.

Copyright 2013 ACM 978-1-4503-2574-5/13/12 ...$15.00.

http://dx.doi.org/10.1145/2535828.2535829.

development of the congestion control scheme [2]. This re-
quired only small changes to the TCP implementation but
no protocol changes. As the bandwidth requirements grew,
the limited TCP window size became a clear bottleneck.
This problem was solved by the TCP large window exten-
sion [3]. Selective acknowledgements were also introduced
as an extension to TCP. However, measurements show that
deploying a new TCP option can take up to a decade [4].
This is because once standardized, an extension needs to be
adopted and implemented by operating system vendors and
supported by middleboxes such as firewalls [5].

Regular TCP connections are bound to the IP addresses
that were used during connection establishment. This im-
plies that a change in the hosts’ IP address (e.g. in the case
of a mobile host) results in a shutdown of all established
TCP connections. MPTCP [6] addresses this problem by
allowing the utilization of several paths for a single connec-
tion. In practice, these paths could be a WiFi and a 3G in-
terface on a smartphone, two 10 Gbps interfaces on a server
or an IPv4 and IPv6 address on a laptop.

On today’s Internet, smartphones have a motivation for
using MPTCP as this would allow them to efficiently ex-
ploit their 3G and WiFi interfaces and provide mobility [7].
However, for this, MPTCP must be supported on both the
smartphones and the servers. Although the designers of
MPTCP took great care of avoiding interfering with various
types of middleboxes [5, 6], it is still expected that the its
deployment will take several years. It is also expected that
clients will support MPTCP before servers. Indeed, Apple
Inc. recently enabled MPTCP for a specific application in
which they control the server-side [8].

In this paper, we propose the utilization of protocol con-
verters, that we callMultipath in the Middle Box (MiMBox),
to allow early adopters to benefit from MPTCP during its
deployment. MiMBox supports both MPTCP and TCP and
converts the MPTCP connections used by clients into regu-
lar TCP connections to allow clients to benefit from MPTCP
when communicating with legacy servers. Economic studies
show that such converters can play an important role in the
deployment of a new protocol [9]. MiMBox can be placed
in operator networks or on commodity servers in the cloud
(e.g. as Network Function Virtualization [10], etc.).

This paper is organized as follows. First, we present the
design of MiMBox. We then describe how implementing it
inside the Linux kernel allows to achieve high performance.
We then present a thorough performance evaluation and
show that it outperforms existing proxies. Finally, before
concluding, we discuss related work.

1

C S

M

(1) SRC: C, DST: M

SYN + DST-OPT: S
(2) SRC: M, DST: S

SYN

(3) SRC: S, DST: M

SYN+ACK
(4) SRC: M, DST: C

SYN+ACK

Figure 1: Explicit redirection of connection estab-
lishment through a MiMBox using the Dst Opt TCP
option.

2. DESIGN
Deploying a new transport protocol is hard and often re-

ferred as the chicken-and-egg problem. MPTCP, as every
new protocol, suffers from this problem. Even by being
backward compatible with regular TCP, neither servers nor
clients have incentives to deploy it when the other end does
not support it. To solve this adoption problem, we propose
to deploy MiMBoxes that transparently convert MPTCP
from MPTCP-enabled clients to regular TCP.
This section first presents how TCP flows can be redi-

rected through MiMBoxes. Then the MPTCP-TCP conver-
sion is outlined.

2.1 Traffic Redirection
To allow the protocol conversion, TCP segments must be

sent to a MiMBox. There exists two possible redirection
modes: explicit and transparent. With explicit redirection,
the client sends its segments directly to a MiMBox to allow
the latter to translate MPTCP to TCP. This is similar to
the operation of an explicit proxy except that MiMBox is
not restricted to a particular application (e.g. HTTP).
When using an explicit HTTP proxy, the client establishes

a TCP connection to the proxy and includes the destination
server as an HTTP header field. That way the proxy knows
the original destination. Other solutions, like the SOCKS
proxy, also require a specific application-level protocol to
allow the client to indicate its desired destination. These
solutions require that the applications support the proxy
mechanism which is a major burden.
MiMBox does not modify the application layer. We pro-

pose a new TCP option, that we call Dst Opt, to allow the
client to announce the server address. The Dst Opt pro-
vides the server’s IP address to the MiMBox. Figure 1 shows
how the establishment of new connections is performed via
a MiMBox. When establishing a new connection the client
places the Dst Opt inside the SYN segment and the des-
tination address for this connection is MiMBox’s address.
This allows the latter to forward the connection establish-
ment to the server by rewriting the segment’s IP addresses.
By using its own IP address, all the reply-segments will
be sent via the MiMBox. The Dst Opt is added by the
MPTCP/TCP stack and is thus transparent for the appli-
cation.
In the rest of this paper we focus on the above explicit

mode. Transparent redirection is also possible with MiMBox
if it is on the path between the client and the server or

through tunneling solutions, where all traffic is explicitly
sent to a MiMBox by the border gateway of the local network
(e.g., WCCP uses GRE tunnels [11], or a recent proposal by
Sherry et al. [12]).

2.2 Protocol Conversion
The operations performed by the MiMBox to translate

data segments can be viewed as a pipe, channeling segments
from TCP to MPTCP and vice versa. Incoming segments on
the MPTCP-side contain MPTCP options inside the TCP
header. MiMBox has to handle the options’ operation (e.g.
new subflow establishment, etc.) and strip these options
before forwarding them. MPTCP uses a separate sequence
number space than the TCP sequence numbers [6]. Upon
forwarding, MiMBox has to translate the MPTCP-level se-
quence numbers to the TCP sequence numbers on the server-
side and vice versa. Further, as the TCP/IP header is mod-
ified, MiMBox has to update the TCP checksum.

As MPTCP creates multiple subflows, segments can arrive
independently on each of these subflows. MiMBox therefore
reorders the segments so that they form an in-order sequence
of packets. Finally, MiMBox sends this sequence to the TCP
side. For incoming traffic from the TCP side, MiMBox dis-
tributes the segments among the subflows. MiMBox dis-
tributes these segments using MPTCP’s default scheduling
algorithm [6].

3. IMPLEMENTATION
A MiMBox could be implemented as a user-space applica-

tion. Existing HTTP proxies, such as Squid1 and HAProxy2

run in user space, which simplifies the development but may
affect performance. First, these proxies are limited to spe-
cific applications and services. Each of these services runs
on a specific port. Furthermore, the application needs to
include a redirection mechanism to allow the explicit mode
of MiMBox. MiMBox is application agnostic and does not
require any application change.

To achieve high performance, the following goals are im-
portant:

Avoid Memory Allocation/Copy.
The memory bus is a major limiting factor of the over-
all system performance. The gap between the proces-
sor and memory performance is important and still in-
creasing [13]. To overcome the memory access bottle-
neck it is preferred to try to avoid memory allocations
or copy when possible.

Minimize Context Switching.
Limiting the number of context switches is important
to obtain high performance. Context switching con-
sumes CPU cycles that could have been used for other
resources and it has an effect on the space locality of
the data in the caches if processes are moved from one
CPU to another.

To achieve both these goals MiMBox is implemented as a
kernel module. This allows to avoid memory copy between
user space and kernel space as well as to react as quickly
as the packets arrive in the TCP/IP stack of the kernel.
The module receives all incoming packets and performs two

1http://www.squid-cache.org
2http://haproxy.1wt.eu

2

http://www.squid-cache.org
http://haproxy.1wt.eu

Server

TCP side

MPTCP socket TCP socket

TCP

socket

TCP

socket

Client

MPTCP side

sk_write_queuesk_write_queue

sk_receive_queue sk_receive_queue

out_of_order_queue out_of_order_queue

Move

Forward

MiMBox

Figure 2: MiMBox maintains fully-functional sock-
ets and forwards in-order segments from one side to
the other.

operations: (i) handles connections establishment from the
client and (ii) forwards packets from the client-side to the
server-side and vice versa.
When receiving a SYN segment that requires a translation

from TCP to MPTCP and vice versa, MiMBox creates two
fully-functional sockets that are used as two separate connec-
tions. MiMBox terminates both connections meaning that
the acknowledgements are not end-to-end but are handled
by each socket. Figure 2 shows the behavior of MiMBox in
this scenario. To understand how MiMBox can achieve high
performance, one must understand how network packets are
handled inside the kernel.
The Linux kernel uses special buffers, called sk_buffs, to

handle network packets. When a segment arrives at the
NIC a sk_buff is allocated. The buffer then traverses the
TCP/IP stack and, for a TCP connection, is finally stored in
the receive queue of its corresponding socket waiting for the
application to copy the payload into its own buffer. sk_buffs
are also allocated by the kernel when the application wants
to send data. A user space application that would move data
from one socket to another using the read() and write()

system calls would cause two buffer allocations on top of
two memory copies. To achieve high performance, MiMBox
limits the number of allocations and avoids costly copy op-
erations. Indeed, its operation consists of moving sk_buffs
from the receive queue of one socket to the send queue of
the other socket and vice versa. This is done by modify-
ing pointer references as well as updating sequence numbers
and the checksum. The cost of these operations is therefore
minimal.

4. EVALUATION
In this section we evaluate the performance of MiMBox

and compare it with user-space solutions.
We run experiments on three servers connected as de-

scribed in Figure 3. They all use Intel Xeon X3440 running
@ 2.53GHz and have 8GB of RAM. Each of these servers
has at least one dual-port Intel 82599 10Gbit Ethernet card
that supports hardware offloading.
Each host runs the v0.87 release of MPTCP3. On top of

that, the converter runs our MiMBox implementation based
on this MPTCP implementation. The client and the server

3http://multipath-tcp.org

Client ServerProtocol Converter

MPTCP

TCP

Figure 3: The setup used throughout the experi-
ments.

run different pieces of software, they use either Weighttp4

and Apache or Netperf [14]. The protocol converter is where
the evaluation takes place. It is running either MiMBox,
Squid, HAProxy, a custom application-level converter or act-
ing as an IP router.

4.1 Goodput
Inserting the protocol converter on the path between the

client and the server may reduce the throughput, meaning
the rate at which the end hosts can send/receive data over
the network. To measure the impact on the application-level
throughput (called goodput) we use Netperf. Netperf allows
to send data from the client to the server at the highest
possible speed up to the capacity provided by the network.

Our baseline to compare the performance is the setup
where the converter is acting as a regular IP router. As the
router does not perform any protocol conversion, we enable
MPTCP on the server-side for this scenario.

We implemented two application-layer protocol convert-
ers to compare with our kernel-space implementation. These
converters open a socket using the Netperf port on the client-
side and listen for incoming connections. When a connection
is established, the converter opens a new connection towards
the server using the same port and an hardcoded address.
The first application uses the read() and write() system
calls to forward the data received on one socket to the other.
The second application uses splice() [15]. splice() is a
system call that allows to move data from one file descrip-
tor to another without having to copy the data from kernel
space to user space. Using splice() from one TCP socket
file descriptor to another can be seen as forwarding at the
TCP layer. Splicing is employed in web proxies where, af-
ter inspecting some part of a connection at the application
level, it can make the rest of the connection fall back to TCP
forwarding for optimal processing.

It must be noted that these application-level protocol con-
verters are difficult to realize in practice. They must listen
explicitly on a port and so are not application agnostic. Fur-
thermore, current applications do not allow to specify the
real server’s destination IP address, they must modify the
application data stream.

We evaluate the impact of the Maximum Segment Size
(MSS) on the goodput. Figure 4 shows that MiMBox achieves
better performance, close to simple IP forwarding. Overall,
with a small MSS the maximum goodput, i.e. 10 Gbps,
is not achieved with any solution. The lower the MSS,
the higher the number of segments transmitted to achieve
full goodput. The number of segments a device can gener-
ate/receive is a function of the number of interruptions that
it can handle. The number of segments generated/received
is therefore fixed. Increasing the MSS size thus increases

4http://redmine.lighttpd.net/projects/weighttp/
wiki

3

http://multipath-tcp.org
http://redmine.lighttpd.net/projects/weighttp/wiki
http://redmine.lighttpd.net/projects/weighttp/wiki

0

1

2

3

4

5

6

7

8

9

10

 1000 2000 3000 4000 5000 6000 7000 8000 9000

G
oo

dp
ut

 [G
bp

s]

Maximum Segments Size (MSS) [B]

Router
MiMBox

TCP Splice
User App

Figure 4: MiMBox always outperforms application-
level solutions.

SYN SYN+ACK Data

Router 5.2 ± 0.1 µs 5.2 ± 0.1 µs 5.3 ± 0.1 µs
read()/write() 143.4 ± 11.4 µs N/A 29 ± 0.3 µs
MiMBox 17.5 ± 1.2 µs 41.6 ± 2 µs 16 ± 0.1 µs

Table 1: MiMBox introduces a very moderate per-
packet delay – application-level solutions are much
worse.

the goodput, as a larger amount of data is transmitted per
segment.
The performance difference between MiMBox and its user-

space counterparts can be explained by the fact that the
latter ones are CPU-limited due to memory allocation and
copy. splice()’s performance is mainly impacted by the
memory allocation. When performing splice(), pages are
moved, however splice() causes a new sk_buff allocation
while this is not required in MiMBox which moves sk_buffs
as is.

4.2 Forwarding delay
One important performance factor is the forwarding delay

introduced by MiMBox. To validate our design we measure
the forwarding delay which is the time the packet spends
inside the converter. We use a custom application that
sends bursts of 1300 bytes of data at the rate of 20 Kbps.
We capture all packets entering and leaving the converter
with tcpdump into a ramdisk. tcpdump stores, together with
the packet, a timestamp of the moment the packet is enter-
ing/leaving the host. This timestamp allows us to measure
the time each packet forwarded by the converter has spent
inside the host. We also ensure that a route cache exists
prior to measuring the delay to avoid influencing the SYN
and SYN+ACK delays.
As in the previous section, the baseline is the performance

achieved using the converter as a regular IP router. We pro-
file MiMBox with a TCP and MPTCP-enabled server as
well as the previously described read()/write() applica-
tion. Table 1 shows the per segment forwarding delay intro-
duced by each of the solutions averaged over 100 measures
as well as the 95% confidence interval.
A first observation, is that the difference between the ap-

plication and MiMBox is large for SYN packets. The poor
performance of the read()/write() application is because
the accept() call only returns when the ACK is received

on the client-side of the converter. Therefore, the connec-
tion on the server-side is only established after the three-way
handshake is completed on the client-side, resulting thus in
a higher delay. Measuring the SYN+ACK delay is impossi-
ble since the SYN+ACK on the client-side is sent before the
SYN+ACK from the server-side.

The difference in the SYN forwarding delay between MiM-
Box and the router is due to the additional operations per-
formed by MiMBox. While the former needs to match to
a route cache entry, the latter needs to change the IP ad-
dresses, verify the port numbers to avoid 5-tuple collisions
and finally recompute the TCP checksum before forwarding
the SYN to its final destination. When the server replies
with the SYN+ACK, sockets must be created (see Section
3), this causes additional delay as the sockets must be cre-
ated before the SYN+ACK on the client-side is generated.

After the three-way handshake, the forwarding delay for
segments containing data is lower than for SYNs and SYN+
ACKs as there are fewer operations to perform. The seg-
ments pass through the TCP/MPTCP stack to be forwarded.
Traversing inside the two stacks introduces this additional
delay.

The read()/write() application gives worse results when
forwarding data as it consumes many CPU cycles transition-
ing from kernel space to user space.

4.3 Workload
In the previous sections we have evaluated the perfor-

mance of a single connection through MiMBox. We now
evaluate the cost of supporting network-heavy applications.
We use weighttp running 40 parallel clients sending HTTP
requests for varying file size. This is a standard stress test for
TCP performance with short flows. We measure the number
of requests per second that the client is able to perform.

As a baseline we use again the kernel-based router. We
also profile existing HTTP proxies: HAProxy and Squid.
These proxies terminate the MPTCP connections on the
client-side and start a new TCP connection on the server-
side. Their caching mechanisms are disabled as we want to
measure pure forwarding performance. These proxies are
application specific but still act similarly to MiMBox at the
data level, they forward the HTTP requests and the response
back to the client. We configured HAProxy to use splice().
For this the proxy performs a read() of the client requests
so that it can lookup the destination server in the HTTP
header and establish a new connection. As the reply from
the server comes back, HAProxy uses splice() to forward
the data to the client. Compared to Squid, HAProxy can
use multiple threads to handle incoming requests. As our
test server has 8 cores, we configured HAProxy to use either
1 or 8 threads.

Figure 5 shows (in log-scale) that MiMBox outperforms
both HAProxy and Squid. For a request of a 1KB file
respectively MiMBox, HAProxy multi-threaded, HAProxy
mono-threaded and Squid are able to sustain around 22k,
18k, 9.5k and 2.5k requests per second. The result can be
explained by the fact that MiMBox is quickly able to fully
utilize the available bandwidth as well as optimize the three-
way handshake. Indeed, the HTTP proxies have to wait for
a HTTP GET request from the client to identify the server
and establish the server-side connection. The HTTP proxy
also has to parse the server address in the HTTP header.
Figure 5 shows also that MiMBox sustains a similar num-

4

 100

 1000

 10000

 100000

 0 50 100 150 200 250

R
eq

ue
st

s
pe

r
se

co
nd

s

Requests Size [KB]

Router
MiMBox

HAProxy (8 threads)
HAProxy (1 thread)

Squid

Figure 5: MiMBox supports a large number of
HTTP clients – close to the performance of an IP
router.

ber of requests per second as plain IP forwarding. For large
file sizes the cost of establishing new connections is negligi-
ble. Nevertheless, in this case MiMBox still outperforms the
user-space proxies and the limit comes from the end hosts.
We also reduced the MSS to small sizes and we have not ob-
served any difference in the results, MiMBox is always close
to direct routing.

4.4 Buffering
By terminating connections MiMBox buffers data. Buffer-

ing consumes memory on MiMBox and thus might limit its
ability to support a large number of clients. To analyze the
impact of the buffer usage we performed two different eval-
uations where we limit the maximum memory allocated for
each socket. For this, we used the system configuration pa-
rameters tcp_rmem and tcp_wmem that allow to configure the
minimal, initial and maximum sizes of respectively the send
and receive buffers.
We used a real-life simulated environment as presented in

Figure 3. In this scenario, the client simulates a smartphone
that has a WiFi (through ADSL) and a 3G connectivity and
the proxy is present in the cloud. The links of the setup
used in the previous evaluation where configured so that the
client’s ADSL-link has 8Mbps downstream and 512Kbps up-
stream capacity and 20 msec RTT to the proxy as well as a
3G link with 2Mbps downstream and 256Kbps upstream ca-
pacity and 80 msec to the proxy. The link between the proxy
and the server is configured with a symmetric 100Mbps and
10 msec RTT with the server. The client-side is therefore
the bottleneck in this scenario.
We first evaluate the memory consumption of MiMBox

when the client transfers at the highest bandwidth available,
i.e. 10 Mbps in download and 768 Kbps in upload. For this
experiment we used Netperf to measure the bandwidth and
varied the tcp_rmem and tcp_wmem. We use as baseline the
mode without a proxy between the client and the server.
Figure 6 shows the download performance when the mem-

ory allocated varies. The client can achieve the highest per-
formance with only 200KB of memory per socket (400 KB in
total). A MiMBox having 8GB of memory could therefore

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300 350 400

G
oo

dp
ut

 [M
bp

s]

Memory Allocation [KB]

MiMBox
Baseline

Figure 6: Client memory consumption is quite small
to achieve a high bandwidth.

scale up to 20,000 connections in this environment5. The
memory usage could be improved. Indeed, in the down-
load scenario, the socket facing the server does not require
200KB to achieve 10Mbps. Due to space limitations we do
not evaluate this scenario.

Our second evaluation analyzes the impact of the buffer-
ing on interactive applications. For this we used the same
environment and added a 1% loss on the client-side to cause
retransmissions. We used a custom application [6] that sends
at a fixed 100Kbps rate to simulate an interactive applica-
tion. We then measured the application delay. We observed
for a 200KB buffer that there is a 2 msec advantage for the
MiMBox. More interestingly the maximum delay observed
is around 150ms with MiMBox while it is 250ms without.
Having a large delay can be problematic for interactive ses-
sions. The reason that MiMBox reduces the delay in this
scenario is that by terminating the connection it allows end
hosts to react quickly to losses therefore causing fewer queu-
ing inside the network. A similar tendency has also been
observed with other buffer size limitations as well as when
the path between the MiMBox and the server is lossy. We
did not observe any significant difference when there is no
loss.

5. RELATED WORK
The end-to-end principle assumes that TCP connections

extend only between hosts. This is less and less true in
today’s Internet dominated by middleboxes [5, 12]. Start-
ing in the 1980s, researchers have proposed protocol con-
verters that terminate one transport connection on one side
and initiate another one on the other side [16]. This idea
has been applied by various authors. A first use case are
wireless networks where end-to-end performance can be im-
proved by splitting the TCP connection [17] and using im-
proved retransmission techniques on the wireless link [18,
19]. MiMBox enables wireless hosts to simultaneously use
several wireless interfaces at the same time, even when the
servers do not yet support MPTCP.

Another example are the HTTP proxies. We discussed
the differences between MiMBox and proxies in Section 3.
Recently, a few authors have proposed some kind of MPTCP

58GB is fairly small. Some Amazon EC2 instances can have
up to 244 GB of memory. In this case MiMBox could sup-
port up to 600k connections.

5

proxies. Raiciu et al. [20] discuss the role that such prox-
ies could play to support mobile hosts. However, this paper
does not implement any such proxy. Ayar et al. [21] pro-
pose to use multiple paths inside the core network to improve
performance while still using regular TCP between the end
hosts and their proposed Splitter/Combiners. A prototype
implementation of this solution above Linux netfilter is
evaluated. Hampel and Klein [22] propose MPTCP prox-
ies and anchors as well as some extensions to the MPTCP
protocol to support them.
MiMBox could be implemented using solutions such as

netmap [23] that allows a user-space application to inter-
act directly with the NIC without going through the host’s
stack. While this brings high benefit for simple application
such as switching, it still requires to implement a complete
TCP/IP stack in user space to support MiMBox. As there
do not exist such stack, it is unclear whether such imple-
mentation would achieve better performances.

6. CONCLUSION
Deploying a new TCP extension like MPTCP can be dif-

ficult despite its clear benefits for users. We propose a pro-
tocol converter called MiMBox to allow clients to already
benefit from MPTCP during its deployment phase. MiM-
Box efficiently translates MPTCP to TCP and vice versa.
By implementing MiMBox entirely in the Linux kernel, we
achieve high performance on commodity x86 servers.
We compare the performance of MiMBox with existing

HTTP proxies and simpler designs, e.g. using TCP Splice.
Our evaluation shows that MiMBox overcomes existing prox-
ies both when handling long TCP flows and when serving a
large number of HTTP clients. From a performance view-
point, MiMBox is close to the performance of an IP router.
Furthermore, by evaluating the buffering cost of a client in
a real life scenario we show that MiMBox can easily scale to
a large number of clients using commodity hardware.

Acknowledgments

This work is partially funded by the European Commis-
sion funded CHANGE (INFSO-ICT-257422) project, by the
Belgian Walloon Region under its FIRST Spin-Off Program
(RICE project) and by the IAP-BESTCOM project.

7. REFERENCES
[1] C. Labovitz, S. Iekel-Johnson, D. McPherson,

J. Oberheide, and F. Jahanian, “Internet Inter-domain
Traffic,” in ACM SIGCOMM, 2010.

[2] V. Jacobson, “Congestion Avoidance and Control,” in
ACM SIGCOMM, 1988.

[3] V. Jacobson, R. Braden, and D. Borman, “TCP
Extensions for High Performance,” RFC1323, May
1992.

[4] K. Fukuda, “An Analysis of Longitudinal TCP Passive
Measurements,”Traffic Monitoring and Analysis,
2011.

[5] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda, “Is it still possible to
extend TCP?” in ACM SIGCOMM IMC, 2011.

[6] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley, “How
Hard Can It Be? Designing and Implementing a
Deployable Multipath TCP,” in USENIX NSDI, 2012.

[7] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and
O. Bonaventure, “Exploring mobile/WiFi handover
with multipath TCP,” in ACM SIGCOMM workshop
CellNet, 2012.

[8] O. Bonaventure, “Apple seems to also believe in
Multipath TCP,” 2013, see http://perso.uclouvain.be/
olivier.bonaventure/blog/html/2013/09/18/mptcp.
html.

[9] S. Sen, Y. Jin, R. Guérin, and K. Hosanagar,
“Modeling the Dynamics of Network Technology
Adoption and the Role of Converters,” IEEE/ACM
Transactions on Networking, vol. 18, no. 6, 2010.

[10] ETSI, “Network Functions Virtualisation – An
Introduction, Benefits, Enablers, Challenges & Call for
Action,” Tech. Rep., Oct 2012, http://portal.etsi.org/
NFV/NFV White Paper.pdf.

[11] D. McLaggan, “Web Cache Communication Protocol
V2, Revision 1,”Working Draft, Internet-Draft
draft-mclaggan-wccp-v2rev1-00, Aug. 2012.

[12] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar, “Making Middleboxes
Someone Else’s Problem: Network Processing as a
Cloud Service,” in ACM SIGCOMM, 2012.

[13] B. Jacob, S. Ng, and D. Wang, Memory systems:
cache, DRAM, disk. Morgan Kaufmann, 2010.

[14] R. Jones et al., “Netperf: a network performance
benchmark,” Information Networks Division,
Hewlett-Packard Company, 1996.

[15] D. A. Maltz and P. Bhagwat, “TCP Splicing for
Application Layer Proxy Performance,” Journal of
High Speed Networks, vol. 8, no. 3, 1999.

[16] I. Groenbaek, “Conversion Between the TCP and ISO
Transport Protocols as a Method of Achieving
Interoperability Between Data Communications
Systems,” IEEE Journal on Selected Areas in
Communications, vol. 4, no. 2, 1986.

[17] A. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP
for Mobile Hosts,” in International Conference on
Distributed Computing Systems, 1995.

[18] H. Balakrishnan, V. Padmanabhan, S. Seshan, and
R. Katz, “A Comparison of Mechanisms for Improving
TCP Performance over Wireless Links,” in ACM
SIGCOMM, 1996.

[19] J. Border, M. Kojo, J. Griner, G. Montenegro, and
Z. Shelby, “Performance Enhancing Proxies Intended
to Mitigate Link-Related Degradations,” RFC 3135,
2001.

[20] C. Raiciu, D. Niculescu, M. Bagnulo, and M. J.
Handley, “Opportunistic Mobility with Multipath
TCP,” in ACM workshop MobiArch, 2011.

[21] T. Ayar, L. Budzisz, and A. Wolisz, “TCP over
Multiple Paths Revisited: Towards Transparent Proxy
Solutions,” in IEEE ICC, June 2012.

[22] G. Hampel and T. Klein, “MPTCP Proxies and
Anchors,”Working Draft, Internet-Draft
draft-hampel-mptcp-proxies-anchors-00, Feb. 2012.

[23] L. Rizzo, “Netmap: a novel framework for fast packet
i/o,” in Proc. of the USENIX conference on Annual
Technical Conference, ser. USENIX ATC’12.
USENIX Association, 2012, pp. 9–9.

6

http://perso.uclouvain.be/olivier.bonaventure/blog/html/2013/09/18/mptcp.html
http://perso.uclouvain.be/olivier.bonaventure/blog/html/2013/09/18/mptcp.html
http://perso.uclouvain.be/olivier.bonaventure/blog/html/2013/09/18/mptcp.html
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf

	Introduction
	Design
	Traffic Redirection
	Protocol Conversion

	Implementation
	Evaluation
	Goodput
	Forwarding delay
	Workload
	Buffering

	Related Work
	Conclusion
	References

