
Analysis and Topology-based Traversal
of Cascaded Large Scale NATs

Andreas Müller, Florian Wohlfart and Georg Carle
Chair for Network Architectures and Services

Technische Universität München
{mueller, wohlfart, carle}@net.in.tum.de

ABSTRACT
Middleboxes are an essential part of today’s networks since
they allow to introduce additional functionality without hav-
ing to change end-hosts. Network Address Translation (NAT)
has been the number one choice for coping with the address
depletion problem of IPv4. Although NAT introduces many
problems for existing applications it can be found in almost
every consumer and mobile network.

Large Scale NAT (LSN) is the latest trend in middlebox
deployment and plays an important role for the transition
from IPv4 to IPv6. LSN may consist of a distributed NAT at
the provider or it may include multiple layers of NAT. LSN
introduces additional problems for customers since many ex-
isting NAT traversal techniques cannot be applied.

This paper presents an approach for discovering and mea-
suring stateful cascaded NATs on the path between two
arbitrary peers in the Internet. An algorithm combining
multiple UDP packets, individual timeouts and traceroute
measurements is presented and evaluated in a public field
test. Finally, we show how NAT traversal for LSN can be
improved by parameterizing existing algorithms according
to the detected topology.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations

Keywords
Middlebox, NAT, LSN, Measurement, Field Test

1. INTRODUCTION
As the Internet was being designed and evolved, one of the

most important design decisions was the end-to-end princi-
ple. It states, that application-specific functionality should
be implemented in end-hosts only. With the growing size of
the Internet, middleboxes have been introduced into the net-
work to cope with emerging problems: NAT devices mitigate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotMiddlebox’13, December 9, 2013, Santa Barbara, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2574-5/13/12 ...$15.00.
http://dx.doi.org/10.1145/2535828.2535833.

the Internet address depletion problem, caches and proxies
help to efficiently distribute content, and firewalls protect
networks from potential attackers. As middleboxes violate
the end-to-end connectivity model of the Internet protocol
suite they introduce numerous problems for services and ap-
plications. A large number of solutions to the so-called mid-
dlebox traversal problem have been developed [5, 11, 12],
most of them focusing on the scenario where only one state-
ful middlebox on the path to the open Internet (e.g. a NAT
at the customer’s premises) exists.

One of the latest trends in middlebox deployment is Large
Scale NAT (LSN) or Carrier Grade NAT (CGN). Instead
of switching to IPv6, ISPs deploy multiple layers of mid-
dleboxes to serve their customers. This is not only true
for mobile networks, as shown in [18, 17]: approaches such
as Dual-Stack Lite [4] use LSN to deploy IPv6 in service
provider networks without forcing the customers to switch
to IPv6. With the deployment of LSN, many of the previ-
ously working NAT-Traversal techniques fail: control-based
solutions, such as UPnP, are not applicable as they only
control the innermost NAT, the provider’s LSN cannot be
reached. This not only has technical reasons (multicast),
but also security reasons (lack of authentication). Behavior-
based solutions, such as hole-punching, deliver suboptimal
results as the TTL field of the hole-punching packet are diffi-
cult to set precisely due to the unknown topology [16]. Part
of the problem is that it is not possible to detect and mea-
sure the exact number of NATs between two peers in the
Internet, which would help to select an appropriate NAT
traversal algorithm. Traditional NAT detection algorithms,
such as STUN [12], only deliver the outermost IP address
and treat multiple LSNs as one large black box. Thus, the
detection of multiple cascaded NATs on the path between
two arbitrary hosts is not possible without the hop-to-hop
support of protocols such as NSIS/NSLP [15].

This paper proposes an algorithm that is capable of dis-
covering previously unknown cascaded stateful middleboxes
on the path from a client to a server located in the public In-
ternet without having support of intermediate hops. Please
note that in the rest of this paper we will often use the more
generic term middlebox since our algorithm is not limited
to NATs only. The algorithm is integrated in the NAT an-
alyzing software NATAnalyzer1 and run in many networks
to discover the topology of ISPs and to gather information
about the deployment of LSNs. Additionally, we show how
the traversal of LSNs can be improved by parameterizing
the well-known hole-punching algorithm based on the ac-

1http://nattest.net.in.tum.de

43

tual topology. This is especially helpful in scenarios where
control-based techniques, such as port-forwarding or UPnP,
are not applicable.

This paper is organized as follows: After giving an intro-
duction to LSN in section 2, the state of the art in middlebox
detection and related work in the context of LSN is presented
in section 3. Section 4 then describes our approach in detail.
Section 5 presents the results of our experimental analysis
and section 6 concludes this paper.

2. LARGE SCALE NAT
Large Scale NAT (LSN) is an approach to shift NAT func-

tionality from the customer to the ISP, especially in the con-
text of the transition to IPv6. Some LSN deployments see
address translation only at the provider’s side, while others
are based on cascaded and multi-layered NATs. The tran-
sition to IPv6 is difficult because a large number of hosts
in private networks still only support IPv4 and many con-
sumer electronic devices will never receive a firmware update
supporting IPv6. Therefore, providing IPv6-only services to
new customers is not possible. The second problem is that
most content in the Internet is not yet reachable via IPv6.
In fact, according to the Comcast’s AAAA and IPv6 connec-
tivity statistics2 less than 5% of the top 1M websites provide
an AAAA record. In this paper LSN refers to a setup that
includes one or more NATs at the provider side with the op-
tion of having additional NATs deployed along the path, e.g.
at the customer premises, resulting in an unknown topology
of cascaded NATs.

3. RELATED WORK
Two different approaches for NAT discovery exist: The

first one treats middleboxes as black boxes and assumes no
direct control. For example, the STUN protocol [12] allows
a peer to retrieve its IP address and port as seen by a STUN
server to determine if it is located behind NAT. With STUN,
the complete topology is treated as a black box and only
if STUN servers were deployed in every intermediate net-
work, it would be possible to reveal the complete topology
by querying one after another.

The second discovery category defines interfaces and spec-
ifies protocols for querying and controlling middleboxes di-
rectly. The UPnP protocol is a typical example for this cate-
gory, other proposals include the control extension for STUN
[13], the “TCP Option for Transparent Middlebox Discov-
ery” [9] and the Port Control Protocol (PCP) [19]. However,
these extensions only work when in widespread use. Thus,
the detection of multiple NATs and their position on the
path is still an unsolved problem.

Evaluations of different hole-punching algorithms [2, 6]
have shown that setting the TTL value for the initial hole-
punching packet to a low value delivers better results be-
cause the initial packet does not reach the remote host. With
only one NAT located usually only one hop from the end-
host the determination of the TTL value is trivial. With
an unknown topology, setting the TTL value to exactly the
value that it traverses the outermost NAT without reaching
the other host is rather difficult. In [16] the authors propose
to use traceroute to count the number of hops and set the
TTL value to half of the end-to-end hop count.

2http://www.employees.org/˜dwing/aaaa-stats/

A number of experimental analysis and field tests covering
network, middlebox and NAT behavior have been done in
the past. In [5] a UDP hole-punching algorithm is evaluated
using a small number of devices in the wild. TCP middlebox
behavior is tested in [6]. [7] looks at home gateway char-
acteristics such as TCP/UDP timeouts, DNS handling and
ICMP messages. [8] tests basic UDP behavior, port mapping
and filtering. Netalyzr [10] is a useful online tool to analyze
the current network connection, e.g. in case of a network
problem. The web-based test covers many networking as-
pects such as latency, but also a basic NAT detection test.
The goal of the HomeNetProfiler [3] is to gather network-
ing information of home routers to eventually improve the
usability of home networks. NetPiculet [18] was designed
to test firewall and NAT policies, such as timeouts, filter-
ing and mappings. This was realized using a smartphone
application and the test was run in a large number of cellu-
lar provider networks, thus also covering Large Scale NATs.
[17] analyzes how provider-side LSNs allocate IP addresses
based on the geolocation of the devices and [1] evaluates
the impact of LSNs for residential broadband users in New
Zealand.

4. DETECTION OF LARGE SCALE NAT
A naive approach to detect stateful middleboxes without

requiring active support is to send out UDP messages with
different TTLs. As soon as the packets expire, intermedi-
ate routers send ICMP TTL exceeded packets including the
headers of the initial UDP packet. By comparing the IP
addresses a client would be able to detect translating mid-
dleboxes. However, today’s middleboxes also retranslate the
headers in the ICMP payload, which makes this approach
useless.

The initial assumption of our measurement algorithm is
that we are able to exchange a sequence of packets between
a client that wants to discover the topology and a server that
is located in the public Internet. The server in the public
Internet acts as a reference point that clients use to conduct
their measurements as depicted in figure 1.

The first step for a client is to simply connect to the test
server in order to establish a mapping in all intermediate
nodes. Intermediate nodes may be legacy IP routers or one
or more (stateful) middleboxes such as NATs, LSNs and fire-
walls. Once the server has received the first packet (e.g. a
simple UDP packet), it counts the number of hops between
the server and the client by conducting a traceroute3 mea-
surement. To get reliable results a stable path is required.
As paths may vary due to load-balancing, the number of
hops between the client and the server should be as low as
possible. This can be reached by geographically distributing
multiple servers in the public Internet.

In general, our approach does not require that NATs on
the path decrement the TTL field as routers do. If a NAT
does not decrement the TTL field, the next router will, so
both hosts will be detected as one hop by the algorithm.
The only inaccuracy that can arise from this issue is that
two directly adjacent NATs could be deteced as one NAT
instead of two separate NATs. Our goal is to find initial
TTL values for low TTL hole-punching, so we can live with
this limitation.

3http://linux.die.net/man/8/traceroute

44

Client

Client

MB1

MB1

Router1

Router1

MB2

MB2

Router2

Router2

Server

Server

establish all mappings

traceroute to count hops

remove mapping

traceroute to count hops
blocked by MB1

remove mapping

traceroute to count hops
blocked by MB1

remove mapping

traceroute to count hops
blocked by MB2

remove mapping

traceroute to count hops
blocked by MB2

Figure 1: Topology detection approach

Once the server has detected the initial topology (the
number of hops), the client successively removes each map-
ping starting from the one closest to it. After removing a
mapping the server repeats the traceroute to the same desti-
nation and compares the number of hops with the initial re-
sult. In figure 1 the mapping of MB1 is removed first and the
following traceroute from the server to the client is blocked
by the middlebox since no state exists anymore. Thus, the
result of the traceroute reveals one hop less than the initial
hop count, which is used by the server as an indicator that
there is a stateful middlebox at hop 1. In the second step
the client directs Router1 to remove its mapping. Since it is
no stateful middlebox the following traceroute still reaches
MB1 with the same hop count as before. Thus, hop 2 does
not implement stateful filtering. These steps are repeated
for each hop, which eventually reveals the topology from the
client toward the server. The pseudo-code of our algorithm
is shown in the following:

establish mapping in all middleboxes along the path;
start from n=1, increment n by 1 for each run and
repeat

remove mapping of all hops from 1 to n as seen by
the client;
count number of hops from server to client;

until n reaches number of hops;

Alg. 1: Middlebox topology detection algorithm

4.1 Remove Mapping
Our algorithm requires the capability of a client to remove

a mapping in an intermediate node. Without a protocol
that actively controls middleboxes this is not a trivial task.
However, when considering stateful middleboxes, there are
two possibilities to remove an established state: First, a
State Timer is assigned to each mapping and once it expires,
the mapping is deleted. Second, a Policy might exist that

removes a mapping based on a special packet (e.g. a TCP-
RST or TCP-FIN) or on a sequence of packets.

In case of TCP, a client would establish a regular TCP
connection to the server, thus creating a mapping in each
intermediate node. As long as the connection is in the es-
tablished state, the mappings are kept in the middleboxes
(assuming the TCP-established timer is large enough). As
soon as a middlebox sees a TCP-RST packet it might (ac-
cording to its actual behavior) remove the mapping immedi-
ately. However, if the client simply terminates the existing
connection in the regular way, the TCP-RST packet is sent
to the server via all intermediate nodes, which removes their
mappings. Our algorithm calls for a strategy that requires
to keep the TCP connection in the established state and
only removes the mappings step by step. Thus, a TCP-RST
packet has to be sent in a way that it only reaches a specific
hop. This can be done by setting the TTL value of the IP
packet to an appropriate value. As the Client’s TCP-RST
packets may need to pass other middleboxes with their map-
ping already removed, we need to presume that middleboxes
always allow outbound traffic.

For UDP no such RST packet exists. Thus, waiting for a
timeout is the only possibility to remove a mapping from a
stateful middlebox. Unfortunately, timeouts of middleboxes
differ, which requires to slowly approach the timeout exper-
imentally. The following shows our algorithm for UDP:

foreach hop from 1 to n do do
establish mapping: send UDP packet from client to
server;
server waits for UDP Timeout and sends keep-alive
packets with TTL = #Hops− n;
traceroute from server to client;

end foreach

Alg. 2: Middlebox topology detection algorithm for UDP

In order to make sure that only the timeout of the inner-
most middlebox (the one to be tested) expires, the server
has to send keep-alive packets to all the other hops. This
can be done by setting the TTL value of the correspond-
ing IP packet in a way that the keep-alive packet expires
right before it reaches the middlebox to be tested. Since
the timeout value is not known beforehand and may vary
from middlebox to middlebox, a large number of tests using
different timeout values should be run in parallel.

The server keeps track of all traceroute measurements and
stores the number of hops that were successfully traversed
for each timeout value. For each such combination, the
server also knows the value of the client’s current counter
(variable n in the above pseudo-code) representing the hop
for which the client just removed the mapping. As a result,
the server is able to derive the number of stateful middle-
boxes from it. A complete example on how to derive the
position of stateful middleboxes is given in section 5 when
presenting our experimental results.

4.2 Side Effects and Synergies
The topology measurements not only reveal information

about stateful middleboxes on the path, it also delivers ad-
ditional results. First, when using the UDP approach the
timeouts of the individual hops are not known in advance,
resulting in many parallel tests with increasing timeout val-

45

ues. When running a large number of tests, timeouts of
each hop on the path can be detected. Second, port alloca-
tion patterns of the outermost middlebox can be detected
by monitoring the source IP addresses and ports of packets
coming from the client. Third, by comparing hop counts,
the stability of a path can be examined. Finally, it can be
observed if providers block outgoing ICMP messages, which
is a real problem for getting accurate results. The following
listing gives an overview of additional results that can be
gathered by the algorithm:

• By running parallel tests with increasing timeouts, the
individual timeout for the state can be detected for
each hop.

• By monitoring source addresses of incoming packets,
binding and port allocation patterns can be detected.

• By comparing hop counts, the path stability can be
monitored. Unstable hop counts are strong indicators
for load-balancing.

• By comparing TCP and UDP results, the filtering be-
havior for ICMP packets can be detected.

5. EXPERIMENTAL RESULTS
After having designed an algorithm to detect the topology

of cascaded stateful middleboxes in section 4, we conducted
a public field test to evaluate our approach. As mentioned,
we integrated our topology detection test into the NAT-
Analyzer software which combines a number of tests (e.g.
STUN, UPnP, various hole-punching scenarios, etc.) to ex-
amine middlebox behavior in the wild. As the TCP-based
version of our algorithm requires superuser privileges on the
client side (which is not acceptable for most of the volun-
teers running the test), we only integrated the UDP-based
version.

In total we collected the results of 4.810 tests, in which
93% completed the traditional middlebox analysis tests and
53% completed our new topology discovery test (which takes
several minutes). We received test results from fixed-line
providers using DSL, cable networks, mobile networks, LTE
networks4 and others such as a public WLAN access point
and a satellite network. Apart from that, we received test re-
sults from organizations, which operate their own networks,
such as larger companies and university campuses. In the
following, we will refer to this type of connection as corporate
networks. Most test results were submitted from Germany
(19%) and the United States (11%), since we actively ap-
proached people to conduct our field test in these countries.
In order to have short path lengths, we deployed two geo-
graphically distributed servers (United States and Germany)
and used geolocation to distribute the clients.

There are two possibilities to detect multiple stateful mid-
dleboxes with our experimental results: First, by comparing
IP addresses of the UPnP results with the actual public IP
addresses and second by our topology detection algorithm
as presented in section 4. Both possibilities were realized
and their results are presented in the following.

5.1 UPnP Test Results
Our UPnP test is a client-side test that attempts to con-

nect to a UPnP-enabled middlebox within the participant’s

4“LTE connection” refers to LTE-based wireless internet ac-
cess for homes in remote areas where fast fixed-line connec-
tions are not available.

network. If it succeeds, the test retrieves the device name,
manufacturer and external IP address from the middlebox.
Afterwards, these results are committed to our test server
using HTTP-POST. By comparing the source IP address of
this HTTP connection with the external IP address found in
the UPnP test results, we have a first indicator for cascaded
middleboxes. 26.5% of all UPnP-enabled devices carried an
external UPnP address that was different from the one that
was used to post the results. In 23.2% of these cases the
UPnP address came from the 10/8 range, in 6.3% from the
172.16/16 range, in 63% from the 192.168/24 range and in
14% the external UPnP address was also a public one. Based
on these UPnP test results, we can distinguish between cases
with a single NAT (public external IP) and cases with cas-
caded NATs (private external IP). As we detected a signif-
icant number of setups where participants operate multiple
cascaded NAT devices within their premises, we further di-
vide the class of cascaded NATs into Large Scale NAT and
Multi NAT. Multi NAT covers all cases where all NATs are
operated within the customer’s premises, while Large Scale
NAT or LSN representes cases where at least one of the
cascaded NATs is operated by the ISP.

The distinction between Multi NAT and LSN based on
the UPnP results is fuzzy, so it was decided manually ac-
cording to the following indicators for LSN: external IP ad-
dresses from the 10/8 range, with unusual high digits (e.g.
10.87.56.201), or whether other test results from the same
provider network had similar addresses.

Finally, we had to deal with the results which showed a
public external IP in the UPnP results, which did not match
the IP address of the HTTP connection. In this case, a cas-
caded NAT scenario is unlikely since this would eclipse a part
of the public IP address space from the user and make these
addresses unreachable. Therefore, we assume that these re-
sults were caused by HTTP proxies or VPN tunnels and clas-
sify these groups as Single NAT results, with one exception:
in some mobile and LTE networks, we discovered external
IP addresses from the 100.64/10 address range, a space la-
beled as “Reserved Shared Address Space” by IANA.5 These
results are classified as LSN.

Table 1 summarizes the findings of our UPnP test using
the three categories defined above.

Connection
Type

UPnP
Enabled

Single
NAT

Multi
NAT

LSN

Total 29.0% 76.6% 22.5% 0.9%

DSL 32.8% 73.3% 25.3% 1.4%
Cable 48.9% 91.3% 8.7% 0.0%
LTE 26.9% 42.9% 14.3% 42.9%

Mobile 5.0% 0.0% 33.3% 66.6%
Corporate 12.3% 93.8% 6.3% 0.0%

Table 1: UPnP test results

The results confirm our assumptions that UPnP-enabled
middleboxes are prevalent in home networks connected via
Cable (48%), DSL (32.8%) or LTE (26.9%). Furthermore,
we found LSNs to be present in mobile networks (66.6%),
LTE networks (42.9%) as well as fixed-line networks.

5http://whois.arin.net/rest/net/NET-100-64-0-0-1

46

5.2 Topology Test Results
Our new approach for middlebox topology detection al-

lows detecting individual middleboxes, even with cascaded
stateful middleboxes on the path from the test client to
the Internet. The UDP-based implementation requires that
ICMP messages are generated and forwarded by interme-
diate nodes. However, we discovered that in many cases
(48.4%) where stateful middleboxes are involved, the provider
blocks outgoing ICMP messages as an answer to incoming
UDP packets, which leads to problems with our algorithm.
Therefore, for many results we were not able to reveal the
exact topology. However, the proposed method is still valid
for estimating the approximate position of the LSN and for
determining a valid TTL value for hole-punching (which will
be further described in the following section).

We found LSNs to be present in mobile networks, LTE
networks, as well as fixed-line networks (e.g. the German
provider EncoLine6 most likely implements a Linux-based
LSN), which confirms our earlier findings from the UPnP
test.

In the following we show the topology of the Vodafone
Germany LTE network that could be revealed using our test.
The resulting table from our detection algorithm is shown
in table 2.

Hop 11 H 12 13 14 15 16 17(C)

20s 17 17 17 17 17 17 17
30s 16 16 16 16 16 16 17
50s 16 16 16 16 16 16 17
60s 16 16 16 16 16 16 17
90s 13 13 13 16 16 16 17

120s 13 13 13 16 16 16 17

Table 2: Result for the Vodafone Germany topology

For a timeout value of 20 seconds the test server is able
to reach the client (hop 17) no matter which mapping the
client tried to remove. Please note that removing a mapping
for UDP means that the TTL value of the servers keep-alive
packets is set to n−1, n being the number of hops as seen by
the client. For a timeout of 30s the test server reaches hop 17
only if the mapping of hop 16 has not been removed. Thus,
hop 16 implements a stateful middlebox with a timeout value
between 20 and 30 seconds. The same is true for hop 13 that
implements a stateful middlebox with a timeout between 60
and 90 seconds. The server is able to reach beyond hop 13
only if either the timeout has not triggered yet (here 60s)
or if the mapping has not been removed yet (columns hop
14 to hop 17). With this table we are able to generate the
corresponding topology as shown in figure 2.

Client
HOP 17

Test
Server

LSN/FW
HOP 13

Consumer NAT
HOP 16

HOP 11 HOP 12

ISP Network

HOP 14 HOP 15

Home NetworkInternet

HOP 1

. . .

Figure 2: Revealed topology for Vodafone LTE

6http://www.encoline.de/

Analogous to the classification of the UPnP results we
also developed a classification scheme for the topology test
results:

• Blocked includes all cases where the outgoing ICMP
traffic was blocked by the provider, so we could not
reveal the NAT topology.

• No NAT means each traceroute got through to the
end-host. This can have two different reasons: either
there is no stateful middlebox along the path or it
could not be detected due to a large UDP timeout
value.

• Single NAT contains results where exactly one NAT
could be detected.

• Cascaded NAT means two or more NATs could be de-
tected.

In addition, 24% of the results could not be classified by
our algorithm and remain as unknown. Table 3 summa-
rizes the findings of our topology test, which revealed 48.4%
blocked, 14.7% no NAT, 12.5% single NAT and 0.4% cas-
caded NAT connections.

Connection
Type

Blocked
No

NAT
Single
NAT

Cascaded
NAT

Total 48.4% 14.7% 12.5% 0.4%

DSL 38.0% 17.6% 15.4% 0.0%
Cable 52.5% 15.5% 13.0% 0.0%
LTE 75.0% 0.0% 8.4% 16.7%

Mobile 70.5% 6.8% 2.3% 18.2%
Corporate 44.8% 22.4% 19.0% 0.0%

Table 3: Topology Results from our field test.

Using the topology test results we can now identify the op-
timal TTL value for hole-punching packets and evaluate the
LSN hole-punching solution developed in [16]. Therefore,
we determine the hop distance between the end-host and
the outermost NAT device in our results. In cases where
our topology test was not blocked, we found that this dis-
tance was 5 hops or lower.

As a large share of our tests (48.4%) was blocked and did
not allow us to find the hop distance directly, we could at
least estimate the hop distance in these cases. For that pur-
pose we use the hop distance from the end-host to the hop
that blocked outgoing ICMP packets as an upper bound for
the end-host to outermost NAT distance. We can estimate
this distance via the reverse path length, which we infer
from the TTL values of incoming UDP packets. Despite the
tentativeness of this approach, it was able to show that the
number of hops is 5 or lower in 89.0% of the tests.

These findings show that an outgoing packet with an ini-
tial TTL value of 5 or above will traverse all stateful mid-
dleboxes and reach the public Internet. Then we looked at
typical path lengths between two peers to make sure pack-
ets don’t reach an opposite NAT. In our test, we found that
97.0% of all paths had 10 or more hops. As we deliber-
ately kept our paths short for our test, we can conclude that
an initial TTL value of 5 allows low TTL hole-punching in
89.0% of all cases. This value works in nearly all cases, so
we can state that it is not necessary to use our topology de-
tection algorithm or the approach from [16] to set the initial
TTL value.

47

5.3 Implications for Traversal
When combining both the results of our NAT behavior

tests (STUN, UPnP, hole-punching, etc.) with the results
from our topology test, we can draw further conclusions re-
garding the traversal of the tested middleboxes. Table 4
shows the NAT types as defined in the STUN protocol spec-
ification [14] in order of increasing restrictiveness: Full Cone,
(Port) Address Restricted and Symmetric NAT grouped by
the observed NAT classes. One can observe an increased
restrictiveness from Single NAT over Multi NAT to LSN,
which means LSN scenarios are on average more difficult to
traverse than Multi NAT scenarios.

Connection
Full

Cone
Port
Rest.

Sym-
metric

Avg.
UDP To.

Total 13.3% 50.3% 17.4% 42.7s

Single NAT 10.9% 64.0% 6.1% 48.6s
Multi NAT 3.0% 49.3% 27.4% 38.3s

LSN 7.1% 64.3% 28.6% 47.6s

Table 4: Observed NAT Types

Table 5 compares hole-punching success rates for the ob-
served NAT classes. It compares standard hole-punching to
low TTL hole-punching, an adapted version of hole-punching
where the punching-packets are sent with a custom inital
TTL value to make sure the packet does not reach the op-
posite NAT. Two interesting findings can be observed in
table 5: first, UDP low TTL hole-punching performs worse
than UDP high TTL hole-punching and second, TCP low
TTL hole-punching performs significantly better than TCP
high TTL hole-punching, especially for LSNs. This shows
the relevance of low TTL hole-punching and our effort of
finding an optimal TTL value.

UDP HP TCP HP
Connection Std. Low TTL Std. Low TTL

Total 73.5% 56.0% 38.1% 40.3%

Single NAT 87.7% 65.5% 57.8% 58.7%
Multi NAT 61.8% 45.9% 23.6% 31.4%

LSN 57.7% 50.0% 21.4% 50.0%

Table 5: Measured hole-punching success rates

6. CONCLUSION
Large Scale NATs and other stateful middleboxes are al-

ready deployed by many providers and cause additional prob-
lems for middlebox traversal. In this paper we present an
algorithm to identify the topology of cascaded NATs on the
path between two arbitrary peers in the Internet. We pro-
pose two ways of using a combination of packets to cre-
ate mappings, remove mappings and traceroutes to deter-
mine the individual positions. Afterwards, the algorithm
was evaluated in a public field test. As its two main results
we could show that many ISPs already deploy LSNs and that
the success rate for the traversal of NAT in general depends
on the network topology. Since the field test showed that

the current implementation of the algorithm delivers inac-
curate results in cases where intermediate nodes implement
specific filtering rules, we propose an initial TTL value that
should be used for hole-punching, especially for TCP.

Future work is to examine the TCP-based algorithm as
also proposed in this paper, as well as new prediction algo-
rithms in case of blocked ICMP packets.

7. REFERENCES
[1] S. Alcock et al. Investigating the impact of service

provider NAT on residential broadband users. In
Infocom, San Diego, CA, USA, March 2010.

[2] A. Biggadike et al. NATBLASTER: Establishing TCP
connections between hosts behind NATs. In ACM
SIGCOMM Asia Workshop, 2005.

[3] L. DiCioccio et al. Probe and Pray: Using UPnP for
Home Network Measurements. In PAM conference,
Vienna, Austria, March 2012.

[4] A. Durand et al. Dual-Stack Lite Broadband
Deployments Following IPv4 Exhaustion. RFC 6333,
Aug. 2011.

[5] B. Ford et al. P2P communication across NAT. In
USENIX, Anaheim, CA, USA, 2005.

[6] S. Guha and P. Francis. Characterization and
measurement of TCP traversal through NATs and
firewalls. In IMC, 2005.

[7] S. Hätönen et al. An Experimental Study of Home
Gateway Characteristics. In IMC, Melbourne,
Australia, November 2010.

[8] C. Jennings. NAT Classification Test Results. Internet
Draft - expired, IETF, July 2007.

[9] A. Knutsen and A. Ramaiah. TCP option for
transparent Middlebox discovery. Internet Draft -
work in progress, IETF, February 2012.

[10] C. Kreibich et al. Netalyzr: Illuminating The Edge
Network. In IMC, Melbourne, Australia, Nov. 2010.

[11] J. Rosenberg. Interactive Connectivity Establishment
(ICE). RFC 5245, Apr. 2010.

[12] J. Rosenberg et al. Session Traversal Utilities for NAT
(STUN). RFC 5389, Oct. 2008.

[13] J. Rosenberg and H. Tschofenig. Discovering,
Querying, and Controlling Firewalls and NATs.
Internet Draft - expired, IETF, October 2007.

[14] J. Rosenberg, J. Weinberger, C. Huitema, and
R. Mahy. STUN - Simple Traversal of User Datagram
Protocol (UDP) Through Network Address
Translators (NATs). RFC 3489, Mar. 2003.

[15] M. Stiemerling et al. NAT/Firewall NSIS Signaling
Layer Protocol (NSLP). RFC 5973, Oct. 2010.

[16] K. Tobe et al. Extended UDP Multiple Hole Punching
Method to Traverse Large Scale NAT. In Asia Pacific
Advanced Network Meeting, Hanoi, Vietnam, August
2010.

[17] S. Triukose et al. Geolocating IP addresses in cellular
data networks. In PAM, Vienna, Austria, 2012.

[18] Z. Wang et al. An untold story of middleboxes in
cellular networks. In ACM SIGCOMM 2011, Toronto,
ON, Canada, 2011.

[19] D. Wing et al. Port Control Protocol (PCP). RFC
6887, Apr. 2013.

48

