
Controller-agnostic SDN Debugging

Ramakrishnan Durairajan
University of

Wisconsin-Madison
rkrish@cs.wisc.edu

Joel Sommers
Colgate University

jsommers@colgate.edu

Paul Barford
University of

Wisconsin-Madison
pb@cs.wisc.edu

ABSTRACT
Complexity in software-defined network (SDN) applications
calls for methods and tools that can facilitate comprehen-
sive debugging and analysis. A key challenge in this regard
is that SDN configurations interact with network devices
that can behave in unexpected ways, depending on factors
such as traffic and application mix. In this paper, we de-
scribe OFf, a debugging and test environment for SDN de-
velopers. OFf is built on top of the fs-sdn simulator, which
was developed to offer simple-to-use, accurate and scalable
evaluation of OpenFlow-based SDN configurations. OFf of-
fers standard debugging features for controller applications
such as stepping, breakpoints, and watch variables. It also
offers features that provide visibility into network behav-
ior including packet tracing, packet replay and visualization
features, and alerts that are triggered when, e.g., configura-
tions change. OFf is accessed through a text interface and is
designed to interoperate with any standard SDN controller
platform. We demonstrate the capabilities of OFf through
three test scenarios that illustrate its utility and modest
performance impact on running applications. Specifically,
we show how OFf can be used to analyze and fix bugs in
a traffic engineering application, and to detect and repair a
security vulnerability due to multiple application interaction
and unexpected rule expiration.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management;
D.2.5 [Testing and Debugging]: Testing tools; I.6.3
[Simulation and Modeling]: Applications

General Terms
Design, Measurement, Performance, Reliability

Keywords
Debugging; OpenFlow; Simulation; Software-Defined Net-
works

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prof t or commercial advantage and that copies bear this notice and the full citation
on the f rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specif c permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT’14, December 2–5, 2014, Sydney, Australia.
Copyright 2014 ACM 978-1-4503-3279-8/14/12 ...$15.00.
http://dx.doi.org/10.1145/2674005.2674993.

1. INTRODUCTION
Like other software systems, the development of complex

SDN configurations requires tools that facilitate debugging.
Standard capabilities of debuggers include step-by-step ex-
ecution, pausing execution, and tracking variables to enable
the details of controller applications to be examined. How-
ever, the fact that a particular SDN configuration “runs as
designed” may be insufficient to ensure that it behaves in
a robust and predictable fashion when deployed in a live
environment.

SDN deployments must cope with potentially a wide range
of operating conditions that include the possibility of unan-
ticipated traffic behavior or interactions between deployed
applications. Such conditions can have a range of conse-
quences including degradation of performance, exposure of
security vulnerabilities or application failures. The poten-
tial severity of these unexpected behaviors calls for robust
testing capability that goes beyond standard debugging and
includes the ability to assess configurations across a wide
range of operating conditions.

In this paper, we describe OFf 1, a debugging and test
environment for SDN developers. OFf is designed for debug-
ging controller applications developed within any standard
controller environment, such as POX [1], OpenDaylight [2],
Ryu [3], Trema [4] and Floodlight [5]. It supports standard
debugging capabilities such as stepping, breakpoints, and
watch variables through a simple command-line interface.
More importantly, it is designed to support comprehensive
testing of SDN applications in a representative, controlled
and repeatable fashion by providing visibility into network
behavior. Key capabilities for testing include packet tracing,
packet replay and visualization features, and alerts. OFf’s
unique capability to simultaneously trace program execution
and network state enables unwanted behavior in the network
to be tied directly to the control program.

OFf is built on top of fs-sdn [6], a simulation environ-
ment for SDN that offers the unique capability to accurately
assess configurations that might be deployed in large-scale
environments such as those found in typical datacenters.
fs-sdn achieves scalability by using a core abstraction that
captures details of network flows while avoiding fine-grained
packet-level concerns. OFf can accommodate any controller
platform through a proxy component which has a design
similar in spirit to FlowVisor [7], and is situated between a
controller under test and the simulated network over which

1Source code for OFf is openly avail-
able to the community and can be found
at: https://github.com/52-41-4d/fs-generic

227

https://github.com/52-41-4d/fs-generic

the developer has complete control. The proxy translates
messages between the controller and the simulated network,
and vice versa, and starts a controller in a runtime cra-
dle that masks other differences between the simulated and
non-simulated worlds, e.g., simulation time versus wall-clock
time. OFf’s support for fine-grained source code debugging
is enabled by simply including a library when coding the
application and does not affect program execution unless
specifically directed by the developer.

We illustrate the capabilities of OFf through three test
scenarios. The experiments are designed to highlight how
OFf can be used to find bugs that might otherwise lead to
inconsistent network state or expose security vulnerabilities.
Specifically, our examples show how OFf can be used to
find and fix (i) race conditions and inconsistent ordering
of rule updates in a traffic engineering application, (ii) a
security vulnerability in a multiple application interaction
environment, and (iii) a security issue due to rule expiration
and rule shadowing.

2. BACKGROUND
In this section we give a brief overview of the fs-sdn tool on

which OFf is built, and describe prior studies that influence
and inform the design and implementation of OFf.

2.1 fs-sdn overview
fs-sdn [6] is a simulation-based tool that is designed to

facilitate prototyping and evaluating new SDN applications.
It is based on the fs [8] tool that was designed to efficiently
generate realistic network measurements such as flow records
and SNMP-like counters for use in different types of network-
ing studies. fs, and by extension fs-sdn, use discrete event
simulation techniques to generate network measurements
and simulate network conditions. Unlike other simulation-
based systems, its core abstractions are based on network
flows and as a result it achieves significantly better perfor-
mance than packet-based simulators. fs-sdn extended the
fs engine by transparently incorporating the POX [1] Open-
Flow controller framework and API, including switch com-
ponents that can be controlled and configured through the
OpenFlow control protocol. In this work, we significantly
extend fs-sdn in order to accommodate any standard SDN
controller platform.

2.2 Related work
Debugging in an SDN world inherits many of the same

challenges of debugging complex software. While “printf”
debugging is, for better or worse, a common practice, there
are more effective techniques for development and testing,
including using debuggers such as gdb [9] to trace and mod-
ify the state of running programs, techniques such as test-
driven development (TDD) [10], and the use of assertions to
test invariants. OFf is most closely related to work on tools
for exposing and tracing program and network state in SDN.
In particular, ndb [11] and its successor NetSight [12] offer
some similar features as OFf. A key difference, however, is
that OFf offers capabilities not only to trace network state,
but also to trace controller program execution state, thus
tying together observed network behavior with the control
program that induced that behavior. OFf is also related
to the OFRewind [13] system that enables replaying packets
collected in an SDN setting in order to understand the effect
of different control programs on traffic flows. Also related

is the work by Scott et al. to associate “minimal causal
sequences” of trace data from tests to an observed bug in
order to narrow the focus for debugging source code [14].
Somewhat more distantly related to OFf are efforts to ver-
ify that certain invariants hold. In particular, the works
by Kazemian et al. on header space analysis [15, 16], the
Anteater system [17], Veriflow [18], and NICE [19] each seek
to verify that certain network properties are never violated.

3. SYSTEM DESIGN
In this section we describe the design, implementation,

and features provided by OFf.

3.1 OFf Overview
OFf is a comprehensive source-level debugger for SDN

applications. OFf does not require any special effort from
the developer before debugging an application: the library
can simply be included when coding the application like any
other standard library. OFf also does not require any addi-
tional hardware and does not affect the program execution
unless the developer issues a debugging command. There-
fore, OFf can be used spontaneously and only when needed
during the application development.

OFf provides both generic debugging commands as well
as features that are specifically designed to meet the needs
of SDN application developers. The commands and fea-
tures are described in more detail later in this section. All
commands are source-level em i.e., they operate on symbols
defined in the source code of the program.

3.2 OFf Architecture
OFf consists of two parts: the OFf proxy and OFf con-

troller/debugger runtime interfaces that connect to the fs-
sdn simulator and the SDN controller platforms. The overall
architecture is illustrated in Figure 1, and we describe each
part below.

3.2.1 OFf Proxy
The proxy unit provides a bridge between the simulated

network in fs-sdn, and real controller platforms. Open-
flow switches in fs-sdn are configured with one or more
controllers, which communicate with proxy components.
The proxy component translates simulated messages from
switches to control plane packets to a real controller plat-
form, and vice versa. In response to a switch initiating a
control plane connection, the proxy creates a real network
connection to the configured controller. One proxy may act
on behalf of any number of switches, and thus has complete
visibility of network control plane interactions.

To enable fs-sdn interoperability with multiple controllers,
we modified the controller class in fs-sdn to behave instead as
a proxy, leaving the switch implementation in fs-sdn unmod-
ified. We also modified a class in fs-sdn that is used to ab-
stract individual connections from the controller to switches.
The original class used fs-sdn’s API to deliver and receive
messages to a fake controller; the new class instead handles
connections to real controllers and overrides the fs-sdn con-
nection APIs.

Besides its core “bridging” functionality, the proxy is com-
posed of four components. First, a UI wrapper provides a
text-based interface that dispatches commands from the de-
veloper to one of the three other units and prints any out-
put to a display. Second, the Debugger component provides

228

an abstract interface to a language-level debugger in order
to associate controller application source code with control
plane activity. The debugger component contains separate
modules (with enhanced features as described later in the
section) to deal with all specialized OFf commands such
as enable and disable watch points, tracking variables, etc.,
that are not recognized by language-specific debuggers such
as Python’s PDB. From an application developer’s perspec-
tive, simulators producing mere text outputs are less pre-
ferred than simulators producing visual output [20]. To that
end, we developed the third component—Trace Replay—
that has the ability to reproduce network activity that has
been captured in a trace and replay it later. Finally, the
Diff Report Generator component helps detect changes in
topology, mutations in rules/actions across switches, and
performance variations from previous runs (or across config-
uration changes) of fs-sdn, then generates a report to help
assess implications of configuration changes.

There are several advantages to our proxy-based ap-
proach. First, it completely eliminates the issue of controller
compatibility with the simulation environment. That is, the
controllers are entirely unmodified and can be used off-the-
shelf. Second, the OFf proxy acts as a simulation-oriented
equivalent of FlowVisor [7], i.e., it acts as a proxy between
a real controller and the switches in the network. Instead
of the proxy communicating with real switches, however, it
communicates via fs API calls to simulated switches. This
makes the prototyping and debugging generalizable to real
networks. Finally, this approach is entirely language and
platform agnostic, and opens up interesting avenues for de-
bugging. For instance, since the proxy sees all Openflow
control messages, it can be used to trace the effects of vari-
ous high-level operations from the controller code. We also
have complete control over the switches, and could augment
our current simulated switch implementation to facilitate de-
bugging operations such as tracing packets, observing which
rules match (and which one eventually fires) when packets
arrive, detect configuration changes, etc.

Figure 1: The architecture of OFf.

3.2.2 OFf Controller/Debugger Runtime Interfaces
The OFf Proxy described above can be linked to a spe-

cific controller platform and language-level debugging envi-
ronment through an OFf runtime interface component. This
component handles starting a controller using a library inter-
position agent [21] that ensures that any time-related calls

by the controller will return fs-sdn simulation time instead of
wall-clock time. This component also provides a translation
layer between the generic OFf proxy debugging component,
and a specific source code debugging environment and com-
mand set.

While we have used OFf with the OpenDaylight [2],
Ryu [3], Floodlight [5], and Trema [4] controllers (shipped
as part of [22]), the source-level debugging runtime inter-
face is currently limited to PDB and thus the Python-
based controllers. In our ongoing work, we are expanding
the debugging runtime interface to accommodate GDB [9],
which will enable support of additional controller applica-
tion source code languages. This effort is primarily one of
creating translations between the command set provided in
OFf (described next) and the equivalent commands available
in GDB.

3.3 OFf Commands
Commands in OFf are entered through a command-

line interface similar to PDB, GDB, and other debuggers.
OFf supports both basic commands provided by these de-
buggers, and new features to enhance the SDN application
development and debugging experience.

3.3.1 Basic Commands
OFf directly exports the most commonly used commands

that are provided by PDB including the ability to pause,
continue, and step through execution. It also adds many
features to the basic PDB command set by providing the
ability to (i) longlist and shortlist source code during de-
bugging, (ii) pretty print expressions, (iii) hide and unhide
hidden code frames during debugging, (iv) interact (via in-
terpreter) with all variables in scope, (v) track, watch, or
unwatch variables, (vi) edit source files during debugging,
(vii) enable or disable break points on the fly, and (viii)
sticky mode visualize code during debugging session.

3.3.2 Additional Features
OFf provides the following additional new features to en-

hance the SDN application development experience. In what
follows, we give a general overview of these additional fea-
tures, but omit many details due to space constraints.

• Trace packet through the network. fs-sdn provides
the ability to model Openflow switches and controllers.
OFf can interact directly with these components, pro-
viding the ability to trace fs-sdn flowlets as they pass
through switches and cause Openflow events to be gen-
erated (e.g., PacketIn) and controller components and
code to be invoked. As a result OFf enables a holistic
view of every network flow, how flows and controller code
interact, and provides opportunities to comprehensively
trace network events with no additional hardware sup-
port needed for data collection and processing (e.g., as
in [12]).

• Packet replay. Motivated by OFRewind [13], OFf in-
cludes a light-weight packet replay feature that enables
network administrators to reproduce and locate software
errors in network configuration. Features in OFf differ
from OFRewind in the following way: (a) there is no
explicit record component that intercepts all the mes-
sages from controller, and the traces are generated in
such a way to balance efficiency and accuracy, and (b)
no additional Openflow protocol-level support is needed

229

to enable network event tracing and capture of device
state (e.g., flow table dump) or to reset network devices
to known states (i.e., to clear previously installed rules
that led to incorrect behavior). Since OFf has an oracu-
lar view of the (simulated) network, it does not need any
special protocol or hardware support in devices.

• Detect configuration changes. Debugging SDN pro-
grams is complicated by the fact that program behav-
ior is affected by controller program state, switch state,
and network traffic patterns. To combat this complex-
ity, we believe that one way to improve the experience
of debugging SDN programs is to provide capabilities for
detecting configuration and network changes across mul-
tiple executions of a controller program. To that end,
OFf contains a novel capability via the Diff Report Gen-
erator to produce an account of differences across several
runs of the same control program and network traffic
scenario. In particular, it highlights changes in network
topology, differences in rules and actions across network
switches, and performance variations, and displays these
differences to developer in a meaningful way.

4. OFf IN ACTION
In this section, we demonstrate how OFf can be used to

find logical bugs in the source code that can lead to poor
performance or transient outages, and eventually to inconsis-
tent network state or security vulnerabilities. We developed
three test scenarios based on ideas from existing literature
like [23, 24]. Our approach is to run a series of identical
topological simulations in fs-sdn with and without OFf and
identify those bugs that lead to transient outages and losses.

4.1 Scenario 1: Incorrect Ordering of Up-
dates

A testing process with OFf can include careful evaluation
of traffic before and after rule installation. In this scenario,
we used a simple traffic engineering application in the net-
work topology shown in Figure 2. The scenario premise is
that a developer has coded an application to install rules in
switches in the following order: switch B and C are updated
simultaneously (barrier messages are not used), then switch
A is updated. The developer has not considered latency dif-
ferences between the controller and switches, leading to a
potential race condition. Specifically, rules may be installed
at switches C and A, and data packets may start flowing
before the appropriate rules are installed at switch B. This
inconsistent state will lead to poor performance for traffic
flows until switch B is updated, and could result in e.g., ini-
tial discontinuity in a VoIP call or high jitter at the start of
a video stream.

To resolve this problem, the rules must be installed in the
order of switch C, switch B, then switch A. For example,
barrier messages could be introduced to ensure a sequential
ordering of updates and consistent network state.

To identify this bug, the developer could initiate OFf’s
packet replay feature and find that packets are dropped at
switch B because of rules not being correctly preinstalled.
The developer might set a break point at the rule installa-
tion logic and restart the simulation in sticky mode. On
stepping through the execution and watching flow table en-
tries and relevant variables at switch B, the developer might
observe that there is an ordering problem because of the race

Figure 2: Topology used to evaluate incorrect or-
dering of updates scenario.

condition between switches B and C. After fixing the bug,
the developer could invoke OFf’s trace replay and diff re-
port capabilities to analyze if the expected rules fired in the
expected order.

 3020

 3040

 3060

 3080

 3100

 3120

 3140

 5 10 15 20

B
y

te
s

P
ro

ce
ss

ed
 (

K
B

)

Time (s)

Before
After

 2920

 2940

 2960

 2980

 3000

 3020

 3040

 3060

 3080

 5 10 15 20

P
ac

k
et

s

Time (s)

Before
After

Figure 3: (left) Bytes processed and (right) Packets
processed at switch C before and after fixing the bug
in scenario 1.

Figure 3 shows the number of packets and bytes processed
at switch C before and after the bug is fixed, and generated
via OFf diff report. In the first few seconds of the connec-
tion, before the bug is fixed, there is reduction in the num-
ber of packet and bytes processed. Once the bug is fixed
(at around 8 sec), there is a noticeable increase in both the
number of packets and bytes processed over that same time
span.

4.2 Scenario 2: Bad Multi-app Interaction
SDN controllers typically permit multiple, logically sep-

arate control programs to be run simultaneously, each of
which can receive network events and modify switch state.
It is well known that inconsistent network state can arise
when SDN programs are not composed correctly. We call
this problem Multi-app Interaction Inconsistency (MAII).

To evaluate this test scenario, we used the topology in
Figure 4 (from the dynamic-flow tunneling example in [24]).
A firewall written by developer 1 installs a rule to block
traffic from an external host (10.0.0.1) to an internal web
server (10.0.0.4). At the same time, a routing application
written by developer 2 is deployed, and at a certain time im-
plements three rules within the controller application. The
first rule changes the source IP address of a packet to 10.0.0.2
if the packet is delivered from 10.0.0.1. The second rule
changes the destination IP address of a packet to 10.0.0.4
if the packet is destined to 10.0.0.3. The final rule simply

230

allows packet forwarding from 10.0.0.2 to 10.0.0.3. Unfor-
tunately, now any packet arriving from 10.0.0.1 destined to
10.0.0.3 can bypass the firewall and reach the web server.

Figure 4: Topology used to evaluate bad multi-app
interaction scenario.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30 35 40 45 50 55

B
y

te
s

P
ro

ce
ss

ed
 (

K
B

)

Time (s)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30 35 40 45 50 55

P
ac

k
et

s

Time (s)

Figure 5: (left) Bytes processed and (right) Packets
processed at switch before the Multi-app Interaction
Inconsistency bug is fixed in scenario 2.

The MAII problem can be addressed with OFf as follows.
First, before deploying the routing application, developer 2
can prototype the application and collect network traces us-
ing fs-sdn. Figure 5 shows the number of packets and bytes
seen at the switch after the routing application is prototyped
(and before MAII is identified). Once deployed in an envi-
ronment with the firewall application, network traces can
be collected again. At this point, the problem can be eas-
ily resolved using OFf’s diff reports as it can report changes
across configurations and alert the developer that the rout-
ing rule set conflicts with the existing firewall rule set. To
verify if the bug is fixed, the developer can then invoke trace
replay and diff reports to analyze if the firewall invariants
are maintained. These capabilities of OFf highlight its po-
tential to act as a proactive invariant generator for tools like
VeriFlow [18], which we intend to investigate in future work.

4.3 Scenario 3: Unexpected Rule Expiration
It is well known that unexpected interactions can occur

when wildcarded rules overlap, or specific microflow rules
are shadowed by wildcard rules. If the actions associated
with the rules differ, unexpected behavior can occur if the
more specific rule is removed while traffic is still flowing.

In this scenario, we extended the topology from scenario 2
to include an additional switch (switch D, attached to switch
B), as depicted in Figure 6. Assume for this scenario that
switch B sees two types of flows: trusted traffic, which is
forwarded to switch D, and untrusted traffic, which is for-
warded to switch C. A wildcarded rule (e.g., for 10.0.0.0/8)

is installed at switch B for untrusted traffic, and a sepa-
rate rule for 10.5.0.0/16 exists for forwarding trusted traffic.
Note that the trusted rule is shadowed by the untrusted rule
(i.e., the untrusted rule is more general). Lastly, assume
that the rule for trusted traffic expires due to a hard time-
out (at t=30 sec), causing all trusted traffic to erroneously
be forwarded to switch C and exposing a potential security
vulnerability.

Figure 6: Topology used to evaluate unexpected rule
expiration scenario.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 5 10 15 20 25 30 35 40 45 50 55

B
y

te
s

P
ro

ce
ss

ed
 (

K
B

)

Time (s)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5 10 15 20 25 30 35 40 45 50 55
P

ac
k

et
s

Time (s)

Figure 7: (left) Bytes processed and (right) Packets
processed at switch C before rule expiration bug in
scenario 3 is fixed.

A developer might use OFf in the following way to eval-
uate and debug this problem. First, after prototyping the
application in fs-sdn, flows are captured and replayed using
OFf’s trace replay facilities and the problematic leak of flows
to switch C is identified. Figure 7 shows the number of pack-
ets and bytes processed at switch C; observe that no traffic
is seen prior to t=30 when the more specific rule expires and
the wrong forwarding rule is applied. At this point, the de-
veloper could trace the flows and the specific rules that are
applied to observe that the wrong rule is triggered. The de-
veloper could then change the timeout behavior of the rule
for forwarding trusted traffic, or use some other approach for
fixing the problem. Once fixed, the developer could invoke
trace replay and diff reports to verify that trusted traffic is
never forwarded to switch C.

4.4 Performance Impact of OFf
For the tests described above, we examined the perfor-

mance impact of OFf by enabling between 1 and 3 break-
points, and between 1 and 3 watch variables and compar-
ing with an OFf-less simulation. Table 1 shows execution

231

times for scenarios consisting of either 60 or 180 simulated
seconds. We see from the table that breakpoints have a
relatively small impact on runtime compared with watched
variables, especially for shorter simulations. We also observe
that overheads of OFf are amortized for longer simulations
and that performance impacts are, overall, modest.

Table 1: Wall-clock execution times for an SDN sim-
ulation scenario with and without OFf capabilities
enabled.

60 simulated seconds 180 simulated seconds
w/o OFf with OFf w/o OFf with OFf

Break 1 2.254 3.419 6.568 7.411
Break 2 2.254 3.765 6.568 7.700
Break 3 2.254 4.005 6.568 7.942
Watch 1 2.254 8.261 6.568 10.883
Watch 2 2.254 8.843 6.568 11.010
Watch 3 2.254 9.677 6.568 11.318

5. SUMMARY AND FUTUREWORK
Ensuring that SDN configurations behave as expected

is predicated on careful and comprehensive debugging and
testing. In this paper, we describe OFf, a controller-agnostic
SDN debugging and testing tool that provides standard de-
bugging capabilities such as stepping and watch variables, as
well as SDN-specific capabilities to assess details of network
interactions and changes over iterations of the same pro-
gram. OFf is built on top of fs-sdn, which provides accurate
and scalable simulation of OpenFlow-based SDN configu-
rations. We highlight the capabilities of OFf through three
test scenarios, and demonstrate the tool’s utility and modest
performance impact on running applications. We show that
OFf can be used to identify and eliminate bugs in a traffic en-
gineering application, and to identify and remove a security
vulnerability that is exposed by the interaction of multiple
applications, and unexpected rule expiration. OFf is openly
available to the community and development of additional
features and capabilities is ongoing.

In future work, we plan to focus on the following exten-
sions and applications of OFf:

• Application-level consistency. We intend to evaluate
several applications for which the source code is available
by running failure scenarios across configurations to iden-
tify consistency issues. In particular, we plan to select
applications based on problems identified in prior work,
and where a tool like OFf would be helpful. For instance,
a key finding in [25] is that middleboxes experience a
variety of misconfigurations and that failover between
middlebox replicas can be ineffective due to configura-
tion bugs. As another example, OF.CPP [26] presents
two classes of bugs related to consistency issues, and we
believe that capabilities in OFfmay provide ways to com-
pletely avoid such bugs. We also plan to investigate the
potential for OFf to generate invariants for efforts like
SIMPLE [27], HotSwap [28], and PyResonance [29].

• Switch implementation models. The work by Huang
et al. [30] argues that vendor-specific emulation of SDN
switches are required, and describes a method to record
the switch behavior of various vendors. The OFf proxy
component is a natural place for implementing such fin-
gerprinting methods and could be used to evaluate such

models by comparing multiple switch models simulta-
neously. To that end, we intend to add a benchmarking
capability in OFf to record various vendor-specific switch
implementation models and establish ideal switch models
for a wide variety of configurations.

• Distributed controller simulations. To provide re-
liability and scalability, SDN controllers should be log-
ically centralized and physically distributed. A natural
requirement for such distributed controllers (e.g., [31]) is
correct and consistent behavior across distributed con-
figurations. Since multiple controllers are supported by
fs-sdn, OFf could be used as an orchestration layer to test
distributed controllers and ensure correctness by identi-
fying errors across distributed configurations.

6. ACKNOWLEDGMENTS
We thank the reviewers for their invaluable feedback. This

material is based upon work supported by the National Sci-
ence Foundation under grants CNS-1054985, CNS-0905186,
ARL grant W911NF1110227, DHS BAA 11-01 and AFRL
grant FA8750-12-2-0328. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views
of the NSF, ARL, DHS or AFRL.

7. REFERENCES
[1] POX, Python-based OpenFlow Controller.

http://www.noxrepo.org/pox/about-pox/.

[2] The OpenDaylight Controller.
http://www.opendaylight.org.

[3] The Ryu Framework. http://osrg.github.io/ryu/.

[4] The Trema Controller.
http://trema.github.io/trema/.

[5] The Floodlight Controller.
http://www.projectfloodlight.org/floodlight/.

[6] M. Gupta, J. Sommers, and P. Barford. Fast,
Accurate Simulation for SDN Prototyping. In
Proceedings of ACM HotSDN, 2013.

[7] R. Sherwood, G. Gibb, K. K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Can the
production network be the testbed? In Proceedings of
OSDI, 2010.

[8] J. Sommers, R. Bowden, B. Eriksson, P. Barford,
M. Roughan, and N. Duffield. Efficient network-wide
flow record generation. In Proceedings of INFOCOM,
2011.

[9] GDB: The GNU Project Debugger.
http://www.gnu.org/software/gdb/.

[10] S. Vissicchio D. Lebrun and O. Bonaventure. Towards
test-driven software defined networking. In Proceedings
of IEEE NOMS, May 2014.

[11] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres,
and N. McKeown. Where is the Debugger for My
Software-defined Network? In Proceedings of ACM
HotSDN, 2012.

[12] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières,
and N. McKeown. I Know What Your Packet Did
Last Hop: Using Packet Histories to Troubleshoot
Networks. In Proceedings of the 11th USENIX
Symposium on Networked Systems Design and
Implementation, 2014.

232

http://www.noxrepo.org/pox/about-pox/
http://www.opendaylight.org
http://osrg.github.io/ryu/
http://trema.github.io/trema/
http://www.projectfloodlight.org/floodlight/
http://www.gnu.org/software/gdb/

[13] A. Wundsam, D. Levin, S. Seetharaman, and
A. Feldmann. OFRewind: Enabling Record and
Replay Troubleshooting for Networks. In Proceedings
of the 2011 USENIX Annual Technical Conference,
2011.

[14] C. Scott, A. Wundsam, B. Raghavan, A. Or, J. Lai,
E. Huang, Z. Liu, A. El-Hassany, S. Whitlock, H. B.
Acharya, K. Zarifis, and S. Shenker. Troubleshooting
SDN Control Software with Minimal Causal
Sequences. In Proceedings of the ACM SIGCOMM,
2014.

[15] P. Kazemian, G. Varghese, and N. McKeown. Header
Space Analysis: Static Checking for Networks. In
Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, 2012.

[16] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real Time Network
Policy Checking Using Header Space Analysis. In
Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation, 2013.

[17] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the Data Plane
with Anteater. In Proceedings of the ACM SIGCOMM
2011 Conference, 2011.

[18] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. VeriFlow: Verifying Network-wide Invariants
in Real Time. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and
Implementation, 2013.

[19] M. Canini, D. Venzano, P. Pereš́ıni, D. Kostić, and
J. Rexford. A NICE Way to Test Openflow
Applications. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and
Implementation, 2012.

[20] E. Tufte. The Visual Display of Quantitative
Information.

[21] Timothy W. Curry and Sun Microsystems Inc.
Profiling and tracing dynamic library usage via
interposition. In Proc. of the USENIX Summer 1994
Technical Conf, pages 267–278, 1994.

[22] All-in-one SDN App Development Starter VM.
http://sdnhub.org/tutorials/sdn-tutorial-vm-64-bit/.

[23] M. Reitblatt, N. Foster, J. Rexford, and D. Walker.
Consistent Updates for Software-defined Networks:
Change You Can Believe in! In Proceedings of the
ACM HotNets, 2011.

[24] P. Porras, S. Shin, V. Yegneswaran, M. Fong,
M. Tyson, and G. Gu. A Security Enforcement Kernel
for OpenFlow Networks. In Proceedings of the ACM
HotSDN, 2012.

[25] R. Potharaju and N. Jain. Demystifying the Dark Side
of the Middle: A Field Study of Middlebox Failures in
Datacenters. In Proceedings of the ACM Internet
Measurement Conference, 2013.

[26] P. Pereš́ıni, M. Kuzniar, N. Vasić, M. Canini, and
D. Kostiū. OF.CPP: Consistent Packet Processing for
Openflow. In Proceedings of ACM HotSDN, 2013.

[27] Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and
M. Yu. SIMPLE-fying Middlebox Policy Enforcement
Using SDN. In Proceedings of the ACM SIGCOMM,
2013.

[28] L. Vanbever, J. Reich, T. Benson, N. Foster, and
J. Rexford. HotSwap: Correct and Efficient Controller
Upgrades for Software-defined Networks. In
Proceedings of ACM HotSDN, 2013.

[29] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark.
Resonance: Dynamic Access Control for Enterprise
Networks. In Proceedings of the ACM Workshop on
Research on Enterprise Networking, 2009.

[30] D. Y. Huang, K. Yocum, and A. C. Snoeren.
High-fidelity switch models for software-defined
network emulation. In Proceedings of ACM HotSDN,
2013.

[31] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A
distributed control platform for large-scale production
networks. In Proceedings of USENIX OSDI, 2010.

233

http://sdnhub.org/tutorials/sdn-tutorial-vm-64-bit/

	Introduction
	Background
	fs-sdn overview
	Related work

	System Design
	OFf Overview
	OFf Architecture
	OFf Proxy
	OFf Controller/Debugger Runtime Interfaces

	OFf Commands
	Basic Commands
	Additional Features

	OFf In Action
	Scenario 1: Incorrect Ordering of Updates
	Scenario 2: Bad Multi-app Interaction
	Scenario 3: Unexpected Rule Expiration
	Performance Impact of OFf

	Summary and Future Work
	Acknowledgments
	References

