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Decadal Land-Surface Average Temperature

10-year moving average of surface temperature over land
Gray band indicates 95% uncertainty interval
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Consequences:

velocity of climate change
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e Historic rates: fastest 1 km/yr
e 28% of the surface > 1 km/yr

Figure 2.5.11 The velocity of climate change
Figure by Loarie et al. (2009)
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Figure 1.2.1 World energy consumption
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U.S. Primary Energy Consumption Estimates by Source,
1850-2010
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3 Source: U.S. Energy Information Administration Annual Energy Review, Tables 1.3, 10.1, and E1
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one wedge: 25 billion tons over 50 years

I 1 billion tons/year

—
50 years

Solving the climate problem
for the next 50 years

N
I

with current technologies

Carbon Emitted [billion tons/year]
N
|

O | | ]
1956 2006 2056 2106
Year

S. Pacala and R. Socolow,
Stabilization wedges: Solving the climate problem for the next 50 years with current technologies
Science 305 (5686), 968 (2004)
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Source: Socolow and Pacala

Scientific American 2006
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Different wedges
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What to do with a GIGATON of CO,?

Let’'s convert COz2 into “Dreamium™”
(in Berkeley we recycle everything!)

www.TwentyThousandMinusThreeAppsOfDreamium.com

Abhoyjijit S. Bhown (EPRI):




Estimated USA production Estimated global production
it Gmol ooy captare M GOl | g0 capture
1 Sulfuric acid 38.7 394 2.1 199.9 1879 10.0
2 Nitrogen 32.5 1159 6.2 139.6 4595 24.5
3 Ethylene 25.0 781 4.2 112.6 3243 17.3
4 Oxygen 23.3 829 4.4 100.0 3287 17.5
5 Lime 19.4 347 1.8 283.0 4653 24.8
6 Polyethylene 17.0 530 2.8 60.0 1729 9.2
7 Propylene 15.3 354 1.9 53.0 1134 6.0
8 Ammonia 13.9 818 4.4 153.9 8332 44.3
9 Chlorine 12.0 169 0.9 61.2 795 4.2
10 Phosphoric acid 11.4 116 0.6 22.0 207 1.1
50 Nylon 1.9 8 2.3 8
Total 419 8,681 2,412 48,385
2009 coal-fired generation
GWe-yr
Approximate CO; emissions 6,000 136,000 & 31,000 750,000

Table 1.3.1 Comparison of CO> productio and the production of chemicals
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Addressable Refineries

by CCS Power: 8% Iron & Steel
coal Cement
9%
52% o, Power: other
. Power: oil
16%
Non addressable Power: gas

by CCS

Figure 1.2.8 Distribution of (European) CO2 emissions from different sources.
Redrawn from EEA GHG Emission Trends and Projects 2007 and IEA World
Energy Outlook 2007
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Figure 8.2.1 Injecting CO:2 below a caprock formation
(Figure based on information provided by CO2CRC)
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Figure 8.2.2 Mechanisms of CO> trapping
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Figure 8.2.2 Mechanisms of CO2 trapping
(a) Stratigraphic trapping

Introduction to Carbon Capture and Sequestration © 2014 by Imperial College Press
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Figure 8.2.2 Mechanisms of CO2 trapping
(b) Residual trapping

Introduction to Carbon Capture and Sequestration © 2014 by Imperial College Press
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Movie 8.2.1 CO2 residual trapping simulation
Movie from the CRC for Greenhouse Gas Technologies (CO2CRC)

Introduction to Carbon Capture and Sequestration © 2014 by Imperial College Press
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Figure 8.2.2 Mechanisms of CO2 trapping
(c) Solubility trapping

Introduction to Carbon Capture and Sequestration © 2014 by Imperial College Press
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Figure 8.2.2 Mechanisms of CO2 trapping
(d) Mineral trapping
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Figure 8.2.3 Trapping mechanisms as a function of time
(Figure adapted from Benson and Cole)
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Figure 4.1.2 Coal-fired power plant with post-combustion carbon capture
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PC Boiler

Compression
\

CO; storage

water

Electric Power

Box 4.1.2 Oxycombustion (Pre-combustion carbon capture)
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Stage of CCS component technologies @ Capture
() Transport
() Storage
Stage of development
Concept Lab testing Demonstration Commercial Commercial
refinements needed

Potential future , \
breakthrough Several projects are

technologies First projects are operational (e.q.,
coming online Weyburn (Canada)).
\ potential

.,,' i . Membranes .: E | o
i Chemical I co o T b
s | i B riy rans ransport |
| | i e EGR  saline On- ;
e R aquifers shore \,_/' |
| i
| I

p [ . US has existing
Sleipner (Morway) | | Have been used CO, pipeline
field has been for seasonal gas network of more
operational for storage for than S000
around 10 years ) decades k kilometers J

Source: Interviews; Team analysis

McKinsey & Company (2008)
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Flue gas:
0.7 bar N2
0.1 bar CO2

Diom sk ek

INVENTOR
Koberé RogerDoltoms
BY

ATTORNEYS

o SZgatin.

g-1xd

Amines

in water: 0\
g /
o HO\/\H_C<
I o)<}
2 HO\/\NH2 + (I_-I; — +
o ®
MEA HO /" >NH
\_ s )

® Large amounts of pure water
required

® ~“30% energy penalty for
regeneration
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The Berkeley Lectures on Energy - Vol. 1

Introduction to
Carbon Capture
andSeq uestratlon

Berend Sllmit
Jeffrey' R. Reimer

Curtis M. Oldenburg

lan C. Bourg
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Impenal College

Press

More on CCS

iBook version

B. Smit, J. R. Reimer, C. M. Oldenburg, I.

C. Bourg, Introduction to Carbon
Capture and Sequestration, Imperial
College Press, London, 2014.
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Carbon Capture

In the coming Control Age, scientists will be able
to design and create entirely new materials and
processes with desired properties and oufcomes.
With such capabilities, we should find solutions
to some of the most vexing problems that
civilization now faces, including energy, in all of
Its aspects, and changing global climate patterns.

Directing Matter and Enerpy:
Five Chalienges for Scierce aad Ne inaginatien

EFRC - Carbon Capture
Capture of CO2 from gas mixtures requires the molecular
control offered by nanoscience to tailor-make those
materials exhibiting exactly the right adsorption and
diffusion selectivity to enable an economic separation
process. Characterization methods and computational
tools will be developed to guide and support this quest.

Thursday, June 12, 14 28



Carbon Capture and Sequestration Research

Capture is currently
considered to be the

most expensive part of
CCS.

(o) co, co,

V& separatlon plant compression unit transport injection
Geologic storage involves M0 s -

uncertainties and risks W
. Ll
when considered at full S —co, . A w
(eg power plant) [S=

scale.
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Gas separations

Important CO: separations:

® Flue gasses (coal 12% CO3; natural gas 4% CO3)
e "End of pipe” technology; low pressure

e Natural gas
e High pressure form natural reservoirs

e CO:; directly from air
e Ultra low concentration of CO-

e Oxygen from air:

e (Oxy-combustion

Thursday, June 12, 14
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oJeffrey Long (UC Berkeley): A
eOmar Yaghi (UC Berkeley)
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Polym MemBranes:
oFrantisek Svec and Jean Frechet (LBNL)
eBret Helm and Ting Xu (LBNL)
eDave Luebke (NETL)

Characterization
eResonance soft X-rays: Blandine Jerome and Jeff Kortright (LBNL)
eX-ray crystallography: Simon Teat (LBNL)
oNMR: Jeffrey Reimer (UC Berkeley)

Computation
eAdsorption and Diffusion: Berend Smit (UC Berkeley)

oElectronic Structure calculation: Jeff Neaton (LBNL) and Gullia Galli
(UC Davis)

eQuantum calculations: Laura Gagliardi (U Minessota)
eMaterials Screening: Maciej Haranczyk (LBNL)
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Metal Organic Frameworks

BET surface areas up to 6200
m?/g

Density as low as 0.22 g/cm?®
Tunable pore sizes up to 5 nm

Channels connected in 1-, 2-,
or 3-D

Internal surface can be
functionalized

BASF production on ton scale

A, S

Y
4
o
.

e F -, “.';g
a7ty e 4
'l V'

Zn,0(1,4-benzenedicarboxylate),
MOF-5
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Computation Challenge

Chemical Flexibility of MOFs

e We can change the metal: Fe, Mg, Ca, Zn, Cu, etc
e We can change the linker
e We can change ’rhe pore ’ropology

ououoouou O05-OH
N
\/\0
HO” YO HO™ S0

HO" ™0 HO" ™0

A
@ 5
4 I
crb dft sod

*Ou’r oF these many many mllluons oF sfrucfur
r,whlch one is the best For Carbon Capture?

e ——— ——— — e —

S I -
1

— —
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How to compare two MOFs

My MOF has the highest
selectivity

My MOF the has the
largest pore volume

Thursday, June 12, 14
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Separating CO;

Partial pressure

CO

2




Working capacity & Henry coefficient

Flue gas at 40°C

/

loading

' working|
| capacity

|
f
i

- OE O o . s |
NEy 2
‘L._...__ —— e |

0.15 atm .0 atm

Partial pressure
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Increasing the working capacity: temperature

Flue gas at 40°C

|

0.15 atm .0 atm

Partial pressure

loading
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Increasing the working capacity: pressure

loading

Flue gas at 40°C
s

0.15 atm .0 atm

Partial pressure

We can increase the working capacity, but at which cost?

Thursday, June 12, 14
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Model for Screening Materials

1. Adsorption

Flue Gas N_rich
Calculate process independent —

performance characteristics of materials

for CCS 2. Heating/Vacuum
* Fixed bed configuration CO, rich
« Temperature swing S — -_-Il

* Pressure swing

« Hybrid processes 3. Purge

* Equilibrium model CO. rich N.rich
« No heat or mass transfer D s <
« Based on isotherms

« Uses difference in capacity between 4. Cooling/Repressurization

adsorption / desorption conditions Bl
— Clean bed

(Adam Berger and Abhoyit Bhown, EPRI)
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Performance metric: parasitic energy

Energy penalty for Carbon Capture and Sequestration:

compression work and the heating energy:
e Heating energy (Q): heat necessary to regenerate a given

sorbent:
e Sensible heat: heats and cools bed. Provides driving

force to produce CO,
e Desorption heat: desorbs CO, (equal to heat of

adsorption, Ah).

0= (CoPsompen DT + AhpyAG oy + Ahy,Aq NZ%
- N _
e N C02 Produced
Sensible heat requirement Desorption heat requirement

» Compressor work (W ¢,m,): Work to compress CO, to 150 bar

(for transport)
I/Veq — (O'7SQ.770arn0t I/Vcomp )

* Parasitic energy calculated by discounting the heat
requirement by the Carnot efficiency to simulate the effect
of taking steam from a steam cycle

Thursday, June 12, 14 41
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cage

180 Known structures
>3.000,000 hypothetical
structures

e Which is the best for

carbon capture?
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Zeolites for Carbon Capture

Equivalent Energy
for those all silica
structures with

experimental data

N

CHA

2
MOR

— N w B O
o o o o o
o o o o o
o o o o o
| | 1 | IR |

’ !

Equivalent Energy(KJ/Kg CO

0

1E-6 1E-5 1E-4
CO,'s Henry's Law Coefficient(mol/Kg *Pa)

What is the best structure?

What is the lowest energy?
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Molecular Simulations

MD

¢ Molecular dynamics: solve
equations of motion J%

¢ Monte Carlo: importance g
sampling

calculate thermodynamic

and transport properties
for a given intermolecular

potential




Zeolites (MFI)

T o CO,(Exp) 253K . | b
304 & CO,(Exp) 273K .
v CO-(Exp) 303 K Open: simulations
1| ™ CO,(Sim) 253K . .
| & colsmerax Closed: experiments
' v CO,(Sim) 300 K
) N, (Sim) 308 K
— N, (Sim) 308 K (Goj et al.)
D 2091 9 €0,303K (zhu et al.)
S || > C0O,303 K (Hirotani et al.) -
& & C0,307 K (Sun et al.)
; 1.5 41 ¥ CO,305K (Choudhary et al.) N 2
c
'-5 4
®
Q1.0
) O SRS SE
O-O ] I[T LI I | :Ilmk‘zgz.:?:‘zu :;j _0':".' ‘ T; || || LI LI ||i ! I LI ||i ! I UL
1072 107 10° 10" 102 10° 10%

p (kPa)
(E. Garcia-Pérez et al. Adsorption (2007) 13: 469-476)
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All Kknown zeolites

6000

O,
o
o
o

4000 - 1

3000

2000

1000

Equivalent Energy(KJ/Kg CO,)

1E-6 1E-5 1E-4
CO,'s Henry's Law Coefficient(mol/Kg *Pa)
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at IS The besTt zeolite strucrure®
(Materials Genome)

Hypothetical zeolites

~2.7 10° unique structures were enumerated, with roughly 10% within the
+30 kJ/mol Si energetic band above R-quartz in which the known zeolites lie

Energy vs. Density
Energies above quartz, up to +65 kJ/mol Si

F * ¥ J SN
- . 1.'
by ‘... . .- e

60 -

Energy (kJ/mol Si)
S 8 &8 8
: ; ey

o
|

=
o

)
Deem et al. J. Phys. Chem. C 2009, 113, 21353.

Density (Si/ 1000 A
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How to predict 1 million isotherms?
CPU: one isotherm 5-10 days

CPU GPU

ALU .
~ ALU
. —

- Lesg than 20 cores | - More than 500 cores
- Designed for general programming - Optimized for SIMD (same-

instruction-multiple-data) problems
GPU

trade-off between memory, # threads, and work load
* Energy calculation in parallel
* Monte Carlo in parallel for different pressures

- =S =

.

J. Kim and B. Smit, J. Chem. Theory iw‘ . . . . |
Comput. 8 (7), 2336 (2012) ;ﬂGpu one 3

Thursday, June 12, 14
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Screening: zeolites

5000 e N s £
= |ZA - T W
2 4000 e Predicted o 3& rt Z“ 'l
8 Predicted low density "4‘:\,’}‘{"';‘{*%4%”
- R e X
& G A N - 7 W§
=~ 3000 - (o-,-f“v.... -.-ﬂ"%-}
5 .’-ﬁp "l 4" 'J§ ﬁ"‘ “’*n.
> OrAN-2 Ay
ae; 2000~ \.«“«f{}f \-,4}‘;».’
- 5 e
L
O
= 1000 -
& Y=t 2L Se
— - "M-‘N ,,,.t ) o
5 N 4,?“'% y A ;’\\.r
2 — W'
10°  10° 10*  10° 10> 10" 10° P at s
. N, by k.
Henry Coefficient of CO, (mol/(kg*Pa)) PR ;&{ - e
o"‘;* = '%,}‘%f N
"'t:) “1‘ R b-'-ih‘»

Screening: > 300,000 structures
|dentified many structures with a significantly lower
parasitic energy compared to the current technology

L.-C. Lin, et al, In silico screening of carbon-capture materials Nat Mater 1l (7), 633 (2012)
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a) Desorption Adsorption Desorption Adsorption
of N of CO, of CO, of N
1.0 2
o
=
©
3 Adsorption at 40°C
@ 0.5- Desorption atT_ _
=
©
o
-
Working
capacity
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qﬁé N |
0.0- . : : : 2 = |ZA
N . . :
Partial pressure (bar) 9 4000 Predicted low density
b) Adsorption Desorption o
pressure pressure S 3000 -
6 <
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- Desorption L
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o 34 o
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.... and now MOFs




Materials synthesized in EFRC
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Parasitic Energy (10° kJ/kggo )

— current MEA
----- lowest PE
- envelope
zeolites
MOFs
ZIFs 1
CEZs 1
hypothetical |-
PPNSs

—l
o

O 0 @ O 0 o

Henry Coefficient CO, at 300K (mol/kg/Pa)
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Structure optimization
(DFT)

Atom-types
identification

Approaching paths
determination

Interaction energy calculations
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Force Fields

Quantum calculations (MP2) +
NEMO decomposition

L

with Laura Gagliardi (U Minnesota)

A. Dzubak, et al,Ab-initio Carbon Capture in Open-Site Metal Organic
Frameworks Nat Chem (2012) http://dx.doi.org/0.1038/NCHEM. 1432
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Water isotherms?

A Exp. (Yangetal. (C)) v Exp.(Schoenecker et al.)
O Exp.(Yangetal. (S)) < Exp.(Gloveretal.)
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L.-C. Lin, K. Lee, L. Gagliardi, J. B. Neaton, B. Smit, J. Chem. Theory Comput. 2014.
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Conclusions

e Parasitic energy is a useful concept to rank materials

* best material adsorption not to strong/not to weak
* Natural gas: higher adsorption is better

« EFRC: we can tailor make the best adsorbent if flue gasses
where mixtures of No/COo

 Open metal sites

* Very interesting chemistry: conventional force fields do not
work

» Systematic methods to develop force fields
o Effect of water
 Materials Genome:

* Intelligence versus brute force ....
» Screening for best materials: what can be obtained
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The Berkeley Lectures on Energy - Vol. 1

Introduction to
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