

Carbon Capture and Sequestration

Thursday, June 12, 14

Consequences: velocity of climate change

- Historic rates: fastest 1 km/yr
- 28% of the surface > 1 km/yr

Figure 2.5.11 The velocity of climate change Figure by Loarie et al. (2009)

Introduction to Carbon Capture and Sequestration © 2014 by Imperial College Press

Figure 1.2.1 World energy consumption

U.S. Primary Energy Consumption Estimates by Source, 1850-2010

Source: U.S. Energy Information Administration Annual Energy Review, Tables 1.3, 10.1, and E1

Thursday, June 12, 14

3

"plan B"?

S. Pacala and R. Socolow, Stabilization wedges: Solving the climate problem for the next 50 years with current technologies Science **305** (5686), 968 (2004)

Different wedges

What to do with a GIGATON of CO₂?

Let's convert CO₂ into "Dreamium™"

(in Berkeley we recycle everything!)

www.TwentyThousandMinusThreeAppsOfDreamium.com

Abhoyjit S. Bhown (EPRI):

		Estimated USA production			Estimated global production		
		Mt	Gmol	GWe-yr at 90% capture	Mt	Gmol	GWe-yr at 90% capture
1	Sulfuric acid	38.7	394	2.1	199.9	1879	10.0
2	Nitrogen	32.5	1159	6.2	139.6	4595	24.5
3	Ethylene	25.0	781	4.2	112.6	3243	17.3
4	Oxygen	23.3	829	4.4	100.0	3287	17.5
5	Lime	19.4	347	1.8	283.0	4653	24.8
6	Polyethylene	17.0	530	2.8	60.0	1729	9.2
7	Propylene	15.3	354	1.9	53.0	1134	6.0
8	Ammonia	13.9	818	4.4	153.9	8332	44.3
9	Chlorine	12.0	169	0.9	61.2	795	4.2
10	Phosphoric acid	11.4	116	0.6	22.0	207	1.1
50	Nylon	1.9	8	0.0	2.3	8	0.0
	Total	419	8,681	46	2,412	48,385	257
2009 coal-fired generation GWe-yr				200			>1000
Approximate CO ₂ emissions		6,000	136,000		31,000	750,000	

Table 1.3.1 Comparison of CO₂ production and the production of chemicals

Figure 1.2.8 Distribution of (European) CO₂ emissions from different sources. Redrawn from EEA GHG Emission Trends and Projects 2007 and IEA World Energy Outlook 2007

Carbon Capture and Sequestration

Figure 8.2.1 Injecting CO₂ below a caprock formation (Figure based on information provided by CO2CRC)

Figure 8.2.2 Mechanisms of CO₂ trapping

Figure 8.2.2 Mechanisms of CO₂ trapping (a) Stratigraphic trapping

Figure 8.2.2 Mechanisms of CO₂ trapping (b) Residual trapping

Movie 8.2.1 CO₂ residual trapping simulation

Movie from the CRC for Greenhouse Gas Technologies (CO2CRC)

Figure 8.2.2 Mechanisms of CO₂ trapping (c) Solubility trapping

Figure 8.2.2 Mechanisms of CO₂ trapping (d) Mineral trapping

Time since injection stops (years)

Figure 8.2.3 Trapping mechanisms as a function of time (Figure adapted from Benson and Cole)

Figure 4.1.2 Coal-fired power plant with post-combustion carbon capture

Box 4.1.2 Oxycombustion (Pre-combustion carbon capture)

Stage of CCS component technologies

Stage of development

Source: Interviews; Team analysis

McKinsey & Company (2008)

Flue gas: 0.7 bar N₂ 0.1 bar CO₂

Amines

- Large amounts of pure water required
- ~30% energy penalty for regeneration

Dinn Turbank Hrech Freth ATTORNEYS

More on CCS

iBook version

B. Smit, J. R. Reimer, C. M. Oldenburg, I.
C. Bourg, *Introduction to Carbon Capture and Sequestration*, Imperial College Press, London, **2014**.

Carbon Capture

In the coming Control Age, scientists will be able to design and create entirely new materials and processes with desired properties and outcomes. With such capabilities, we should find solutions to some of the most vexing problems that civilization now faces, including energy, in all of its aspects, and changing global climate patterns.

EFRC - Carbon Capture

Capture of CO₂ from gas mixtures requires the molecular control offered by nanoscience to tailor-make those materials exhibiting exactly the right adsorption and diffusion selectivity to enable an economic separation process. Characterization methods and computational tools will be developed to guide and support this quest.

Carbon Capture and Sequestration Research

Capture is currently considered to be the most expensive part of CCS.

Geologic storage involves uncertainties and risks when considered at full scale.

Gas separations

Important CO₂ separations:

- Flue gasses (coal 12% CO₂; natural gas 4% CO₂)
 - "End of pipe" technology; low pressure
- Natural gas
 - High pressure form natural reservoirs
- CO₂ directly from air
 - Ultra low concentration of CO₂
- Oxygen from air:
 - Oxy-combustion

Jeffrey Long
UC Berkeley

Omar Yaghi LNBL MF

Hong-Cai Zhou Texas A&M

Maciej Haranczyk LBNL

David Luebke NETL

Blandine Jérôme LBNL

Jeffrey Kortright LBNL

Jeffrey Reimer UC Berkeley

Simon Teat LBNL

Jeffrey Neaton LBNL-MF

Berend SmitUC Berkeley

Frantisek Svec LBNL-MF

Brett Helms
LBNL-MF

Ting XuUC Berkeley

Laura Gagliardi U Minnesota

Giullia Galli UC Davis

EFRC

Solid Adsorbents

- •Jeffrey Long (UC Berkeley):
- Omar Yaghi (UC Berkeley)
- •Hong-Cai Zhou (Texas A&M)

Polymer Membranes:

- •Frantisek Svec and Jean Frechet (LBNL)
- Bret Helm and Ting Xu (LBNL)
- Dave Luebke (NETL)

Characterization

- •Resonance soft X-rays: Blandine Jerome and Jeff Kortright (LBNL)
- •X-ray crystallography: Simon Teat (LBNL)
- •NMR: Jeffrey Reimer (UC Berkeley)

Computation

- Adsorption and Diffusion: Berend Smit (UC Berkeley)
- •Electronic Structure calculation: Jeff Neaton (LBNL) and Gullia Galli (UC Davis)
- •Quantum calculations: Laura Gagliardi (U Minessota)
- Materials Screening: Maciej Haranczyk (LBNL)

Metal Organic Frameworks

Zn₄O(1,4-benzenedicarboxylate)₃ MOF-5

- BET surface areas up to 6200 m²/g
- Density as low as 0.22 g/cm³
- Tunable pore sizes up to 5 nm
- Channels connected in 1-, 2-, or 3-D
- Internal surface can be functionalized
- BASF production on ton scale

Computation Challenge

Chemical Flexibility of MOFs

- We can change the metal: Fe, Mg, Ca, Zn, Cu, etc
- We can change the linker
- We can change the pore topology

Out of these many many millions of structures, which one is the best for Carbon Capture?

How to compare two MOFs

Separating CO₂

Working capacity & Henry coefficient

Increasing the working capacity: temperature

Increasing the working capacity: pressure

We can increase the working capacity, but at which cost?

Model for Screening Materials

Calculate *process independent*performance characteristics of materials

- Fixed bed configuration
 - Temperature swing
 - Pressure swing
 - Hybrid processes
- Equilibrium model
 - No heat or mass transfer
 - Based on isotherms
- Uses difference in capacity between <u>adsorption / desorption</u> conditions

1. Adsorption Flue Gas N₂ rich

2. Heating/Vacuum

3. Purge

4. Cooling/Repressurization

1. Adsorption

(Adam Berger and Abhoyit Bhown, EPRI)

Performance metric: parasitic energy

Energy penalty for Carbon Capture and Sequestration:

compression work and the heating energy:

- Heating energy (Q): heat necessary to regenerate a given sorbent:
 - Sensible heat: heats and cools bed. Provides driving force to produce CO₂
 - Desorption heat: desorbs CO_2 (equal to heat of adsorption, Δh).

$$Q = \frac{(C_p \rho_{sorbent} \Delta T + \Delta h_{CO2} \Delta q_{CO2} + \Delta h_{N2} \Delta q_{N2})}{CO_{2 \text{Pr} oduced}}$$
Sensible heat requirement Desorption heat requirement

• Compressor work (W_{comp}): Work to compress CO₂ to 150 bar (for transport) $W_{oa} = \left(0.75Q \cdot \eta_{carnot} + W_{comp}\right)$

 Parasitic energy calculated by discounting the heat requirement by the Carnot efficiency to simulate the effect of taking steam from a steam cycle

- 180 Known structures
- >3.000,000 hypothetical structures
- Which is the best for carbon capture?

Zeolites for Carbon Capture

Equivalent Energy for those all silica structures with experimental data

What is the best structure?

What is the lowest energy?

Molecular Simulations

 Molecular dynamics: solve equations of motion

 Monte Carlo: importance sampling

calculate thermodynamic and transport properties for a given intermolecular potential

Zeolites (MFI)

(E. García-Pérez et al. Adsorption (2007) 13: 469-476)

All known zeolites

What is the best zeolite structure? (Materials Genome)

Hypothetical zeolites

~2.7 10⁶ unique structures were enumerated, with roughly 10% within the +30 kJ/mol Si energetic band above R-quartz in which the known zeolites lie

Deem et al. J. Phys. Chem. C 2009, 113, 21353.

How to predict 1 million isotherms?

CPU: one isotherm 5-10 days

CPU
Control Logic ALU
Cache
DRAM

- Less than 20 cores
- Designed for general programming

GPU

trade-off between memory, # threads, and work load

- Energy calculation in parallel
- Monte Carlo in parallel for different pressures

- More than 500 cores
- Optimized for SIMD (sameinstruction-multiple-data) problems

J. Kim and B. Smit, J. Chem. Theory Comput. **8** (7), 2336 (2012)

GPU: one isotherm in 1 minute

Screening: zeolites

Screening: > 300,000 structures Identified many structures with a significantly lower parasitic energy compared to the current technology

L.-C. Lin, et al, In silico screening of carbon-capture materials Nat Mater II (7), 633 (2012)

.... and now MOFs

Materials synthesized in EFRC

CO2 adsorption

Force-field

Force Fields

Quantum calculations (MP2) + NEMO decomposition

with Laura Gagliardi (U Minnesota)

A. Dzubak, et al, Ab-initio Carbon Capture in Open-Site Metal Organic Frameworks Nat Chem (2012) http://dx.doi.org/0.1038/NCHEM.1432

CO2 adsorption

Water isotherms?

L.-C. Lin, K. Lee, L. Gagliardi, J. B. Neaton, B. Smit, J. Chem. Theory Comput. 2014.

Water-CO₂

Conclusions

- Parasitic energy is a useful concept to rank materials
 - best material adsorption not to strong/not to weak
 - Natural gas: higher adsorption is better
- EFRC: we can tailor make the best adsorbent if flue gasses where mixtures of N₂/CO₂
- Open metal sites
 - Very interesting chemistry: conventional force fields do not work
 - Systematic methods to develop force fields
 - Effect of water
- Materials Genome:
 - Intelligence versus brute force
 - Screening for best materials: what can be obtained

Gordon Research Conferences

Conference Program

HOME

CONFERENCES

- Current Meetings (2014)
- Upcoming Meetings (2015)
- Past Meetings
- Gordon Research Seminars

 NEW!
- Conference Portfolio
- Proposing a New Gordon Conference

FOR ATTENDEES

THE GRC ORGANIZATION

MISCELLANEOUS

QUICK SEARCH

GO

[advanced search]

Carbon Capture, Utilization & Storage

Defining the Frontiers

May 31 - June 5, 2015 Stonehill College Easton, MA

Chair:

Berend Smit

Vice Chair:

Ah-Hyung (Alissa) Park

MEETING LINKS

- Online Application
- Conference History
- Contact Chairs
- Registration Information

SITE & TRAVEL LINKS

REGISTRATION FEES

Follow us on Facebook

Application Deadline

Applications for this meeting must be submitted by **May 3, 2015**. Please apply early, as some meetings become oversubscribed (full) before this deadline. If the meeting is oversubscribed, it will be stated here. *Note*: Applications for oversubscribed meetings will only be considered by the Conference Chair if more seats become available due to cancellations.

The new Gordon Research Conference (GRC) on "Carbon Capture, Utilization and Storage" will create a new forum for discussion at the frontiers of carbon management research, including fundamental scientific studies of CO₂ interactions with novel materials for Carbon Capture, Utilization and Storage (CCUS) as well as science policy essential for the deployment of

May 31 – June 5, 2015

Buy the book!

B. Smit, J. R. Reimer, C. M. Oldenburg, I.
C. Bourg, *Introduction to Carbon Capture and Sequestration*, Imperial College Press, London, **2014**.

