

# **Energy Demand Forecasting Industry Practices and Challenges**

Mathieu Sinn (IBM Research)

12 June 2014

ACM e-Energy Cambridge, UK









#### **Outline**

- Overview: Smarter Energy Research at IBM
- Energy Demand Forecasting
  - Industry practices & state-of-the-art
  - Generalized Additive Models (GAMs)
  - Insights from two real-world projects
  - Ongoing work and future challenges
- Conclusions





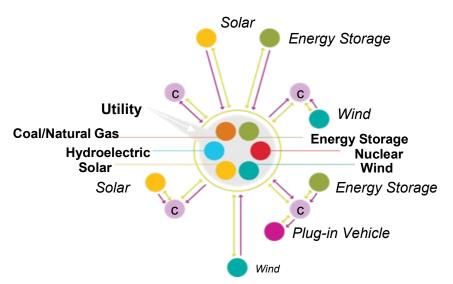
#### **IBM Research Labs**





## Smarter Energy Research at IBM Overview







#### Non-exhaustive project list:

- Pacific Northwest Smart Grid (transactive control, internet-scale control systems)
- Renewable energy forecasts
  - Deep Thunder (weather), HyREF (wind power), Watt-Sun (PV)
- IBM Smarter Energy Research Institute (http://www.research.ibm.com/client-programs/seri/)
  - Outage Prediction and Response Optimization
  - Analytics and Optimization Management System (AOMS)

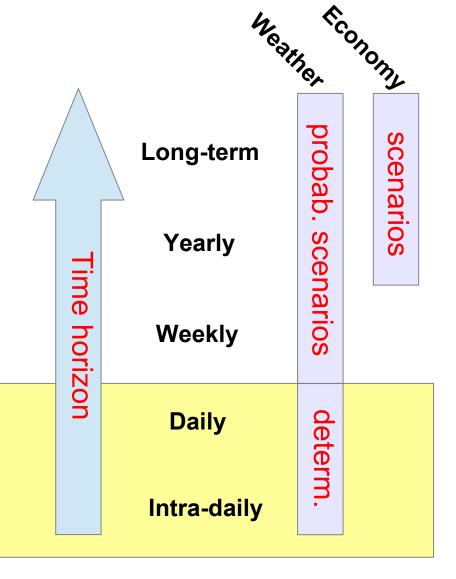






## Energy Demand Forecasting *Motivation*

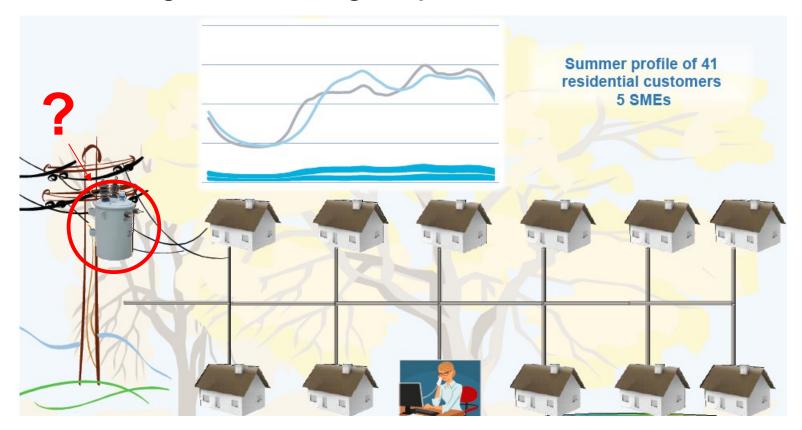
- Portfolio structuring
- Power plants maintenance schedule
- Future energy contracts
- Energy storage management
- Unit commitment, Economic dispatch
- Day-ahead outage planning
- Market purchases/sales





## Energy Demand Forecasting *Motivation*

#### Beyond forecasting: Load modeling and prediction





**Source** E.Diskin: Can "big data" play a role in the new DSO definition? European Utility Week, Amsterdam October 2013



## **Energy Demand Forecasting**

#### **Current practice:**

- Forecasting few, highly aggregated series
- Manual monitoring and fine-tuning

#### **Challenges:**

- Forecasts at lower aggregation levels → huge amounts of data
- Changes in customer behavior
- Distributed renewable energy sources

dynamic!

#### Requirements:

#### **Analytical models**

- accurate, flexible, robust
- automated (online learning)
- transparent, understandable

#### **Systems**

- scalability, throughput
- data-in-motion and -at-rest
- external interface







## **Energy Demand Forecasting**

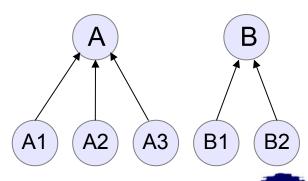
#### **Objectives:**

- Forecasting energy demand at various aggregation levels
  - Transmission and Subtransmission networks
  - Distribution substations and MV network
  - Breakdown by customer groups



#### **Rationales:**

- Disaggregate demand for higher forecasting accuracy
  - Local effects of weather, socio-economic variables etc.
- More visibility on loads in Subtransmission and Distribution networks
  - Understanding the effect of exogenous variables
  - Detecting trends, anomalies, etc.
  - Accounting for reconfiguration events





## **Energy Demand Forecasting**

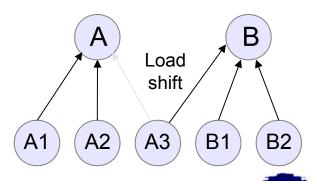
#### **Objectives:**

- Forecasting energy demand at various aggregation levels
  - Transmission and Subtransmission networks
  - Distribution substations and MV network
  - Breakdown by customer groups



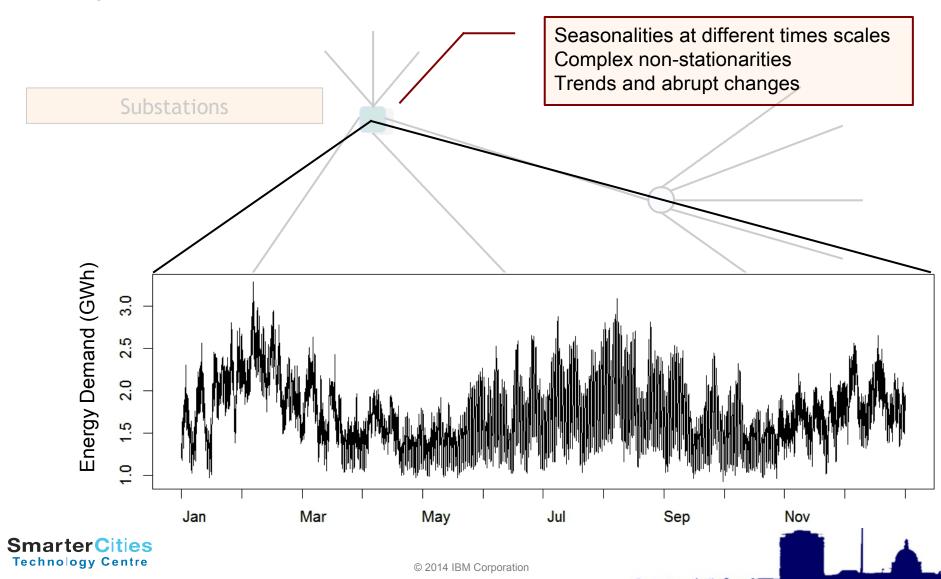
#### **Rationales:**

- Disaggregate demand for higher forecasting accuracy
  - Local effects of weather, socio-economic variables etc.
- More visibility on loads in Subtransmission and Distribution networks
  - Understanding the effect of exogenous variables
  - Detecting trends, anomalies, etc.
  - Accounting for reconfiguration events

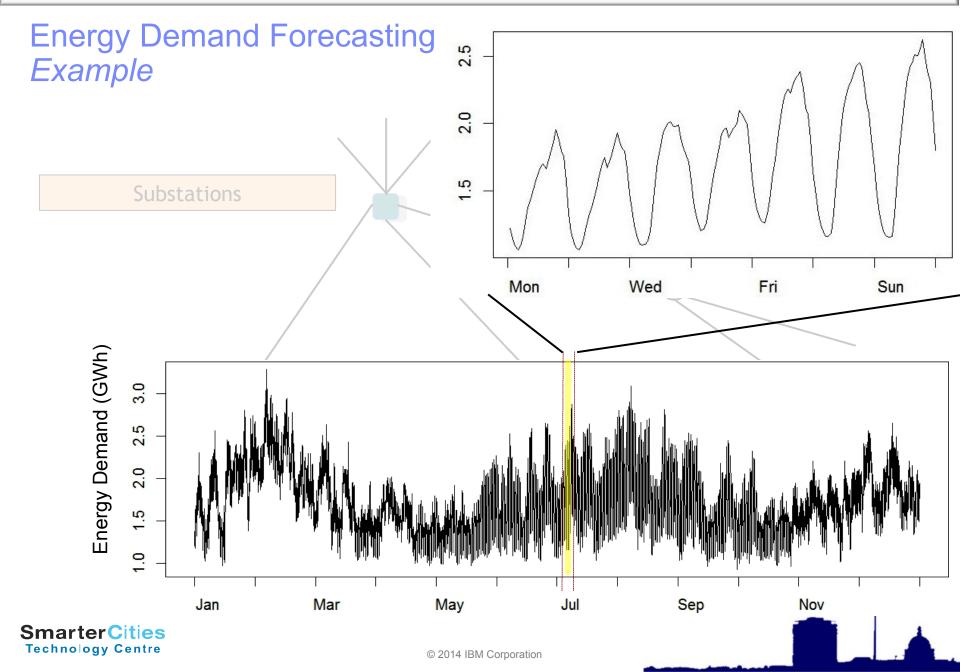




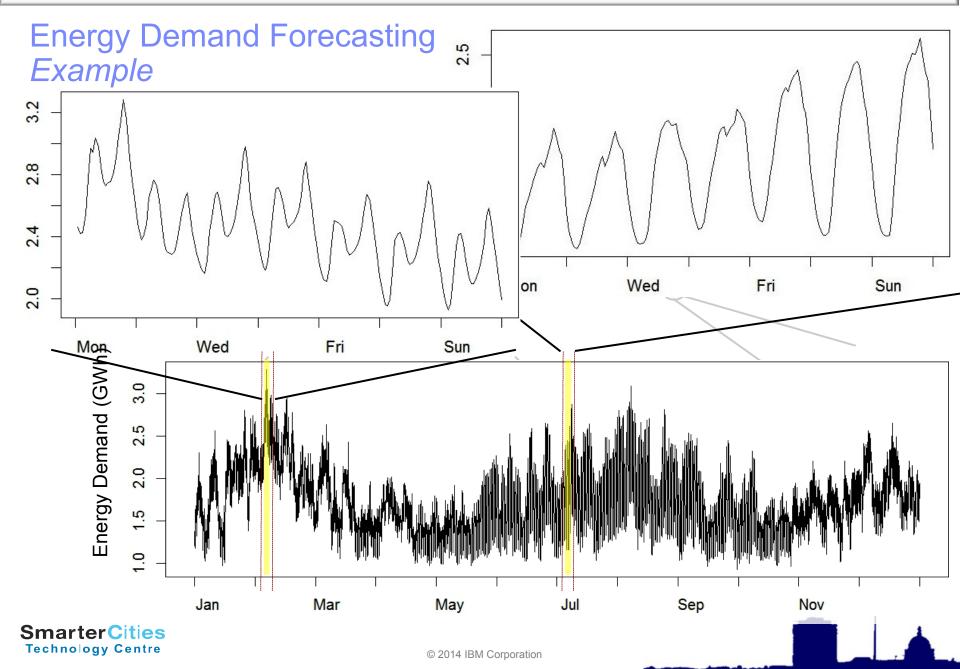
## Energy Demand Forecasting Example





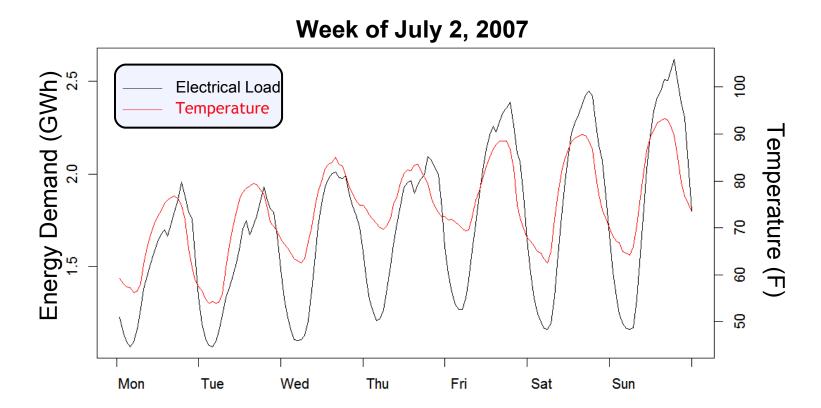








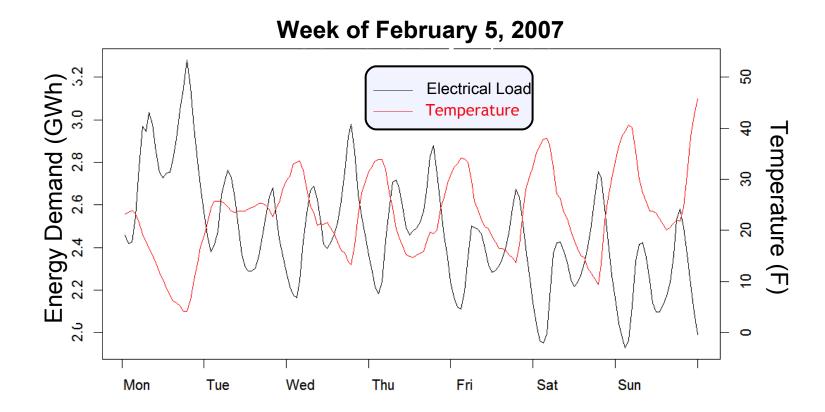
## Energy Demand Forecasting Example







## Energy Demand Forecasting Example









## Energy Demand Forecasting Additive Models

Assumption: effect of covariates is additive

Contribution of temperature

on energy consumption

#### Illustrative example:

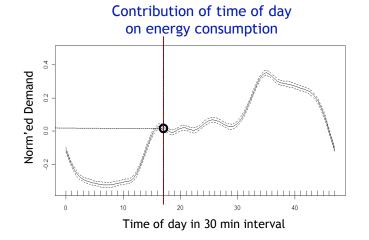
• 
$$\mathbf{x}_{k} = (\mathbf{x}_{k}^{\text{Temperature}}, \mathbf{x}_{k}^{\text{TimeOfDay}})$$

• 
$$y_k = f^{\text{Temperature}}(x_k) + f^{\text{TimeOfDay}}(x_k)$$

• Say,  $x_k = (12^{\circ}C, 08:30 \text{ AM})$ 

$$\rightarrow$$
 y<sub>k</sub> = 0.0 GW + 0.02 GW

(covariates) (transfer functions)





Norm'ed Demand





### Energy Demand Forecasting Additive Models

#### Formulation:

Demand 
$$f$$
 functions Noise  $y_k = \sum_{i=1}^{I} f_i(x_k) + \epsilon_k$ 

Transfer functions have the form:

Categorical Basis condition functions 
$$f_i(x_k) = \mathbf{1}_{A_i}(x_k) eta_i^T b_i(x_k)$$
 Weights

This includes:

- constant, indicator, linear functions
- cubic B-splines (1- or 2-dimensional)

## SmarterCities Technology Centre

#### **Covariates:**

- Calendar variables (time of day, weekday...)
- Weather variables (temperature, wind ...)
- Derived features (spatial or temporal functionals)

<del>.</del> ..





### Energy Demand Forecasting Additive Models

#### **Formulation:**

$$y_k = \beta^T b(x_k) + \epsilon_k$$
 Linear in basis functions

#### **Training:**

- 1) Select covariates, design features
- 2) Select basis functions (= knot points)
- 3) Solve Penalized Least Squares problem

Penalizer

$$\hat{\beta}_K = \underset{\beta}{\operatorname{arg\,min}} \left\{ \| \boldsymbol{y}_K - \boldsymbol{B}_K \boldsymbol{\beta} \|^2 + \boldsymbol{\beta}^T \boldsymbol{S}(\lambda_K) \boldsymbol{\beta} \right\}$$

where  $\lambda_{\kappa}$  is determined using Generalized Cross Validation





### Energy Demand Forecasting EDF-IBM NIPS model

#### Model for 5 years of French national demand (Feb 2006 – April 2011)<sup>1</sup>

#### **Covariates:**

$$x_k = (x_k^{\text{DayType}}, x_k^{\text{TimeOfDay}}, x_k^{\text{TimeOfYear}}, x_k^{\text{Temperature}}, x_k^{\text{CloudCover}}, x_k^{\text{LoadDecrease}})$$

- DayType: 1=Sun, 2=Mon, 3=Tue-Wed-Thu, 4=Fri, 5=Sat, 6=Bank holidays
- TimeOfDay: 0, 1, ..., 47 (half-hourly)
- TimeOfYear: 0=Jan 1<sup>st</sup>, ..., 1=Dec 31<sup>st</sup>
- Temperature: spatial average of 63 weather stations
- CloudCover: 0=clear, ..., 8=overcast
- LoadDecrease: activation of load shedding contracts

<sup>1</sup>A.Ba, M.Sinn, P.Pompey, Y.Goude: Adaptive learning of smoothing splines. Application to electricity load forecasting. Proc. Advances in Neural Information Processing Systems (NIPS), 2012







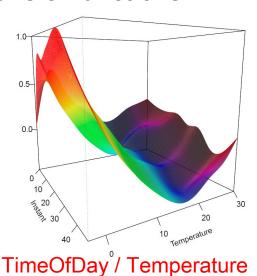
### **Energy Demand Forecasting** EDF-IBM NIPS model

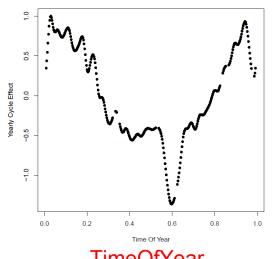
#### Model:

Lag load Day-type specific daily pattern **Trend**  $= \beta^{\text{Intercept}} + f^{\text{Trend}}(k) + f^{\text{LagLoad}}(y_{k-48}) + \sum \mathbf{1}(x_k^{\text{DayType}} = l)(\beta_l^{\text{DayType}} + f_l^{\text{TimeOfDay}}(x_k))$  $f^{\text{CloudCover}}(x_k) + f^{\text{Temperature/TimeOfDay}}(x_k) + f^{\text{LagTemperature}}(x_{k-48}) \\ f^{\text{TimeOfYear}}(x_k) + x_k^{\text{LoadDecrease}} f^{\text{LoadDecrease}}(x_k) + \epsilon_k. \\ \text{Lag temperature (accounting for thermal inertia)}$ 

thermal inertia)

#### **Transfer functions:**





#### **Results:**

1.63% MAPE 20% improvement by online learning **Explanation**: macroeconomic trend effect

**TimeOfYear** 

**SmarterCities** Technology Centre



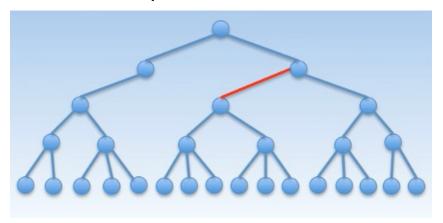


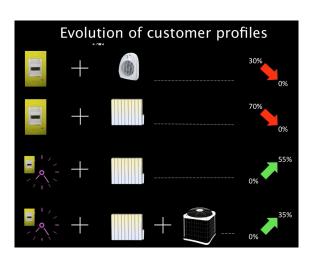
## Energy Demand EDF-IBM Simulation platform

#### Simulation:

Technology Centre

- Massive-scale simulation platform for emulating demand in the future electrical grid<sup>2</sup>
  - 1 year half-hourly data, 35M smart meters
  - Aggregation by network topology (with dynamic configurations)
  - Changes in customer portfolio
  - Distributed renewables (wind, PV)
  - Electric vehicle charging
- Built on IBM InfoSphere Streams



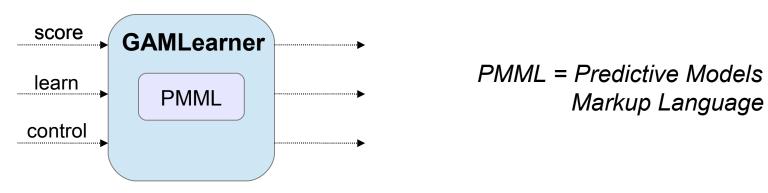


<sup>2</sup>P.Pompey, A.Bondu, Y.Goude, M.Sinn: Massive-Scale Simulation of Electrial Load in Smart Grids using Cities Generalized Additive Models. Springer Lecture Notes in Statistics (to appear), 2014.



#### Forecasting:

- Statistical approach: Generalized Additive Models (GAMs)
  - Accuracy, flexibility, robustness, understandability ...
- Developing GAM operators for IBM InfoSphere Streams



- Online learning:
  - Tracking of trends (e.g., in customer portfolio)
  - Reducing human intervention
  - Incorporating new information





Formulation of GAM learning as Recursive Least Squares:

$$\hat{\beta}_{K+1} = \hat{\beta}_K + \frac{\boldsymbol{P}_K b_{K+1}}{\omega + b_{K+1}^T \boldsymbol{P}_K b_{K+1}} (y_{K+1} - b_{K+1}^T \hat{\beta}_K)$$
 Precision matrix 
$$\boldsymbol{P}_{K+1} = \omega^{-1} \Big( \boldsymbol{P}_K - \frac{\boldsymbol{P}_K b_{K+1} b_{K+1}^T \boldsymbol{P}_K}{\omega + b_{K+1}^T \boldsymbol{P}_K b_{K+1}} \Big)$$

- Adapt model once actual demand becomes available (  $\hat{eta}_K o \, \hat{eta}_{K+1}$  )
- Implementation:
  - Forgetting factor  $\,\omega \in (0,1]\,$  (discounting past observations)
  - Complexity:  $O(p^2)$  (p = number of spline basis functions)
  - Sparse matrix algebra → 1000 tuples per second
  - Adaptive regularization







#### Stability:

- ullet Incorporate historical sample information in  $oldsymbol{P}_0$
- Rule of thumb for forgetting factor:

time window size 
$$~\approx~~ \frac{1}{1-\omega}$$

Hence, for a time window of 1 year = 365\*48 data points:

$$\omega = 0.9999429$$

Don't forget during summer what happened in winter!

- Another potential issue: divergence of  $oldsymbol{P}_K$
- "Blowing-up" of Kalman gain





#### Stability:

 $oldsymbol{P}_K$  is the inverse of the sum of discounted matrix terms

$$b(x_k)^T b(x_k), \qquad k = 1, 2, \dots, K.$$

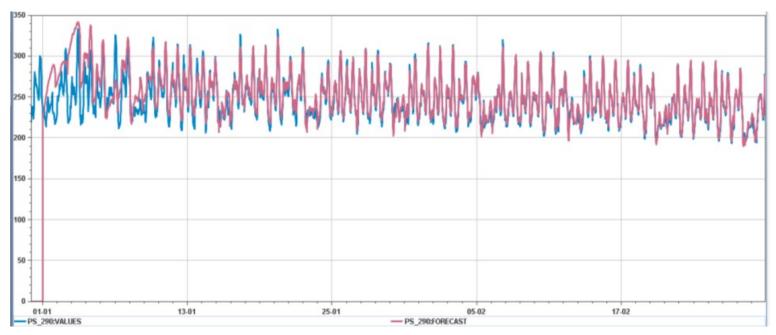
Outer product of spline basis functions

- Divergence can occur, e.g.,
  - if subset of basis functions is (almost) collinear
  - if subset of basis functions is (almost) always zero
- Solution: Adaptive regularizer
  - Monitor matrix norm of  $oldsymbol{P}_K$
  - If norm exceeds threshold, then add diagonal matrix to the inverse of  $oldsymbol{P}_K$
  - Complexity:  $O(p^3)$





Learning "from scratch" (initial parameters  $\hat{eta}_0$  all equal to zero):

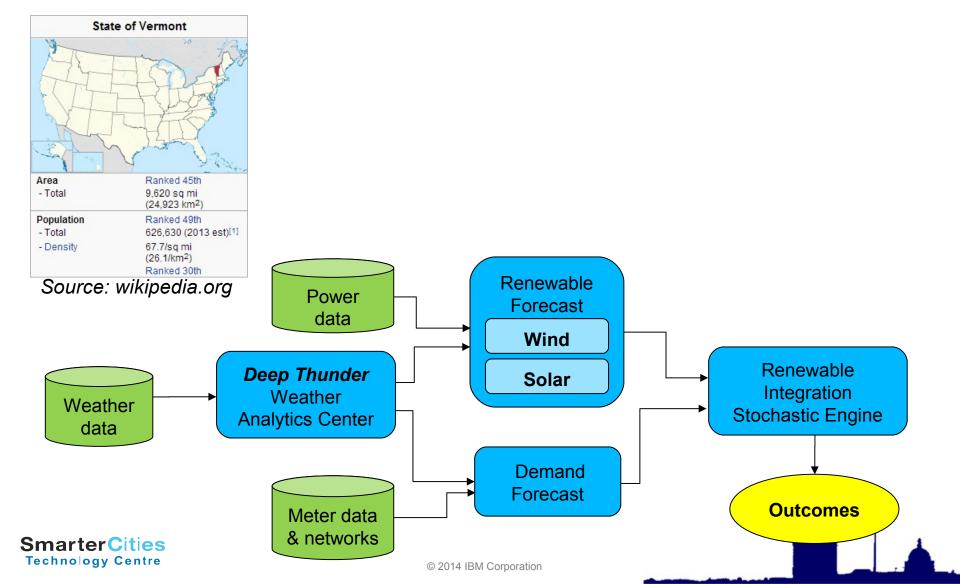






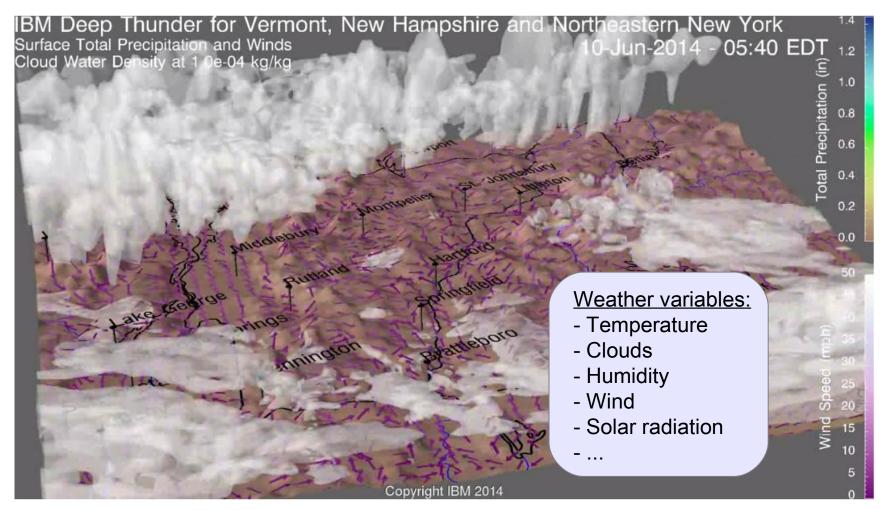


## Vermont Project Scope





## Vermont Project Deep Thunder





## Vermont Project Demand forecasting challenges

#### **Modeling:**

- Distributed renewables "behind the meter"
- Forecasting uncertainty

#### Variable selection & feature extraction:

- Spatial averages of weather variables
- Temporal features (e.g., heat waves)
- Formalization & automatization

#### Transfer learning:

How to integrate information from older, lower-resolution data sets?

#### **Transparent analytics:**

GUI which allows users to "drive" analytics withouth in-depth statistical knowledge





#### Conclusions

- Smarter Energy Research at IBM
- Energy demand forecasting
  - Current practices & future challenges
  - Methodology
  - Insights from two projects

Thank you!



