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Smarter Energy Research at IBM
Overview
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Non-exhaustive project list:

• Pacific Northwest Smart Grid (transactive control, internet-scale control systems)

• Renewable energy forecasts

– Deep Thunder (weather), HyREF (wind power), Watt-Sun (PV)

• IBM Smarter Energy Research Institute (http://www.research.ibm.com/client-programs/seri/)
– Outage Prediction and Response Optimization

– Analytics and Optimization Management System (AOMS)

http://www.research.ibm.com/client-programs/seri/
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Energy Demand Forecasting
Motivation

• Market purchases/sales
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• Unit commitment, Economic dispatch

• Day-ahead outage planning

• Portfolio structuring

• Power plants maintenance schedule

• Future energy contracts

• Energy storage management
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Energy Demand Forecasting
Motivation

Beyond forecasting: Load modeling and prediction

?

Source E.Diskin: Can “big data” play a role  in the new DSO definition?        
                 European Utility Week, Amsterdam October 2013



IBM Research - Ireland

© 2014 IBM Corporation

Energy Demand Forecasting

Current practice:

• Forecasting few, highly aggregated series

• Manual monitoring and fine-tuning

Challenges:

• Forecasts at lower aggregation levels → huge amounts of data

• Changes in customer behavior

• Distributed renewable energy sources

Requirements:

} dynamic!

Analytical models

- accurate, flexible, robust

- automated (online learning)

- transparent, understandable

Systems

- scalability, throughput

- data-in-motion and -at-rest

- external interface



IBM Research - Ireland

© 2014 IBM Corporation

Energy Demand Forecasting

Objectives:

• Forecasting energy demand at various aggregation levels

– Transmission and Subtransmission networks

– Distribution substations and MV network

– Breakdown by customer groups

Rationales:

• Disaggregate demand for higher forecasting accuracy

– Local effects of weather, socio-economic variables etc.

• More visibility on loads in Subtransmission and Distribution networks
– Understanding the effect of exogenous variables
– Detecting trends, anomalies, etc.

– Accounting for reconfiguration events

top-down

A B

A1 A2 A3 B1 B2
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Rationales:

• Disaggregate demand for higher forecasting accuracy
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Load
shift
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35M Smart Meters

800K Low-Voltage Stations

Substations
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Seasonalities at different times scales
Complex non-stationarities
Trends and abrupt changes

Energy Demand Forecasting
Example
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35M Smart Meters

800K Low-Voltage Stations

2,200 ‘Postes Sources’
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Week of July 2, 2007

E
n

er
gy

 C
on

su
m

pt
io

n 
(M

W
)

Consumption
Temperature

T
em

p eratu re (F
)

T
em

per ature (F
)

Week of July 2, 2007

E
ne

rg
y 

D
em

an
d 

(G
W

h) Electrical Load

Energy Demand Forecasting
Example



IBM Research - Ireland

© 2014 IBM Corporation

Week of July 2, 2007

E
n

er
gy

 C
on

su
m

pt
io

n 
(M

W
)

Consumption
Temperature

T
em

p eratu re (F
)

T
em

per ature (F
)

Week of February 5, 2007

E
ne

rg
y 

D
em

an
d 

(G
W

h) Electrical Load

Energy Demand Forecasting
Example



IBM Research - Ireland

© 2014 IBM Corporation

Assumption: effect of covariates is additive

Illustrative example:

• xk = (xk
Temperature, xk

TimeOfDay) (covariates)

• yk = fTemperature(xk) + fTimeOfDay(xk)    (transfer functions)              

• Say, xk = (12°C, 08:30 AM)

    →  yk = 0.0 GW + 0.02 GW

T (°C)
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Time of day in 30 min interval

N
or

m
’e

d 
D

em
an

d

Contribution of time of day
on energy consumption

Energy Demand Forecasting
Additive Models
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Energy Demand Forecasting
Additive Models

Demand

Transfer
functions Noise

Basis
functions

Weights

Categorical
condition

Formulation:

Transfer functions have the form:

This includes:
● constant, indicator, linear functions
● cubic B-splines (1- or 2-dimensional)

Covariates:
- Calendar variables
  (time of day, weekday...)
- Weather variables
  (temperature, wind ...)
- Derived features (spatial
  or temporal functionals)
- ... 
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Energy Demand Forecasting
Additive Models

Formulation:

Training:

1) Select covariates, design features

2) Select basis functions (= knot points)

3) Solve Penalized Least Squares problem

    where λ
K
 is determined using Generalized Cross Validation

Linear in basis functions

Penalizer

S. Wood (2006): Generalized Additive Models. An Introduction with R. 
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Energy Demand Forecasting
EDF-IBM NIPS model

Model for 5 years of French national demand (Feb 2006 – April 2011)1

  

Covariates:

• DayType: 1=Sun, 2=Mon, 3=Tue-Wed-Thu, 4=Fri, 5=Sat, 6=Bank holidays

• TimeOfDay: 0, 1, ..., 47 (half-hourly)

• TimeOfYear: 0=Jan 1st, ..., 1=Dec 31st 

• Temperature: spatial average of 63 weather stations

• CloudCover: 0=clear, ..., 8=overcast

• LoadDecrease: activation of load shedding contracts

1A.Ba, M.Sinn, P.Pompey, Y.Goude: Adaptive learning of smoothing splines. Application to electricity load 
forecasting. Proc. Advances in Neural Information Processing Systems (NIPS), 2012
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Energy Demand Forecasting
EDF-IBM NIPS model
Model:

Transfer functions:                                                                  Results:

Trend Lag load Day-type specific daily pattern

Lag temperature 
(accounting for
 thermal inertia)

   TimeOfDay / Temperature    TimeOfYear

1.63% MAPE
20% improvement
  by online learning
Explanation:
  macroeconomic
  trend effect
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Energy Demand
EDF-IBM Simulation platform 
Simulation:

• Massive-scale simulation platform for emulating demand in the future electrical grid2

– 1 year half-hourly data, 35M smart meters

– Aggregation by network topology (with dynamic configurations)
– Changes in customer portfolio

– Distributed renewables (wind, PV)

– Electric vehicle charging

• Built on IBM InfoSphere Streams

2P.Pompey, A.Bondu, Y.Goude, M.Sinn: Massive-Scale Simulation of Electrial Load in Smart Grids using 
Generalized Additive Models. Springer Lecture Notes in Statistics (to appear), 2014.
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Forecasting:

• Statistical approach: Generalized Additive Models (GAMs)

– Accuracy, flexibility, robustness, understandability ...

• Developing GAM operators for IBM InfoSphere Streams

• Online learning:

– Tracking of trends (e.g., in customer portfolio)

– Reducing human intervention
– Incorporating new information

Energy Demand Forecasting 
Online learning

score

learn

score

control

GAMLearner

PMML
PMML = Predictive Models
              Markup Language
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Model parameter
“Kalman gain”

Forecasting error

Precision matrix

Formulation of GAM learning as Recursive Least Squares:

• Adapt model once actual demand becomes available (       →             ) 

• Implementation:

– Forgetting factor                       (discounting past observations)

– Complexity: O(p2) (p = number of spline basis functions)

– Sparse matrix algebra → 1000 tuples per second
– Adaptive regularization

Energy Demand Forecasting 
Online learning
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Stability:

•  Incorporate historical sample information in 

•  Rule of thumb for forgetting factor:

•  Hence, for a time window of 1 year = 365*48 data points:

•  Another potential issue: divergence of 

•  “Blowing-up” of Kalman gain

time window size

Don't forget
during summer what
happened in winter!

Energy Demand Forecasting 
Online learning
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Stability:

•            is the inverse of the sum of discounted matrix terms

 

• Divergence can occur, e.g.,

– if subset of basis functions is (almost) collinear

– if subset of basis functions is (almost) always zero

•  Solution: Adaptive regularizer
– Monitor matrix norm of

– If norm exceeds threshold, then add diagonal matrix to the inverse of  

– Complexity: O(p3) 

Outer product of
spline basis functions

Energy Demand Forecasting 
Online learning
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Learning “from scratch” (initial parameters       all equal to zero):

Energy Demand Forecasting 
Online learning
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Vermont Project
Scope

Source: wikipedia.org
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Vermont Project
Deep Thunder

Weather variables:
- Temperature
- Clouds
- Humidity
- Wind
- Solar radiation
- ...
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Modeling:

• Distributed renewables “behind the meter”

• Forecasting uncertainty

Variable selection & feature extraction:

• Spatial averages of weather variables

• Temporal features (e.g., heat waves)

• Formalization & automatization

Transfer learning:

• How to integrate information from older, lower-resolution data sets?

Transparent analytics:

• GUI which allows users to “drive” analytics withouth in-depth statistical knowledge

Vermont Project
Demand forecasting challenges
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• Smarter Energy Research at IBM

• Energy demand forecasting

– Current practices & future challenges

– Methodology
– Insights from two projects

Thank you!

Conclusions
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