The Case for a Flexible Low-Level Backend for
Software Data Planes

Sean Choi Xiang Long Muhammad Shahbaz
Stanford University Cornell University Princeton University
Skip Booth Andy Keep John Marshall
Cisco Inc. Cisco Inc. Cisco Inc.
Changhoon Kim
Barefoot Networks Inc.
ABSTRACT programs by around 30% compared to naive VPP implemen-

Recent efforts to simplify network data plane programming
focus on providing simple, high-level domain-specific lan-
guages (DSLs). In the case of software switches, data plane
programs are written in these DSLs and then compiled to run
on CPU-based architecture. However, the simplicity of these
DSLs, along with the lack of low-level interfaces exposed
by the software switch, restrict compilers from generating
optimal data plane programs for CPU-based architecture.
In this paper, we argue that increased exposure of low-
level interfaces to a software switch would enable more ef-
fective data plane programs. To demonstrate this, we present
Programmable Vector Packet Processor (PVPP), which adds
programmability to the Vector Packet Processing (VPP)
framework. VPP provides fine-grain access to various low-
level features of a CPU-architecture and offers better perfor-
mance compared to other software switches, such as Open
vSwitch (OVS), that operate at a higher level of abstraction.
However, there is a cost to programming directly using VPP’s
low-level features. The programmer must have specialized
knowledge about the architecture in order to produce an
efficient implementation, resulting in difficulties when op-
timizing the program. PVPP attempts to alleviate this cost
by allowing the compilation of a program written in P4 to
VPP’s internal node-graph representation. Our preliminary
results show that PVPP improves performance of data plane

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
APNET ’17, August 3—4, 2017, Hong Kong, China

© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.

ACM ISBN 978-1-4503-5244-4/17/08...$15.00
https://doi.org/10.1145/3106989.3107000

tations.

CCS CONCEPTS

« Networks — Programmable networks;

KEYWORDS

Programmable Data Plane, Software Switch, P4, Vector
Packet Processing (VPP), FD.io, PVPP

ACM Reference format:

Sean Choi, Xiang Long, Muhammad Shahbaz, Skip Booth, Andy
Keep, John Marshall, and Changhoon Kim. 2017. The Case for a Flex-
ible Low-Level Backend for Software Data Planes. In Proceedings of
APNET 17, Hong Kong, China, August 3—4, 2017, 7 pages.
https://doi.org/10.1145/3106989.3107000

1 INTRODUCTION

There is an ongoing interest in network community for in-
corporating more programmability into the data plane. One
particular area of interest is to improve methods for program-
ming software switches, such as Open vSwitch (OVS) [8],
that are widely used in the industry. The main use case of
a software switch is in hypervisors, where network traffic
is routed to and from virtual machines that the hypervisors
manage. To program these software switches, protocol devel-
opers write network programs in domain-specific languages
(DSLs), such as P4 [6], specifically designed to easily express
packet processing logic. A target-specific compiler generates
the final instructions executed by the software switch using
the input program. PISCES [10], a P4 programmable version
of OVS, is a good example of a switch that adopts this model
of incorporating programmability.

However, we argue that if a compiler has fine-grain control
over program instructions in the target software switch than
what is available today, performance benefits can be gained
for network programs. While existing software switches
are designed and hand-tuned to support a particular set of
features, they expose only a limited set of interfaces (e.g.,

https://doi.org/10.1145/3106989.3107000
https://doi.org/10.1145/3106989.3107000

APNET ’17, August 3-4, 2017, Hong Kong, China

OpenFlow [5]) for external entities (e.g., controllers) to mod-
ify or fine-tune their functionality. This corresponds to the
fact that, given their nature, DSLs are highly expressible
in specifying packet forwarding logic but expressibility is
limited for fine-tuning the target-specific parameters of the
architecture. Thus, it is very difficult for compilers to spec-
ify low-level behaviors, such as defining memory and CPU
cache access patterns or instruction parallelization behaviors
in the software switch.

The goal of our paper is to make the case that improve-
ments in performance, flexibility, and feature support are
attainable if the target switch exposes more low-level inter-
faces. We offer the following contributions towards substan-
tiating this claim:

e Review of the Vector Packet Processor (VPP) [11], a
software switch that expose low-level interfaces. We
explain how VPP is able to obtain better performance
against competing switches, such as OVS, with the
access to the low-level architecture. (Section 2).

o The design and implementation of Programmable Vec-
tor Packet Processor (PVPP), a P4 programmable soft-
ware switch built using VPP framework. (Section 3).

e Compiler optimizations of PVPP by exploiting the low-
level interfaces that VPP exposes. (Section 4).

o Evaluation demonstrating the increased performance
of PVPP programs as more optimizations are made. We
also present preliminary results comparing the perfor-
mance of PVPP against the existing packet-forwarding
features in VPP [11] and PISCES [10]. (Section 5).

2 VPP: A FLEXIBLE SOFTWARE SWITCH
TARGET

We begin by giving an overview of the Vector Packet Pro-
cessing (VPP) framework, the software switch that PVPP is
built upon. The VPP platform [11] is an extensible packet
processing framework that provides a fully-featured, highly-
optimized forwarding engine designed to run on general pur-
pose, commodity CPUs. The VPP platform runs completely
in user-space by leveraging DPDK device drivers [2].

In VPP’s vector processing model, the forwarding path is
decomposed into a collection of processing nodes that are
organized as a directed graph. Each node has the responsi-
bility of processing an entire vector of packets, making local
modifications and deciding the next node for every packet in
the vector. Vector of packets are formed at the input nodes of
the graph by processing as many available packets from the
RX driver as possible. The main reason for having each node
work on a vector of packets at a time is to optimize i-cache
and d-cache locality across the entire vector, minimizing the
number of expensive cache misses that may occur. In addi-
tion, as each node traverses the vector, the node will prefetch

S. Choi et al.

the data for the next packet in the vector, thereby hiding the
memory latency and associated read-data dependencies.

The ability to split packet processing into a graph of nodes
consequently enables pipelined execution for VPP. On multi-
core systems, processing performance can improve by allow-
ing multiple threads to exercise the same node in the graph.
Alternatively, the graph can split across CPU cores, forming
a threaded-pipeline model.

An implementation of a network program in VPP consists
of one or more nodes that process vectors of packets, where
each node contains the code for a logical stage in the program.
Since there is no boundary restriction on logic contained
in each node, there is a high variability in deciding how a
program is divided into VPP nodes. Each implementation
chooses the division that optimizes some parameter, such as
cache locality.

The current VPP codebase contains a set of highly-efficient
hand-tuned implementations of common network protocols
and features. These correspond to a collection of packet pro-
cessing nodes that are loaded by default as the standard VPP
installation starts up. In these implementations, a distinctive
pattern, typical to most nodes, is the unrolling of instruc-
tions to process multiple packets in a single iteration of the
vector-traversal loop. Packets processed in the same itera-
tion are operated on near-simultaneously by interleaving
the instructions relevant to each packet before moving on
to the next instruction. This design is to maximize the uti-
lization of CPU registers, since each packet is only likely
to require the use of part of the registers available on the
processor. Memory locality and instruction cache hits are
also improved, as processing multiple packets in parallel are
very likely to perform the same set of instructions and refer
to similar memory locations.

VPP also supports adding custom packet processing logic
through the use of VPP plugins. VPP plugins provide modu-
larity and extensibility in the packet processing pipeline by
allowing users to add new nodes with custom packet pro-
cessing logic. A plugin has the full freedom to introduce new
nodes and rearrange or delete existing nodes in the graph. A
plugin is even able to substitute nodes responsible for packet
input and output from the device, thereby potentially sup-
planting the entire processing graph with nodes introduced
by the plugin. VPP plugins are typically developed and com-
piled separately from each other and the core VPP code. An
example of VPP graph structure with is shown in Figure 1.

VPP has demonstrated outstanding performance in the
software switch class with its existing network implemen-
tations. In particular, it has achieved line-rate performance
when running common forwarding programs on commod-
ity x86 CPUs [13]. It also attains better performance com-
parisons against other software switches such as OVS [12].
The efficiencies that make these results possible are only

The Case for a Flexible Low-Level Backend for Software Data Planes

Packet Vector

pdk—input

arp-input ip4-input

ip6-rewrite-transmit

ip6-input

table 1 table 2 ip6-lookup

table j

PVPP Plugin Nodes VPP Static Nodes

dpdk-output

Figure 1: VPP node graph structure with PVPP plugin.

through manipulating the underlying low-level architecture
in ways such as processing multiple packets simultaneously
in a single packet vector iteration. The cost of operating on
packets at low-level, however, is that it is difficult to pro-
duce correct implementations of packet forwarding logic. A
programmer who wishes to produce efficient implementa-
tions in VPP must possess specialized knowledge in the fields
of networks, operating systems, memory management and
compiler optimization techniques, among others. The hand-
written implementations, such as those that currently exist
in the VPP code base, are difficult to evolve as the underlying
processor evolves. An increase in number of registers avail-
able, for example, could potentially improve performance,
but existing code that is hand-tuned for a set number of
registers must also be retrofitted manually in order to take
advantage of this change.

Ideally, we would like to automatically leverage the low-
level interfaces available in VPP through the use of a compiler.
This would show that it is possible for a software switch to
expose its underlying architecture, bringing performance
and other benefits, while not requiring the programmer to
possess the knowledge need for an efficient implementation.
To achieve this goal, we present our work-in-progress, PVPP.

3 PVPP ARCHITECTURE

We now discuss PVPP’s architecture in detail. We first discuss
methods for embedding P4 functionality as a VPP plugin.
Then, we discuss the design choices and optimizations imple-
mented in P4-to-PVPP compiler that generates the plugin.

3.1 Separate Compilation via VPP Plugin

PVPP integrates an input P4 program into VPP as a plugin.
Embedding the entire P4-related logic into a plugin has many
advantages. One major advantage is that compiling a new P4

APNET ’17, August 3-4, 2017, Hong Kong, China

pa VPP Plugin
Program Cog
Templates
i
BMv2 BMv2 PVPP
Fcr:;nti-leenr::l -+ Mid-end [Back-end Jcsoor:lp—iPl\lePrP Plugin
P Compiler Compiler Directory

L P4 Compiler (P4C)]

Figure 2: PVPP compiler architecture, consisting of
two parts: P4C and JSON to PVPP.

program as a different VPP plugin does not require recompi-
lation of the whole VPP framework, as plugins are designed
to compile and load separately. This is a clear advantage
over the approach taken by PISCES [10]. PISCES requires
recompilation of the entire OVS codebase for each new P4
program, since the code generated by the P4-to-OVS com-
piler is linked statically and compiled with the whole OVS
baseline source code. Another advantage is in the distribu-
tion of compiled code to multiple target systems. A plugin is
compiled only once before it is distributed to different VPP
targets, even if those targets are running different versions
of VPP or configurations.

3.2 P4-to-PVPP Compiler

The compilation of P4-to-PVPP code is a two step process.
The first step runs the open-source P4 compiler (P4C) [3],
which takes the input P4 program and generates an inter-
mediate representation in JavaScript Object Notation (JSON)
format. The overall structure of P4C is shown in the left half
of Figure 2. In the second step, we feed this intermediate
representation to our JSON-to-VPP compiler to generate a
customized VPP plugin with single-node or multiple-node
implementations. The single-node implementation creates
a plugin with only one node that performs the entire parse,
match, and action logic defined in the input P4 program. In
contrast, the multiple-node implementation creates a plugin
with a set of nodes that are each responsible for a subset of
the parse, match, and action logic. In our initial multiple-node
implementation, PVPP creates a separate node correspond-
ing to each P4 table, where the node performs match and
actions for that table. The overall process of compiling JSON
to PVPP is shown in the right half of Figure 2.

Stage 1: P4 to JSON.. P4C first transforms the input P4
program into an internal intermediate representation [4] by
running it through the front-end compiler of P4C. The front-
end compiler is target-independent and is mainly responsible
for P4 program validation, type checking, and performing
target-independent optimizations. Given the intermediate
output, P4C runs it through the target-dependent mid-end

APNET ’17, August 3-4, 2017, Hong Kong, China

and back-end to perform optimizations driven by target-
dependent policies and generates an optimized final repre-
sentation. This final representation can be in various forms,
such as code snippets or data objects; in PVPP’s case, JSON
output is generated.

Stage 2: JSON to PVPP.. Given the JSON output from P4C,
the custom Python-based compiler generates all the neces-
sary C code to build a VPP plugin. Given the JSON represen-
tation, we utilize the Cog [1] template engine to read a set
of template files to find specially marked sections used to
generate code, and write the final output to a file. The output
is merged with other static files to build a VPP plugin.

4 PVPP COMPILER OPTIMIZATIONS

We discuss the compiler optimizations that exploit the low-
level details that are accessible in VPP plugins.

Reducing metadata access and pointer dereferences. One
of the most important compiler optimization is to imple-
ment an efficient memory management scheme. To do so,
the compiled code is designed so that memory dereferences
are eliminated whenever possible. One place where this is
evident is in the storage of metadata. A good approach we
found to optimize metadata storages is to flatten and merge
all P4 metadata structures into a single C structure. Although
this is wasteful in space, as not all types of metadata will
be valid for every possible path of the packet processing
pipeline, we found significant performance improvements
compared to handling metadata at multiple locations that a
more direct translation of P4 declarations would produce.

Similarly, PVPP represents all action-table relationships
as pre-computed pointers. PVPP determines the next table
by the action taken according to the matched rule of the
current table, it would know in advance the pointers to tables
and actions at compile time. Therefore, we can store the
relevant pointers in a rule at the time it is inserted into a
table, reducing the amount of pointer arithmetic needed
during rule matching stage.

Reducing number of tables and metadata. Naively, P4C pro-
duces a final JSON output containing a number of redundant
tables and metadata. For example, P4C generates a redundant
table with no match rule for performing interface output se-
lection. Such redundant tables result in extraneous loops of
table- and action-lookups for our single-node implementa-
tion, and they result in iterations through the extraneous
set of nodes in the multiple-node implementation. Thus, we
add an optimization to remove redundant tables and meta-
data that do not serve any VPP-specific function in the JSON
output, prior to feeding the output to the final stage of the
compiler.

S. Choi et al.
PVPP
MoonGen |, %3 166x3 | MoonGen
Sender/Receiver t Sender/Receiver
| oeox |
M1 M2 M3

Figure 3: Topology of our experimental setup.

Multiple-node pipeline implementation. The most unique
characteristic of the VPP framework is that packets traverse
through a graph of processing nodes. Unfortunately, finding
the best division of tasks in a packet processing pipeline into
a set of nodes in a directed graph is non trivial. We add an
optimization to allow users to annotate the P4 program to
specify whether they want to create a plugin with a single
node or multiple nodes. For a match-action pipeline defined
by a P4 program, the obvious division we implement is to
separate each table into different nodes. However, evalu-
ation shows that multiple-node implementation performs
slightly worse than the single-node implementation for our
benchmark programs. We discuss the reasons behind this
performance overhead and other methods for optimizing the
division of tasks in the next section.

5 EVALUATION

We now discuss preliminary performance and scalability
results using our benchmark application. Then, we discuss
the comparison results between PVPP and PISCES.

5.1 Experimental Setup

Figure 3 shows the topology of our setup for evaluating the
forwarding performance of PVPP. We use three PowerEdge
R730xd servers with two 8-core, 16-thread Intel Xeon E5-
2640 v3 2.6GHz CPUs running the Proxmox Virtual Environ-
ment [9] Kernel version 4.2.6-1-pve, an open-source server
virtualization platform that uses virtual switches to connect
VMs. These machines are equipped with one dual-port and
one quad-port Intel X710 10 Gbps NIC. We configure two
of these machines, namely M1 and M3, with MoonGen [7],
for sending and receiving 64-byte packets, respectively, at
14.88 million packets per second (Mpps). We connect these
six interfaces to a third machine, M2, running PVPP, causing
M2 to process a maximum of 60 Gbps of traffic.

5.2 Baseline End-to-End Performance

We first measure the throughput of our benchmark applica-
tion to establish the baseline performance with no optimiza-
tion. The overview of the application is shown in Figure 4.
In this application, the packets received at ingress are pro-
cessed through PVPP’s parser, allocating memory addresses
for the IP and Ethernet headers. Then, the IPv4_match table

The Case for a Flexible Low-Level Backend for Software Data Planes

parse IPv4_match Destination MAC Source MAC
—» Ethernet/ —¥| Ma.tch: ip.dstAddr | MaFch: lp.dsFAddr | MaFch: egress_port |_,,
IPVa Action: set_nhop Action: rewrite_dmac Action: set_dmac

Vi drop drop drop

Figure 4: Control flow of our benchmark application.
White boxes correspond to parsers and grey boxes cor-
respond to tables.

matches on the destination IP address of the packet, performs
a TTL decrement, and writes the next hop IP address and
the egress port based on the installed rules. The packet then
goes through two separate tables rewriting the destination
and source MAC address. Finally, the packet is sent out to
the interface connected to M3. First line of Table 1 shows the
baseline throughput for the given benchmark application.

5.3 Optimized End-to-End Performance

We now show the effects of the optimizations that we dis-
cussed in Section 4. The measurements are obtained from
running the same benchmark application described in Sec-
tion 5.2. Table 1 shows the incremental improvement in
throughput for each of the optimizations. We see the greatest
improvements when reducing the number of match-action
tables, which has a similar effect of removing a processing
node in the multiple-node implementation. Reducing the
number of pointer dereferences provides further improve-
ments, since pointer dereferencing requires a large number
of CPU cycles.

One interesting observation to emphasize is the multiple
packet processing optimization for the single-node imple-
mentation. Recall in Section 2, we observed that VPP nodes
often processed multiple packets in parallel within a single
vector traversal loop iteration. We implemented the same
optimization, such that the compiler is able to generate a
target network program that automatically unrolls the loop
and process two packets during a single iteration. Interest-
ingly, this optimization in the single-node implementation
did not show any improvement. We hypothesize that this is
the result of a long series of operations that a packet must
go through when the entire pipeline is fit into one node,
thus requiring a large number of registers for processing
each packet. Also, the single-node implementation cannot
fully reap the benefits of memory locality or i-cache hits
because the packets have to be processed through the entire
pipeline—straining the cache—before processing the next
packet.

With all the optimizations, PVPP’s throughput is 10.209
Mpps for the single-node implementation and 9.197 Mpps
for the multiple-node implementation. The throughput of
vanilla VPP for the equivalent application is 10.748 Mpps,

APNET ’17, August 3-4, 2017, Hong Kong, China

M Single Node E Multiple Node

L —
é 8
T
c
o
O 6
L7
%]
[3
Q 4
E I I
S
© 2
a

0

64 128 192 256
Packet Size (Bytes)
(a) Forwarding performance in Mpps.
HSingle Node @ Multiple Node

10000

9000 T

8000
«
Q 7000
e}
S 6000
é 5000
<
% 4000
o
= 3000
=

2000

1000

0
64 12

8 192 256
Packet Size (Bytes)

(b) Forwarding performance in Mbps.

W Single Node B Multiple Node

150

100

50

0
64 128

Packet Size (Bytes)

Average CPU Cylces per Packet

192 256

(c) Number of CPU cycles consumed per packet.

Figure 5: Forwarding performance of PVPP for the
benchmark application across one 10Gbps interface.

which is 5.25% higher than the single-node implementation
and 16.9% higher than the multiple-node implementation.
Figure 5 shows the detailed end-to-end performance of op-
timized PVPP for our benchmark application. Note that the
measurement for CPU cycles only includes the cycles that
were spent on the packet processing and does not include
the cycles spent for DPDK interactions and packet output.
The experiment shows an overhead of about 10% for both
the Mpps and Mbps measurements for a 64-byte packet and

APNET ’17, August 3-4, 2017, Hong Kong, China

L Single-Node Single-Node | Multiple-Node Multiple-Node
Optimization
(Mpps) Increment (%) (Mpps) Increment (%)
Unoptimized 7.860 N/A 7.051 N/A
Removing Redundant Tables 9.248 +1.388 (+17.7%) 8.381 +1.330 (+18.9%)
Reducing Metadata Access 9.508 +0.260 (+2.81%) 8.501 +0.120 (+1.43%)
Multiple Packet Processing 9.508 +0.000 (+0.00%) 8.800 +0.299 (+3.52%)
Reducing Pointer Dereferences 10.008 +0.500 (+5.26%) 9.023 +0.223 (+2.53%)
Caching Interface Mapping 10.209 +0.201 (+2.01%) 9.197 +0.174 (+1.93%)

Table 1: Incremental improvements of each optimizations for PVPP

B Single Node E Multiple Node

20
) I
0 .
1 2 3 4 5

Number of CPU Cores

Aggregate Packets per Second (Millions)

Figure 6: Effect of the number of cores used for PVPP
to throughput (Mbps). Effect on Mpps is the same.
Mpps = Mbps/(8 * 64).

about 30% overhead for the number of CPU cycles spent
across all the packet sizes for the multiple-node implementa-
tion versus the single-node implementation. This overhead
is mainly the result of additional VPP related operations for
moving packets between different nodes.

Another interesting observation is the throughput versus
CPU cycles. The measurements show that the increase in
the CPU cycles spent per packet with the larger packets are
greater for multiple-node implementation versus single-node
implementation. However, the throughput measurements of
two implementations counter-intuitively show a comparable
increase. This result is mainly due to the fact that PVPP
becomes I/O-bound rather than CPU-bound for larger packet
sizes, thus the increase in CPU cycles spent are not reflected
in the throughput measurements.

5.4 Multi-Core Performance

We also measure the throughput of our benchmark applica-
tion while varying the number of CPU cores and the number
of input interfaces used by PVPP, to quantify the scalability
of throughput versus the number of CPUs used. Only one
CPU processes the packet from one designated interface.

S. Choi et al.

mPVPP

Figure 7: Throughput comparison between the single-

node implementation of PVPP and PISCES with and
without microflow cache.

B PISCES (with Microflow) B PISCES (without Microflow)

128 192 256
Packet Size (Bytes)

Throughput (Mbps)

PISCES PISCES
CPU Cycles PVPP (with microflow) (no microflow)
End-to-End 132.9 100.6 166.0

Table 2: Average number of CPU cycles consumed for
processing a 64-byte packet in PVPP and PISCES with
and without microflow cache.

For this experiment, we started bidirectional traffic be-
tween the three interface pairs, generating 64-byte sized
packets at the maximum rate of 60 Gbps. This results in pack-
ets flowing through six ingress ports that PVPP must process.
The procedure of adding an interface accompanies launch-
ing another VPP thread on a new CPU core that processes
the packets arriving at the newly added ingress interface.
Figure 6 shows the relationship between the performance
of PVPP with varying number of CPU cores. We observe
that throughput increases linearly with the addition of CPU
cores.

The Case for a Flexible Low-Level Backend for Software Data Planes

5.5 Comparing PVPP and PISCES

We compare the forwarding performance between PVPP and
PISCES [10], with and without micro-flow cache turned on.
PISCES underlying switch target, OVS, relies on caches to
achieve good forwarding performance. The primary OVS
cache is its mega-flow cache. With the mega-flow cache,
OVS can combine the results of tables that a packet visits in
the match-action pipeline into a single flow rule by (lazily)
computing the cross-product of the tables [8]. This rule is
then installed in the mega-flow cache. Mega-flow cache wild-
card matches on headers fields and, hence, can still have a
significant toll on performance. Thus, OVS also includes a
micro-flow cache, an exact-match cache, which is a maps
from a packet’s five-tuple to a mega-flow cache entry.

For comparison, we used a simple (switch) program that
matches on the destination MAC and sends the packet to the
appropriate egress interface. We send various sized packets
to all six interfaces using six CPU cores, each pinned to
a distinct ingress interface, resulting in a total of 60 Gbps
traffic.

Figure 7 shows the comparisons. PVPP performs com-
parably with PISCES with micro-flow cache enabled, and
better with micro-flow cache disabled. Table 2 shows the
comparisons of end-to-end CPU cycles with different cache
configurations. A caveat to note is that this is not an exact
comparison, because of the difference in implementations of
the two switches. Nevertheless, CPU cycles spent per packet
are comparable, confirming the similarities in throughputs.

6 DISCUSSION AND FUTURE WORK

PVPP presents a promising argument that low-level inter-
faces available in a software switch can be utilized to gen-
erate a more efficient P4-programmed switch. In order to
further strengthen the argument and to provide a more func-
tional P4 programmable software switch, we are planning to
complement our work with the following action items.

Automated and optimal node splits. Current scheme for
generating multiple nodes for a PVPP plugin is to let the
compiler split a P4 program by creating a node for each P4
table. Our evaluation shows this method can lead to worse
performance. As part of our future work, we intend to create
schemes using analysis of input P4 programs to generate
more intelligent node splits for better performance.

Handling multiple packets. As mentioned in Sections 2
and 5, processing two packets per loop iteration is often

APNET ’17, August 3-4, 2017, Hong Kong, China

beneficial. We believe that further unrolling may yield better
performance, particularly for match-action tables with a
small number of instructions. PVPP provides the opportunity

to explore this space by developing a P4 program analyzer
that determines the optimal number of packets to process in

parallel.

Extending P4 feature support. PVPP currently lacks some
features that P4 supports such as data plane states (i.e. regis-
ters, counters or meters). One advantage of VPP is the lack
of OVS-like cache structures that enables relatively straight-
forward implementation of the data plane states. One pos-
sible design suggestion to implement data plane states in
PVPP is to compile all match-action tables that refer the
stateful features into a single node, with the state allocated
and referenced from only within that node. This approach
avoids adding costly locks that are needed if more than one
node references the same state. However, supporting parallel
accesses on the same states across multiple nodes require a
more sophisticated design to ensure correct stateful opera-
tions.

REFERENCES

[1] Cog. http://nedbatchelder.com/code/cog/.

[2] DPDK: Data Plane Development Kit. http://dpdk.org.

[3] P4 Compiler (P4C). https://github.com/p4lang/p4c-bm.

[4] P4 Intermediate Representation. https://github.com/p4lang/p4c/.

[5] A. Bianco, R. Birke, L. Giraudo, and M. Palacin. OpenFlow Switch-

ing: Data Plane Performance. In IEEE International Conference on

Communications (ICC), 2010.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.

P4 Programming Protocol-independent Packet Processors. ACM SIG-

COMM Computer Communication Review (CCR), July 2014.

[7] P. Emmerich, S. Gallenmiiller, D. Raumer, F. Wohlfart, and G. Carle.

MoonGen: A Scriptable High-Speed Packet Generator. In ACM The

Internet Measurement Conference (IMC), 2015.

B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou,]. Rajahalme,

J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado. The

Design and Implementation of Open vSwitch. In USENIX Conference

on Networked Systems Design and Implementation (NSDI), 2015.

[9] Proxmox Virtual Environment. https://www.proxmox.com.

[10] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and
J. Rexford. Pisces: A programmable, protocol-independent software
switch. In ACM SIGCOMM, 2016.

[11] Vector Packet Processing (VPP) Platform. https://fd.io.

[12] Validating Cisco’s NFV Infrastructure Pt. 1. http:
//www lightreading.com/nfv/nfv-tests-and-trials/
validating- ciscos-nfv-infrastructure-pt-1/d/d-id/718684.

[13] VPP Performance Tests. https://docs.fd.io/csit/rls1701/report/vpp_
performance_tests/.

G

—

8

[t

http://nedbatchelder.com/code/cog/
http://dpdk.org
https://github.com/p4lang/p4c-bm
https://github.com/p4lang/p4c/
https://www.proxmox.com
https://fd.io
http://www.lightreading.com/nfv/nfv-tests-and-trials/validating-ciscos-nfv-infrastructure-pt-1/d/d-id/718684
http://www.lightreading.com/nfv/nfv-tests-and-trials/validating-ciscos-nfv-infrastructure-pt-1/d/d-id/718684
http://www.lightreading.com/nfv/nfv-tests-and-trials/validating-ciscos-nfv-infrastructure-pt-1/d/d-id/718684
https://docs.fd.io/csit/rls1701/report/vpp_performance_tests/
https://docs.fd.io/csit/rls1701/report/vpp_performance_tests/

	Abstract
	1 Introduction
	2 VPP: A Flexible Software Switch Target
	3 PVPP Architecture
	3.1 Separate Compilation via VPP Plugin
	3.2 P4-to-PVPP Compiler

	4 PVPP Compiler Optimizations
	5 Evaluation
	5.1 Experimental Setup
	5.2 Baseline End-to-End Performance
	5.3 Optimized End-to-End Performance
	5.4 Multi-Core Performance
	5.5 Comparing PVPP and PISCES

	6 Discussion and Future Work
	References

