
Predicting Network Futures with Plankton

Santhosh Prabhu, Ali Kheradmand, Brighten Godfrey, Matthew Caesar

University of Illinois at Urbana-Champaign

Networks are
alive!

● Responding to external events

● Dynamic data plane elements

● Non-determinism

○ Protocols such as BGP

○ Inter-protocol interactions

○ Environment (failures etc)

● Correctness is more than just reachability

○ Protocol convergence

○ Temporal behavior

“Traffic can hit any IDS, but always the same one”

Formal Network Verification - The state of the art
Dat

a
pla

ne
ve

rif
ic

at
io

n(V
er

iF
lo

w
, H

SA
 …

)

● Data plane not required
● Difficult to check many

environments

● Detect latent problems
triggered by failures

● Cannot handle tricky BGP
configs

● Some basic temporal
properties

● No configuration
analysis

● Analyses a single
dataplane

● Useful, but little time
to respond

Ver
ifi

ca
tio

n w
ith

 d
yn

am
ic

 d
at

a
pla

nes
 (V

M
N)

Dat
a

pla
ne

ge
ner

at
io

n fr
om

 co
nfig

, w
hat

 -
if

te
st

s

(E
RA, B

at
fis

h)

Anal
yz

e
m

ulti
ple

 to
pol

og
ie

s(
ARC)

BGP Wedgies - A case study
AS 3

AS 2

AS 4

AS 1

Peer
Provider

Peer

Provider

Provider
Customer

Customer

Customer

AS 3

AS 2

AS 4

AS 1

Ideal ConvergenceRelationships

AS 3

AS 2

AS 4

AS 1

Non-Ideal
Convergence

● Data plane analysis can detect the problem only after it occurs

● Topology in both cases identical, so today’s configuration analysis tools cannot predict the violation

● Requires the verification platform to model failures, non-determinism etc

Plankton - verify the network system
● First verification platform capable of analysing non-deterministic

evolutionary paths of the network.

● Performs exhaustive exploration of the control plane, including external
events. Uses a dataplane verifier as an oracle.

● Verify not only reachability properties but also temporal properties including
protocol convergence.

● Successfully found BGP wedgies, non-convergence, non-deterministic
reachability violations etc.

Design Overview

● Per - Equivalence Class modeling
● Model the control plane and the environment as a

non-deterministic finite state program
● Explicit-state model checker to explore the network

program
● Data plane verifier to evaluate predicates over the data

plane states generated
● Specify temporal properties in the model checker over

these predicates

Network
Model

Protocol
Model

Config

Policy
Optimizations

Model
Checker

Data
plane

verifier

Verify/Counterexample

Administrator

Single Equivalence Class Modeling
Design

Explicit State Model Checking

Network Model
Design

Data plane verifier

Partial Order Reduction
Optimizations

Cone-of-Influence Reduction

A

A

B

B

Need to verify only
A → B!

Prototype Implementation

● BGP and OSPF

● Promela Modeling Language

● SPIN Model Checker

● VeriFlow Dataplane Verifier

inline runProtocols()
{
 d_step {
 needsExecution[PT_BGP]=true;
 needsExecution[PT_OSPF]=true;
 }
 do
 :: needsExecution[PT_BGP] ->
 bgp();

 :: needsExecution[PT_OSPF] ->
 ospf();

 :: else->break;
 od

progress:

 c_code {
 Pinit->assertion=assertionCheck();
 }

 assert(assertion);

}

Evaluation

● BGP convergence in known networks

● Wedgies - Violations due to failures/race
conditions

● Device sequencing in data centers

BAD GADGET: Non-converging BGP config

BGP on a Fat Tree

Correctness

Correct results every time, but not always as expected!

Evaluation

● Data centers running BGP

● Device sequencing policy

● Time/memory taken by the search to
find a violation

]

Scalability

Evaluation

Scalability
● Real-world BGP relationships

(CAIDA)

● Time to check wedgies for one AS

Bitstate
Hashing

Use a bloom filter to track

explored states

(0.99 ≤ coverage ≤ 1.0)

Experiment
Without
bitstate
hashing

With
bitstate
hashing

125 Node DC (Worst Case) 347.5 MB 35.4 MB

180 Node DC (Worst Case) 870.3 MB 69 MB

245 Node DC (Worst Case) 2211.2 MB 121.1 MB

CAIDA Wedgie (Avg Case) 135.6 MB 23.6 MB

Effect of Bitstate Hashing on Memory Overhead

Summary and Future Work
1. Explicit state exploration with real-time data plane verification to verify temporal and

reachability policies

2. Captures violations due to evolution of the network

3. Scalable to networks the size of real-world data centers

4. Ongoing work on better methods for Partial Order Reduction, Cone of Influence

Reduction etc

5. Switch to symbolic exploration - Need dataplane verifiers that operate on multiple

dataplane states simultaneously

6. Other techniques to improve scalability - heuristic search, iterative deepening etc

Thank you!

Questions?

