Towards Fine-Grained, High-Coverage Internet Monitoring at Scale

Hongyu Wu1, Qi Ling2, Penghui Mi3, Chaoyang Ji3, Yinliang Hu3, Yibo Pi1

1Shanghai Jiao Tong University
2University of Michigan
3Huawei Cloud Computing Technologies Co., Ltd.
Public Internet: Bottleneck of Cloud Services

- Data Center
- Routers
- End User
- Bottleneck
- Public Internet
Monitoring public Internet is crucial
Challenge of Internet Monitoring

Large overhead

/8 network
Challenge of Internet Monitoring

How to efficiently achieve large-scale Internet monitoring?
- Two basic assumptions

1. **Similarity assumption**: Clients in the same /24 have similar paths
 - Only representative in each /24 needs to probed, reducing probing overhead

2. **Coverage assumption**: Tracking the performance to each /24 suffices for full-coverage monitoring

Both assumptions are challenged by the increasing prevalence of load balancing
Paths to addresses in the same /24 could be very different due to load balancing
Probing path to only representatives of /24s would leave many links uncovered
Methodology

Ground truth: all visible links

Use D-Miner [NSDI’20] to find all visible links

Flow paths

Modify Zmap to find the flow path from vantage points to each end user

Simulation

- Simulate real-world downstream traffic from DCs to clients
- Evaluate current practice against ground truth

Evaluate current practice against ground truth
VP and Target Selection

BABA: Beijing
AMZN: Tokyo
BABA&AMZN: Sydney
BABA&AMZN: Frankfurt
BABA&AMZN: Silicon Valley
AMZN: São Paulo
AMZN: Cape Town
BABA: Beijing
AMZN: Cape Town
BABA&AMZN: Sydney
VP and Target Selection

/8 network covers most IP addresses in the country where DC is located.
Similarity assumption: Clients in the same /24 have similar paths

Path difference = \frac{(|s_A \cup s_B| - |s_A \cap s_B|)}{(|s_A| + |s_B|)}

Path difference = \frac{(3 - 1)}{(2 + 2)} = 0.5
(discard last-hop link)
Evaluating Similarity Assumption of Current Practices

I24 Network

Amazon

<table>
<thead>
<tr>
<th>CDF</th>
<th>Path difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

Alibaba

<table>
<thead>
<tr>
<th>CDF</th>
<th>Path difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

x.x.x.1 x.x.x.2 x.x.x.(1+d)
Evaluating Similarity Assumption of Current Practices

Similarity assumption fails: The representative fails to indicate performance of entire /24
Evaluating Coverage Assumption of Current Practices

Current Practice: Selecting .1 addr of every /24 as representative

Link coverage = \(\frac{\text{Covered links}}{\text{Total links}} \)
Evaluating Coverage Assumption of Current Practices

Current Practice: Selecting .1 addr of every /24 as representative

Coverage assumption fails: Current practices leave 70% of links unwatched

Link coverage = \frac{#\text{Covered links}}{#\text{Total links}}
Evaluating Coverage Assumption of Current Practices

Current Practice: Selecting .1 addr of every /24 as representative

Events occurring to 70% of links will not be observed by current practices

Link coverage = \frac{\#Total\ links}{\text{Total links}}

Then, how to improve link coverage?
Traditional wisdom to boost link coverage

Traditional wisdom: Increase the granularity of monitoring.
Traditional wisdom to boost link coverage

Traditional wisdom: Increase the granularity of monitoring.

Boosting link coverage by increasing granularity is not scalable.
By monitoring end-hosts A, C, E, we can coverage all visible links.
Why Our End-to-End Approach is More Scalable?

Normalized link count = \(\frac{\text{# Total links}}{\text{#/24s}} \)

Links scale much slower than network size
Why Our End-to-End Approach is More Scalable?

Normalized link count = \(\frac{\# \text{ Total links}}{\#/24s} \)

Can we achieve high link coverage by carefully selecting targets?
A Greedy End-to-End Approach

Always choose targets contribute most new links

Selected Targets

Targets

Link Set

\[\text{max new links}\]

\[\text{discard duplications}\]
Evaluating the Greedy End-to-End Approach

- More difficult to achieve full coverage for larger network
- For /8, monitoring x links only requires probing 0.6^*x targets
Trade-off between Coverage & Overhead

- Only the first 30% of overhead can discover >1 new links

- 1/3 overhead for 80% coverage
Takeaways

- Current practices fail to monitor the changes of a majority of links in the Internet, leaving critical links unwatched.

- High link coverage can be achieved by carefully selecting probing targets with reasonable overhead.

- Our dataset is published at https://github.com/SJTU-NMS-Lab/APNet23
Thank You!

Q & A
Future Directions

- IPv6 exploration

- Fast start without long-time data collection

- Real-time detection on link failure/congestion
Internet Monitoring: Passive vs Active

Passive Measurements

Active Measurements

Our Work
Our Contributions

- Evaluate the link coverage of two rule-of-thumb practices for scalable Internet measurement from a cloud-centric view

- Evaluate the predictability of performance for client flows to the same /24s

- Propose to achieve high-coverage monitoring with an end-to-end approach

- Estimate the overhead for high-coverage monitoring
- Tool: D-Miner [Vermeulen et al, NSDI’ 20]

- Divide /8 into /16s

- Send two back-to-back scans at 100,000pps

- Goal: Find ALL visible links at confidence level of 99%(95% for one scan)
Dataset

<table>
<thead>
<tr>
<th>Ground Truth</th>
<th>Random Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divide /8 into /16s</td>
<td>Setup</td>
</tr>
<tr>
<td>Send two back-to-back scans at 100,000pps</td>
<td>- src port: 80</td>
</tr>
<tr>
<td>Goal: Find ALL visible links at confidence level</td>
<td>- dest port: Random</td>
</tr>
<tr>
<td>of 99%(95% for one scan)</td>
<td>- TTL: 1~32</td>
</tr>
<tr>
<td></td>
<td>Goal: Simulate the downstream traffic flows from DCs to clients</td>
</tr>
<tr>
<td>Ground Truth</td>
<td>Random Flow</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Divide /8 into /16s</td>
<td>Setup</td>
</tr>
<tr>
<td>Send two back-to-back scans at 100,000pps</td>
<td>- src port: 80</td>
</tr>
<tr>
<td>Goal: Find ALL visible links at confidence level of 99% (95% for one scan)</td>
<td>- dest port: Random</td>
</tr>
<tr>
<td></td>
<td>- TTL: 1~32</td>
</tr>
<tr>
<td></td>
<td>Goal: Simulate the downstream traffic flows from DCs to clients</td>
</tr>
</tbody>
</table>
Uncovered links cause poor visibility to the Internet

What is the link coverage of current practices under load balancing?

- Cloud
- /24 Network
 - End User A
 - End User B
 - End User C

Missing Events

Congestion

这个图可以用，再加一些说明文字表述出标题的这个意思
Load Balancing Challenges Coverage Assumption

Cloud

/24 Network
End User A
End User B (representative)

/24 Network
End User C (representative)
End User D