SureMail: Notification Overlay for Email Reliability

Sharad Agarwal & Venkat Padmanabhan

Microsoft Research

Dilip Antony Joseph

UC Berkeley

HotNets 2005
Motivation

- **Silent email loss**
 - email “vanishes” without sender/recipient knowledge
 - can be costly even if relatively rare
 - missed opportunities, misunderstanding, or worse

- **Nontrivial problem**
 - anecdotal evidence
 - measurement studies
 - 0.69% loss rate [Lang & Moors 2004]
 - 0.1-5% loss rate [Afergan & Beverly 2005]
 - commercial offerings to address the problem
 - e.g., Pivotal Veracity, Zenprise
HotNets e-ticket

"We have sent it through again. If you do not receive it within an hour or two, please let us know."

Funding proposal

"No I never got and I never acked it... My last mail from you was on XYZ."

IMC 2005 decision notification

"I recd reviews for one paper (#X) but not that of #Y."

IMAP server upgrade problems

"Some unanticipated migration problems occurred that may have caused some lost or delayed email."
Motivation

- **Silent** email loss
 - email “vanishes” without sender/recipient knowledge
 - can be costly even if relatively rare
 - missed opportunities, misunderstanding, or worse

- **Nontrivial problem**
 - anecdotal evidence
 - measurement studies
 - 0.69% loss rate [Lang & Moors 2004]
 - 0.1-5% loss rate [Afergan & Beverly 2005]
 - commercial offerings to address the problem
 - e.g., Pivotal Veracity, Zenprise
Silent Email Loss

- Why email loss?
 - spam filtering: big problem ⇒ aggressive filtering
 - MS: 90% of emails discarded before hitting user mailboxes
 - AOL: 100 emails per month to maintain IP white-listing
 - server failures and upgrades
 - SMTP is not end-to-end reliable

- (Non-)Delivery status notifications
 - compounds spam problem
 - raises privacy concerns

- So email loss is often silent
Fixing the Problem

- Improve the email delivery infrastructure
 - more reliable servers
 - e.g., cluster-based (Porcupine [Saito ’00])
 - server-less systems
 - e.g., DHT-based (POST [Mislove ’03])
 - total switchover might be risky

- “Smarter” spam filtering
 - moving target ⇒ mistakes inevitable
 - non-content-based filtering still needed to cope with spam load
SureMail

- Address the problem from the outside
 - add separate notification overlay
 - emails & email delivery infrastructure left untouched
 - eases deployment, bounds the worst case

- Design requirements:
 - minimize demands on infrastructure and users
 - preserve asynchronous operation and privacy
 - maintain defenses against spam and viruses
 - minimize overhead
Basic Operation

Sender S → Request lost message → Recipient R

Onus on R ⇒ asynchronous nature of email is preserved

GetNotifications

{R, S, H(M)}

Notification server

Missing Items Folder
Notification Overlay

- Decentralized
 - limited collusion among the constituent nodes

- Efficient notification server lookup
 - e.g., \(R \rightarrow H(R) \) in a DHT setup

- Agnostic to actual implementation
 - end-host-based (e.g., always-on user desktops)
 - infrastructure-based (e.g., “NX servers”)
Challenges

- Privacy
 - information on users’ email habits or even just whether an email address is active could be leaked

- Notification spam
 - spammers could spoof notifications and burden users
 - “annoyance attacks” discredit notifications in general

- Even the notification infrastructure isn’t trusted
- No universal PKI for email users
SureMail Goals

- Protect the recipient’s identity
 - attacker shouldn’t be able to learn R’s identity or monitor the volume of notifications intended for R

- Protect the sender’s identity
 - attacker shouldn’t be able to learn S’s identity or monitor the volume of notifications posted by S

- Block notification spam
 - attacker shouldn’t be able to spoof notifications

\{R, S, H(M)\}
Assumptions

- No email eavesdroppers
 - bigger problems otherwise

- Limited collusion among notification nodes
 - needed only to avoid leaking information on whether or how many notifications R is receiving
Key Mechanisms

#1: Email-based handshake

#2: Decoupled registration and notification

#3: Email-based shared secret

#4: Reply-based shared secret

\{H(R), S, H(M)\}
#3: Email-based shared secret

Goal: prevent snooping on sender identity

💡 Email M_{old} from S to R in known only to S and R

- $H(M_{\text{old}})$ could serve as implicit identifier of S to R
- But it doesn’t quite serve as authenticator for S:
 - D_{not} knows $H(M_{\text{old}})$, so it could spoof notifications from S
 - even other attackers could do so by first sending M_{spoofed} purporting to be from S

$$\{H(R), H(M_{\text{old}}), H(M)\}$$
Goal: block spoofing of notifications

- Users rarely have conversations with spammers
- R remembers (hashes of) recent emails from S that it has replied to
- If S receives a reply to M_{old} it had sent R, M_{old} can serve as a shared secret between S and R
 - $H_1(M_{old})$ as implicit identifier, $H_2(M_{old})$ as authenticator
- Hard for a spammer (even D_{not}) to spoof

$$\{H(R), H_1(M_{old}), H_1(M)\}$$

$$H_2(M_{old})$$
Putting it all together

Sender S

{H₁(M₀), H₁(M)}

Recipient R

Dₙ₀=H(R)

Verify

Dₚₗₐₜₑₜₐₜₐₑₜₐₜ十九届全国网信办网络安全技术专家委员会

{H₁(M₂), H₁(M)}

Recipient R

Dₙ₀=H(R)

Verify

Dₚₗₐₜₑₜₐₜₐₑₜₐₜₐₑₜₐₜₐₑₜₐₜₐₑₜₐₜₐₑₜₐₜₐₑₜₐₜₐₑₜₐₜₐₑₜₐₜₐₑₜₐₜₐₑₜₐₜₐₑₜₐₜₐₑₜₐₜₐₑₜₐₜ十九届全国网信办网络安全技术专家委员会
Other issues

- **Reply-detection:**
 - “in-reply-to” insufficient, indirect checks needed

- **Reducing overhead:**
 - look for implicit ACK (reply) or NACK (bounce-back)
 - post notifications selectively (for “important” emails)

- **First-time “legitimate” senders:**
 - indistinguishable from spammers

- **Mobility:**
 - reply-based scheme naturally lends itself to migration
Status

- Ongoing measurement experiment
- Design being refined
- Implementation in the works
Discussion

#1: Should the notification system be folded into the email infrastructure?

- Separation is advantageous:
 - provides failure independence
 - keeps the notification layer simple
 - small, fixed format notifications don’t require the same kind of processing as virus-laden email
 - no direct benefit for spammers
 - provides engineering convenience
 - fewer dependencies, easier deployment
Discussion

#2: Is there a social benefit to silent email loss because of the plausible deniability it provides?

- Any such benefit is far outweighed by the costs
 - Should cars be slightly unreliable because of the excuse it would give people when they miss an engagement?
- It is the asynchronous nature of email that is key and SureMail preserves that