SoftMAC: A Flexible Wireless Research Platform

HotNets IV 2005

Michael Neufeld*, Jeff Fifield, Christian Doerr, Anmol Sheth
Dirk Grunwald
Department of Computer Science
University of Colorado, Boulder
*BBN Technologies
Outline

• Motivation and goals
• System design
• Application examples
• Conclusion
Software Defined Radios

- Enables construction of adaptive, resilient and multipurpose networks
- Building block for “cognitive radio” and “spectrum agile radios”
 - Temporal and spatial reuse of the spectrum
- Dynamic tuning of PHY layer “knobs and dials” like
 - Transmission rate / modulation
 - FEC / ARQ policies & adaptation
 - Channel adaptation
 - Frequency bandwidth

Pic. Source – DARPA XG Vision RFC
Adaptive MAC – Building resilient multipurpose networks

• Require similar set of “knobs and dials” at the MAC layer
• Adaptive/Heterogeneous MAC’s can lead to significant performance improvements
• Example: Media reservation
 – CSMA/CA for low contention periods
 – TDMA mechanism under high contention
Adaptive MAC - 802.11 “One size does not fit all”

- 802.16 based wireless backbone
- FEC+TDMA
- Outdoor long distance links
- Synch. TDMA
- VoIP, video and other QoS apps
- 802.11e, fast handoff, etc
- Mesh Networks
- Multi-radio MAC
- Security enhancements to WEP
- 802.11i
- Smart antennas (directional, MIMO, etc)
- D-MAC
- 802.11 MAC Protocol
Limitations of simulation

+ Assists rapid prototyping
+ Flexible and repeatable experimentation
+ Allows easy scalability testing

- Abstracts away a large number of real world problems
- Unrealistic assumptions of the real world
SoftMAC - Goal

Build a platform that allows flexible and repeatable MAC layer experimentation

• What properties should such a platform have?
• Once such a platform exists, what should the software interface be?
Existing platforms

Regular 802.11
Ubiquitous and low cost. Almost all functionality hidden in firmware.

Sensor Networks
Low cost, low power and highly portable. Very low data rates.

Std. Inexpensive SDR
Reasonably low cost. Limited integration with MAC.

Expensive SDR
Very expensive and not portable. Overkill for MAC layer experiments.
SDR platform examples

Expensive SDR platform - $9000-$10,000

Std Inexpensive SDR platform - $700-$800
SoftMAC

- COTS 802.11 hardware and mostly open-source software, i.e. cheap and ubiquitous
- Based on Atheros/MADWIFI drivers
- **Surprising** flexibility at MAC layer in *monitor* mode

Price ≈ $60
Wish list for a MAC layer experimentation platform

<table>
<thead>
<tr>
<th>Desirable features</th>
<th>“Undesirable” 802.11 features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support transmission of custom headers formats</td>
<td>Fixed 802.11 preamble and header formats</td>
</tr>
<tr>
<td>Fine control over timing of frame transmission (TDMA like protocols)</td>
<td>PHY CCA, Random backoff, virtual carrier sensing, etc</td>
</tr>
<tr>
<td>Provide visibility into PHY layer</td>
<td>Supports no mechanism to read/write PHY parameters</td>
</tr>
<tr>
<td>Support reception of arbitrary frames, including error frames</td>
<td>802.11 state machine filters malformed and error frames</td>
</tr>
<tr>
<td>Compatible with existing 802.11 devices</td>
<td></td>
</tr>
<tr>
<td>Low cost and portable</td>
<td></td>
</tr>
</tbody>
</table>
Controlling MAC frame format

Switch between long/short preamble

Frame Control	NAV or ID	Addr 1	Addr 2	Addr 3	Seq. Cntl	Addr 4	Frame Payload	CRC
2 | 2 | 6 | 6 | 6 | 2 | 6 | 0-2313 | 4

PLCP Preamble
- 144 bits or 72 bits
- 1 Mb/s

PLCP Header
- 48 bits
- 1 or 2 Mb/s

MAC Protocol Data Unit
- Variable size
- 1, 2, 5.5 or 11 Mb/s
Controlling transmission timing

Cannot eliminate DIFS interval. However, can control PHY CCA. Allows transmission in presence of noise in environment.

Control "random" backoff by setting the CW interval to 1.

NAV updates are suppressed in monitor mode.
Timing micro benchmarks

- Frame transmission rate
 - SoftMAC can send MAC frames every 91µ sec ±1µ sec

- Turn-around time
 \[t_{\text{turnaround}} = t_2 - t_1 - t_{\text{duration}} = 166 \text{ u sec} \pm 1 \text{ u sec} \]
Visibility into PHY

- Measure noise floor
- Receive CRC and PHY corrupted frames
- Diagnose the type of PHY error that corrupted the frame (CCK/OFDM timing errors, illegal rates, illegal parity etc.)
- Set 802.11 specific parameters (CTS/ACK timeout, force PHY CCA calibration, etc.)
Applications of SoftMAC

- TDMA based MAC
- Adaptive Reed Solomon MAC
- MultiMAC [DySpan ’05]
 - Dynamically switch between different MAC protocols
Adaptive Reed Solomon MAC

- s = sample period
- e = error threshold
- c = No error threshold

- Measure error frames for *sample period*
- if error frames > *error thresh* then signal “start RS”
- if error frames < *No error thresh* then signal “stop RS”

- On average 75% of packets were RS encoded
- Packets dropped due to errors reduced from 50% to less than 10%

Reed Solomon MAC for s=10, e=2, c=10

<table>
<thead>
<tr>
<th></th>
<th>Recv</th>
<th>Valid Recv</th>
<th>RS Recv</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>3859</td>
<td>3660</td>
<td>2971</td>
</tr>
<tr>
<td>802.11</td>
<td>3845</td>
<td>1850</td>
<td>0</td>
</tr>
</tbody>
</table>
Limitations of SoftMAC

• Very limited compared to a “real” SDR
 – Little flexibility at the PHY layer
 – Experimentation restricted to the MAC layer

• True innovation for (multihop) wireless is going to rely on new PHY’s
 – “Relay architectures” – radio repeaters

• Network community needs platforms to foster systems research rather than paper designs
Conclusions

- Flexible, low-cost MAC layer experimentation platform
- Significantly more flexible than stock 802.11
- Prove / disprove a significant body of work in “cross-layer” wireless research
- Download from -
 http://systems.cs.colorado.edu/projects/softmac

“[SoftMAC] is a hack, but a very clever and useful hack”
- External reviewer (Jay Lepreau)